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Abstract. In this paper we prove that the uniform 

convergence of a sequence ˆ
n
f of analytic representations 

for functions 
n
f

 
in pL
D

 
on suitable sets implies convergence 

of  the sequence 
n
f

 
in pL
D . Additionally, the boundary 

function f̂   of the sequence of the analytic representations  

ˆ
n
f  is analytic representation for  the boundary function  f  

of the sequence 
n
f . Similar results are given for the new 

distribution space 
,
' pLD  which is the weighted version of 

the space ' pLD  and generalized it. 
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,pL
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I. INTRODUCTION 

 
We use the standard notation from the Schwartz distribution 

theory.   

The boundary value representation  has been studied for a 

long time and from different points of view.  

One of the first result is that  if  
1f L , then the function 

1 1
(̂ ) ( ),

2
f z f t

i t z
 , for Im 0z  

is the Cauchy representation of f
 
 i.e. 

0

ˆ ˆlim ( ) ( ), ( ) ,
y

f x iy f x iy x f , 

for every D .

 

pL
D , 1 p denotes the space of all  infinitely 

differentiable functions   for which 
( ) pL  for each n-

tuple  of nonnegative integers.  

L
B D  is the space of all  infinitely differentiable 

functions  which are bounded on 
n

. 

B  is the subspace of  B  that consists of all functions 

B  which vanish at infinity together with each of their 

derivatives. 

The topology of  pL
D  is given in terms of the norms 
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1

( )

,
( )

n

p
p

m p
x dx ,

, 0,1,2,3,....m m  

A sequence of functions ( )  of pL
D  converges to a 

function  in the topology of pL
D , 1 p as 

0
if  each pL

D , pL
D , and  

0 0

1

( ) ( ) ( ) ( )lim lim ( ) ( ) 0
p

n

p
p

L
x x dx

, for every . 

A sequence of functions ( ) converges to the function  

in B  as 
0

if  each B , B , and  

   
0

( ) ( )lim 0
L

. 

D  is dense in pL
D , 1 p  and  in  B , but not in  

L
B D . Also pL

D is dense in 
pL . If pL

D  for 

1 p  then  is bounded and converges to 0
 
 at 

infinity with the same being true for all derivatives of . We 

have p qL L
D D D B  if  1 p q .  

pL
D  , 1 p  is the space of all continuous linear 

functionals on qL
D  where 

1 1
1

p q
.  

L
D  is the space 

of all continuous linear functionals on  B . 

The space pL
D  is a subspace of D . Indeed,  if ' pLD  

then, since D  is subspace of qL
D , we have  that ,  

is well defined for all D . Clearly,   is linear on D . 

Since convergence in D  implies convergence in qL
D  then 

, 0when 0  in D  as 
0

. Thus 

D . The uniqueness of  the  linear functional  

follows  from the fact that D  is dense in qL
D .  Similar 

reasoning yields that 1' '
L

D D  since D B .  

The following theorem gives the structures of pL
D  . 

Structure Theorem. A distribution  belongs to pL
D , 

1 p
 

if and only if  is a finite sum of 

distributional derivatives of functions in 
pL  , i.e. there is an 

integer 0m  depending only on  such that 

m

f , where 
pf L  for each , m . 

II. MAIN RESULTS 

Theorem 1. Let 
n
f  be a bounded sequence in pL

D  for 

1 p and  let ˆ( ( ))
n
f z  be a sequence  of analytic 

representation for every term of 
n
f , respectively.  

Then the following  conditions hold: 

a) If  the  sequence  ˆ( ( ))
n
f z  of  analytic  

representations converges uniformly to the function 

(̂ )f z  on the sets of  the form (0, )T  or 

( ,0)T , for 0T as n ,  then there 

exists a function pL
f D  such that 

n
f f  as 

n  in pL
D . 

b) The boundary function (̂ )f z  is analytic 

representation for the boundary function  pL
f D . 
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Proof.  We will first show that if pL
f D  then f  has 

Cauchy representation   
1 1

(̂ ) ( ),
2

f z f t
i t z

 , 

for Im 0z ,  i.e. we will prove that  

0

ˆ ˆlim ( ) ( ), ( ) ,
y

f x iy f x iy x f , 

where 
1 1
, 1qL

D D
p q

. 

Note that  

^
k pf L  for any positive integer k . 

By the structure theorem 
( )

1

m
k
k

k

f f , where  
p

i
f L . 

 

Let D  be arbitrarily chosen.  Since  has compact 

support, there exists some 0a  such that 

supp ,a a .  

We have
 

( ) ( )

1

ˆ ˆ( ( ) ( )) ( )

1 1 1 1
( ( ), ( ), ) ( )
2 2

( ) ( )1
( ) ( ) .

2

k km
k k

k

I y f x iy f x iy x dx

f t f t x dx
i t z i t z

f t dt f t dt
x dx

i t z t z

 

Integrating  by parts m-times in the last two integrals in the 

brackets, we get

1 1
1

( ) ( )1
!( ) ( ) .

2 ( ) ( )

m
k k

k k
k

f t dt f t dt
I y k x dx

i t z t z
 

Now we apply Fubini's theorem and get  

 

1 1
1

1 ( ) ( )
! ( ) ( ).

2 ( ) ( )

m

k k k
k

x dx x dx
I y k f t dt

i t z t z
 

Again, we integrate by parts m-times in the last two integrals 

and get that  

2

( ) ( )

1

1

1 1 ( ) ( )
! ( ) ( )
! 2

( )
1 ( ) ,

k
k km

k
k
m k

k
k

I y

x dx x dx
k f t dt
k i t z t z

y x dx
f t dt

t z

 

where 
( ) .k D  

From Lemma 4 in 1  we have that 

2

( )
( )

y x dx
t iy

t z
 and that 

( ) ( )t iy t  uniformly on compact subset of the 

complex plane as 0y . 

Therefore 

1

1 ( ) ( )
m k

k
k

I y f t t iy dt . 

By the Lebesgue dominated convergence theorem, we get  
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0

0 0 1

1

1

1

ˆ ˆlim ( ( ) ( )) ( )

lim lim 1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

1 1 ( )

( ) , .

y

m k

k
y y k

m k

k
k
m k k

k
k
m k k k

k
k

f x iy f x iy x dx

I y f t t iy dt

f t t dt

f t t dt

f t t dt

f t t dt f

 

Now we will show a). First we prove that the sequence ( )
n
f  

is a Cauchy sequence.  

Let  D  and let 
0

,n m n
 

 for some 
0
n . We 

consider the difference 

1 2 3

, ,

ˆ ˆ, ( ( ) ( )) ( )

ˆ ˆ( ( ) ( )) ( )

ˆ ˆ( ( ) ( )) ( )

ˆ ˆ( ( ) ( )) ( )

, ,

n m

n n n

n n

m m

m m

m

f f

f f z f z x dx

f z f z x dx

f z f z x dx

f z f z x dx

f I I I

 

where   

1
ˆ ˆ, ( ( ) ( )) ( ) ,

n n n
I f f z f z x dx

2
ˆ ˆ( ( ) ( )) ( )

ˆ ˆ( ( ) ( )) ( ) ,

n n

m m

I f z f z x dx

f z f z x dx

3
ˆ ˆ( ( ) ( )) ( ) , .
m m m

I f z f z x dx f  

Since ˆ ( )
n
f z  is analytic representation for ( )

n
f , respectfully,  

for  the integrals 
1
I  and 

3
I  we have  that, for arbitrary 

0  there exist 
0
y  such that for 

0
y y  ,  

1 3
I

and 
3 3
I . 

Now we consider the second integral and get that 

2

2 2

ˆ ˆ( ( ) ( )) ( )

ˆ ˆ( ( ) ( )) ( )

.

n m

m n

I f z f z x dx

f z f z x dx

I I

 

Since  the sequence ˆ( ( ))
n
f z  is convergent,  it implies that it 

is a Cauchy sequence. Therefore, for an arbitrary  0  

there exist  
0
n  such that for  

0
,n m n ,  

2 6
I

and 
2 6
I . 

From the above estimates, we get that the sequence ( )
n
f  is  a 

Cauchy  sequence  in D . Since D  is complete, there exists 

D  such that  
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lim in
nn
f D ,  i.e. 

lim , ,
nn
f  for D . 

Since  the space D  is dense in qL
D , the linear  functional  

can be extend to continuous  linear functional on qL
D  by 

the Banach-Steinhaus Theorem. 

Thus, there exists pL
f D  such that  

in pn L
f f D . 

The  proof   that  the function (̂ )f z  is analytic representation 

for f  is similar to the one in the first part, so we will omitted 

it. 

In the sequel, we will consider the spaces 
,pL m

D and 
,pL m

D . 

First we give some facts about these spaces. With 
E
D  we 

denote the space of all infinitely differentiable functions  

such that  

( )

,
max : ,

E N E
N  

where E  is a reflexive space. Note that the spaces 
pL  for 

1 p
 
are reflexive. 

Let m  be a polynomially bounded measurable weighted 

function from 
n

 into (0, )  that fulfills the requirement 

( ) (1 ) ( ),m x h M h m x  for some , 0M . 

With 
pL  we denote the space of all functions g  such that  

,p m p
g gm . 

If 
pE L , then the corresponding dual space is denoted by 

*
( )p qE E L L  for 1 ,p q . 

With 
,pL

D  we denote the space of all functions g  such that 

( )( ) pg L  or  

1
( ) ( )( ) ( ( ) ) , 1

p

p
p

L
g g d p . 

 The dual space of 
,pL

D  is the space 
,pL

D  of all 

continuous linear functionals on 1,qL
D  or  

1, ,
( )p qL L

D D  , where 
1 1

1.
p q

 

Structure  theorem for a distribution of 
,pL

D . 

,pL
D  if and only if  ( ( ) ( ))

m

x f x , where  

( ) ( ) ,px f x L m  and1 p . 

Theorem 2. Let  ( )
n
f  be a bounded sequence of functions of  

,pL
D  for 1 p  and let  ˆ( ( ))

n
f z be  a sequence of 

analytic  representation  for every ( )
n
f , respectively. Then  

the following conditions holds: 

a) If  the sequence  ˆ( ( ))
n
f z  of  analytic  

representations converges uniformly on the set of 

the form (0, )T  or ( ,0)T   then there 

exists a function 
,pL

f D  such that 
n
f f  in 

,pL
D . 
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b) The boundary function (̂ )f z  is analytic 

representation for the boundary function f . 

Proof.  First we will show that if 
,pL

f D  then f  has 

Cauchy representation.  

By the structure theorem, we have ( ( ) ( ))
m

f x f x

, where 

 

( ) ( ) px f x L . 

Let  
1 1

(̂ ) ( ),
2

f z f t
i t z

 ,  for Im 0z . 

Then 

1 2

ˆ ˆ( ( ) ( )) ( )

1 ( ) ( )
( ) ( )

2

f x iy f x iy x dx

f t dt f t dt
x dx

i t z t z

I I
. 

Let us consider the first integral  

1

( )

1
( )

1

1 ( )
( )

2

( ( ) ( ))1
( )

2

( ( ) ( ))1
( ) .

2

km
k

k
km

k

k

f t dt
I x dx

i t z

f t t dt
x dx

i t z

f t t dt
x dx

i t z

 

With partial  integration   m-times we get that  

1
1

( ) ( )1
! ( )
2 ( )

m
k

k
k

f t t dt
k x dx

i t z
 

Since ( ) ( ) p
k
f t t L  and 

1

1
,

( )
q

k
L

t z
  the last 

integral might be written as follows  

1
1

1
1

( ) ( )1
! ( )
2 ( )
1 ( )
! ( ) ( ) .
2 ( )

m
k

k
k
m

k k
k

f t t dt
k x dx

i t z
x dx

k f t t dt
i t z

 

Another  m-times partial integration in the last integral gives  

1 1
1

( )

1

1

1 ( )
! ( ) ( )
2 ( )

1 1 ( )
! ( ) ( )
! 2

1 ( )
( 1) ( ) ( ) ,

2

m

k k
k

k
km

k
k
m

k
k

k

x dx
I k f t t dt

i t z

x
k f t t dt dx
k i t z

x
f t t dt dx

i t z

, 

where 
( )( ) ( )kx x .  

Analogously,  for the second integral we have that  

2
1

1 ( )
( 1) ( ) ( )

2

m
k

k
k

x
I f t t dt dx

i t z

. 

Thus,  
21 2

1

( )
( 1) ( ) ( )

m
k

k
k

y x dx
I I f t t dt

t z
 

and then we use Lemma 4 in  1  i.e.  that   

2

*( )
( )

y x dx
t iy

t z
 and  converges uniformly to 

( )t  on compact subset of the plane.  

Finally with the use of the Lebesgue dominated convergence 

theorem,  we get that 
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0

0 1

1

( )

1

( )

1

( )

1

ˆ ˆlim ( ( ) ( )) ( )

lim ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( 1) ( ( ) ( )) ( )

( ( ) ( )) ( )

y

m
k

k
y k
m

k
k

k
m

k k
k

k
m

k k k
k

k
m

k
k

k

f x iy f x iy x dx

f t t t iy dt

f t t t dt

f t t t dt

f t t t dt

f t t t dt , .f

 

The proof of the rest of  theorem is similar to the one of  

theorem 1, so we will omitted it. 
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