An Extension of Fixed Point Theorems in TVS- Valued Cone Metric Spaces

S.K.Tiwari ${ }^{1}$, Leena Mahar ${ }^{2}$
${ }^{1}$ Department of Mathematics, DR. C.V. Raman University, Bilaspur, Chhattisgarh-495113, India
${ }^{2}$ Department of Mathematics (M. Phil Scholar) DR. C.V. Raman University, Bilaspur, Chhattisgarh-495113, India

Abstract

: the purpose of this is to obtain common fixed point theorems for contractive mappings in the setting of topological vector space-valued cone metric spaces. Our results generalize some well- known recent results the literature of [29].

Key word: common fixed point, contractive mapping, TVS-Valued cone metric space.

I. INTRODUCTION:-

In 1906, the French mathematician Maurice Frechet [1, 2] introduced the concept of metric spaces, although the name "metric" is due to Housdorff [1,3]. In 1934, the Serbian mathematician Duro Kurepa[4], a Ph.D student of Frechet, introduced metric spaces in which an ordered vector spaces used as the co domain of a metric instead of the set of the real numbers. In the literature the metric spaces with the vector valued metrics are know under various name such as pseudo metric spaces, k-metric spaces generalized metric spaces, cone valued metric spaces ,cone metric spaces, abstract metric spaces and vector valued metric spaces. Fixed point theory in K-metric space was developed by A.I.Perov in 1964[5, 6]. For more details on fixed point theory in K-metric and Knormed spaces, we refer the reader to [7].

In 2007, Hunge and Zhang [8] reintroduced such metric spaces under the name cone metric spaces without mentioning the previous works. But they went further, defining convergent and Cauchy sequences in terms of interior points of the underlying cone. They also proved some fixed point theorem in such spaces in the same work. Subsequently, several
authors have studied fixed point theory of cone metric spaces. Many authors [12-27] studied fixed points results of mapping satisfying contractive type condition in Banach space-valued cone metric spaces. Recently, In 2009 I. Beg et al [9] and in 2010 Du [10] generalized cone metric spaces to topological vector space valued cone metric space and obtained common fixed points of a pair of mapping satisfying generalized contractive type conditions w8ithout assumption of normality in a class of topological vector space-valued cone metric spaces which is biggar than that of studied in [12-27].
In this approach ordered topological vector spaces are used as the co domain of metric instead of Banach spaces. While I. Beg et al used Housdorff TVS; Du used locally convex Housdorff TVS. However, a result in [11] shows that if the underlying cone of an ordered TVS is solid and normal it must be an ordered normed spaces. So, proper generalized from Banach space valued cone metric spaces to TVSCMS can be obtained only in the case of non normal cones.
Several authors had showed that some fixed point theorem in usual metric spaces and their TVS-CMS counterparts are equivalent. See [2],[9] and [10]. One of the tools used to prove such equivalences is the so called nonlinear secularizations function. This method was used earlier in optimization theory to convert optimization problems in Victorian forms to their scalar forms. This function was introduced into fixed point theory by Du [10]. In sequel, Akbar Azam, Ismat Beg and M.Arshad [29] obtain fixed point in
topological vector space- valued cone metric spaces which are generalize of the results [15] and [16].

Akbar Azam and B.E.Rhoades[28] obtained common fixed point of a pair of mappings satiasfying a generalized contractive type of condition in TVS valued cone metric spaces. Also, Zoran Kadelburg, Stojan Radenovi' and Vladimir Rakǒcevi'c[30], developed the theory of topological vector space valued cone metric spaces with non normal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theoryof _normed-valued_ cone metric spaces.
In this paper we have prove common fixed point results for contractive type conditions in the setting of Topological vector space- valued cone metric spaces. Our results generalize some well known recent results in the literature of [29].

II. PRELIMINARIES

Definition 2.1: $[9,10]$: Let (E, τ) be a topological vector space. A subset P of E is called a cone if :

1) $\quad \mathrm{P}$ is closed , nonempty and nontrivial (i.e., $\mathrm{P} \neq\{0\}$);
2) $a x+b y \in P$ for all $x, y \in P$ and nonnegative real numbers a and b and
3) $\quad \mathrm{P} \cap(-\mathrm{P})=\{0\}$.

We define a partial ordering \leq on E with respect to P by $x \leq y$ if and only if $y-x \in P$. We write $x<y$ if $x \leq y$ and $x \neq y$. Likewise, we write $x \ll y$ if $y-x \in \operatorname{intP}$, where int P denotes the interior of P. If ambiguity is possible we can use the notation $\leq_{P},<_{P}$ and $<_{P}$. The pair (E , $P)$ consisting of a TVS E and a solid cone P of E is called a partially ordered TVS.

Definition 2.4[9, 10]: Let X be a nonempty set. A mapping $d: X \times X \rightarrow E$ satisfying
(d1) $d(x, y) \geq 0$
(d2) $d(x, y)=0 \Leftrightarrow x=y$;
(d4) $\quad d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in$ X,
is called a TVS-valued cone metric on X. The pair (X, d) is called a TVS-valued cone metric space (written briefly as TVS-CMS).

Definition 2.5: $[9,10]$ Let (X, d) be a TVS-cone metric space, $x \in X$ and $\left\{\mathrm{x}_{\mathrm{n}}\right\}, \mathrm{n}=1,2, \ldots \ldots$..be a sequence in X. Then we say
(i) TVS-converges to x if for every $\mathrm{c} \in$ int P there
exists a natural number N such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)$
$\ll c$
for all $\mathrm{n} \geq \mathrm{N}$.
(ii) $\quad\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a TVS-cauchy sequence if for every $\mathrm{c} \in$ int

P there exists a natural number N such that $\mathrm{d}\left(\mathrm{X}_{\mathrm{n}}\right.$,
$\left.x_{m}\right) \ll c$ for all $n, m \geq N$.
(iii) ($\mathrm{X}, \mathrm{d})$ is a TVS-complete cone metric space if
every Cauchy sequence in (X, d) is convergent in
(X, d).

(iv) MAIN RESULT

The following theorems extend and generalize the result of 2.1 of [29]:
Theorem 3.1:- Let (X, d) be a complete topological vector space-valued cone metric space. P be a cone and m, n be positive integer. If a mapping $T_{1}, T_{2}: X \rightarrow$ X satisfies
$d\left(T_{1}{ }^{m} x, T_{2}{ }^{n} y\right) \leq \operatorname{Ad}(x, y)+$ $B d\left(x, T_{1}{ }^{m} x\right)+C d\left(y, T_{2}{ }^{n} y\right)+D d\left(x, T_{2}{ }^{n} y\right)$
$+E d\left(y, T_{1}^{n} x\right)$, For all $x, y \in X$, where A, B, C, D, E are non negative real numbers with $A+B+C+D+$ $E<1$, Then $\mathrm{T}_{1}{ }^{\mathrm{m}} \& \mathrm{~T}_{2}{ }^{\mathrm{n}}$ are an unique common fixed point in X.

Proof:- For $x_{0} \in X$ and $K \geq 0$, define

$$
\begin{gathered}
\boldsymbol{x}_{2 \boldsymbol{k}+\boldsymbol{1}}=T_{1}{ }^{m} x_{2 k} \quad \text { and } \\
\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{2}}=T_{2}^{n} x_{2 k+1}
\end{gathered}
$$

Then

$$
\begin{aligned}
& d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{2 \boldsymbol{k}+2}\right)=d\left({T_{1}}^{m} x_{2 k}, T_{2}^{n} x_{2 k+1}\right) \\
& \leq \\
& A d\left(x_{2 k}, x_{2 k+1}\right)+B d\left(x_{2 k}, T_{1}^{m} x_{2 k}\right)+C d\left(x_{2 k+1},\right. \\
& \left.T_{2}^{n} x_{2 k+1,}\right) \\
& +D d\left(x_{2 k, T_{2}}{ }^{n} x_{2 k+1}\right)+E d\left(\boldsymbol{x}_{2 k+1}, T_{1}^{m} x_{2 k}\right)
\end{aligned}
$$

```
\(\leq[A+B] d\left(x_{2 k}, x_{2 k+1}\right)+C d\left(\boldsymbol{x}_{2 k+1}, \boldsymbol{x}_{2 k+2}\right)\)
\(+D d\left(x_{2 k}, \boldsymbol{x}_{2 k+2}\right)\)
\(\leq[A+B+D] d\left(x_{2 k}, x_{2 k+1}\right)+[C+D] d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}\right.\),
\(\boldsymbol{x}_{2 \boldsymbol{k}+2}\) ).
```

It implies that
$[1-C-D] d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{\mathbf{2 k + 2}}\right) \quad \leq \quad[A+B+$ D]d $\left(x_{2 k}, x_{2 k+1}\right)$.

Therefore, $d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{2}}\right) \leq \frac{[A+B+D]}{[1-C-D]} d\left(x_{2 k}, x_{2 k+1}\right)$.
That is,

$$
d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{2 \boldsymbol{k}+2}\right) \leq F d\left(x_{2 k}, x_{2 k+1}\right)
$$

Where $F=\{A+B+D\} /\{1-C-D\}$.

Similarly,

$$
\begin{aligned}
& d\left(x_{2 k+2}, x_{2 k+3}\right)=d\left(T_{1}{ }^{m} x_{2 k+2}, T_{2}{ }^{n} x_{2 k+1}\right) \\
& \leq A d\left(x_{2 k+2}, x_{2 k+1}\right)+B d\left(x_{2 k+1}, T_{1}{ }^{m} x_{2 k+2}\right) \\
& +C d\left(x_{2 k+1}, T_{2}^{n} x_{2 k+1}\right) \\
& +D \mathrm{~d}\left(x_{2 k+2,} T_{2}{ }^{n} x_{2 k+1}\right)+E d\left(x_{2 k+1}, T_{1}{ }^{m} x_{2 k+2}\right) \\
& \leq \\
& A \mathrm{~d}\left(x_{2 k+2}, x_{2 k+1}\right)+B d\left(x_{2 k+2}, x_{2 k+3}\right)+C d\left(x_{2 k+1}, x_{2 k+2}\right. \text {, } \\
& \text {) } \\
& +D d\left(x_{2 k+2}, x_{2 k+2}\right)+E d\left(x_{2 k+1}, x_{2 k+3}\right. \\
& \leq[A+C+E] d \quad\left(x_{2 k+2}, x_{2 k+1}\right) \quad+\quad[B+E \\
& d\left(x_{2 k+2}, x_{2 k+3}\right) \\
& \text { which implies } \\
& d\left(x_{2 k+2}, x_{2 k+3}\right) \leq G d\left(x_{2 k+1}, x_{2 k+2}\right), \\
& \text { with } G=(A+C+E) /(1-B-E) \\
& \text { Thus } \quad p, q \in N \\
& d\left(x_{2 p+1}, x_{2 q+1}\right) \leq d\left(x_{2 p+1}, x_{2 q+2}\right)+d\left(x_{2 p+2,}, x_{2 q+3}\right) \\
& +d\left(x_{2 p+3,+} x_{2 q+4}\right)+\ldots+d\left(x_{2 p}, x_{2 q+1}\right) \\
& \leq\left(F^{2 p+1}+F^{2 p+2}+\ldots \ldots+F^{2 p}\right) \\
& d\left(x_{0}, x_{1}\right) \\
& \leq\left(F^{2 q} / 1-q\right) d\left(x_{0}, x_{1}\right),
\end{aligned}
$$

Hence, for $0<n<m$

$$
d\left(x_{n}, x_{m}\right) \leq\left(F^{2 q} / 1-q\right) d\left(x_{0}, x_{1}\right)
$$

Fix $0 \ll c$ and choose a symmetric neighborhood V of 0 such that $c+V \subseteq$ intP. Since
$a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we deduce that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is a complete, there exists $u \in X$ such that $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{u}$. Fix $0 \ll c$ and choose $\mathrm{n}_{0} \in \mathbb{N}$ be such that

$$
d\left(u, x_{2 k}\right) \ll \mathrm{c} / 3 \mathrm{~K}, \mathrm{~d}\left(x_{2 k-1}, x_{2 k}\right) \ll \mathrm{c} / 3 \mathrm{~K},
$$ $\mathrm{d}\left(u, x_{2 k-1}\right) \ll \mathrm{c} / 3 \mathrm{~K}$,

$$
K=\max \{1+D / 1-B-E, A+E / 1-B-
$$

$$
E, C / 1-B-E\}
$$

Now

$$
\begin{aligned}
& d\left(u, T_{1}^{m} u\right) \leq d\left(u, x_{2 k}\right)+d\left(u, T_{1}^{m} u\right) \\
& \leq d\left(u, x_{2 k}\right)+d\left(T_{1}^{m} x_{2 k-1}, T_{1}^{m} u\right) \\
& \leq d\left(u, x_{2 k}\right)+A d\left(u, x_{2 k-1}\right)+B d\left(u, T_{1}^{m} u\right) \\
& + \\
& C d\left(x_{2 k-1}, T_{1}^{m} x_{2 k-1}\right)+D d\left(u, T_{1}^{m} x_{2 k-1}\right) \\
& + \\
& E d\left(x_{2 k-1}, T_{1}^{m} u\right) \\
& \leq d\left(u, x_{2 k}\right)+A d\left(u, x_{2 k-1}\right)+B d\left(u, T_{1}^{m} u\right) \\
& + \\
& C d\left(x_{2 k-1}, x_{2 k}\right)+D d\left(u, x_{2 k}\right)+E d\left(x_{2 k-1}, u\right) \\
& +E d\left(u, T_{1}^{m} u\right) \\
& \leq(1+D) d\left(u, x_{2 k}\right)+(A+ \\
& E) d\left(u, x_{2 k-1}\right)+C d\left(x_{2 k-1}, x_{2 k}\right) \\
& +(B+E) d\left(u, T_{1}^{m} u\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
& d\left(u, T_{1}^{m} u\right) \leq K d\left(u, x_{2 k}\right)+K d\left(u, x_{2 k-1},\right) \\
+ & K \mathrm{~d}\left(x_{2 k-1}, x_{2 k}\right) \\
< & \frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c
\end{aligned}
$$

Hence

$$
d\left(u, T_{1}{ }^{m} u\right) \ll c / p
$$

for every $p \in \mathbb{N}$. From

$$
c / p-d\left(u, T_{1}^{m} u\right) \in \operatorname{intP}
$$

being P closed, as $\mathrm{p} \rightarrow \infty$, we deduce $-\mathrm{d}\left(\mathrm{u}, \mathrm{T}_{1}{ }^{\mathrm{m}} \mathbf{u}\right) \in \mathrm{P}$ and so $\mathrm{d}\left(\left(u, T_{1}{ }^{m} u\right)=0\right.$. This implies that $u=T_{1}{ }^{m} u$.

Similarly, by using the inequality,

$$
\begin{aligned}
d\left(u, T_{1}^{m} u\right) & \leq d\left(u, x_{2 k-1}\right)+K d\left(u, x_{2 k-1}\right) \\
& +d\left(x_{2 k-1}, T_{2}^{n} u\right)
\end{aligned}
$$

we can show that $u=T_{2}{ }^{n} u$, which in turn implies that u is a common fixed point of
$T_{1}{ }^{m}, T_{2}{ }^{n}$ and, that is $\quad u=T_{1}{ }^{m} u=T_{2}{ }^{n} u$. Hence complete the proof

Theorem 3.2:- Let (X, d) be a complete topological vector space-valued cone metric space. P be a cone and m, n be positive integer. If a mapping $T_{1}, T_{2}: X \rightarrow$ X satisfies
$d\left(T_{1}{ }^{m} x, T_{2}{ }^{n} y\right) \leq A d(x, y)+B\left[d\left(x, T_{2}{ }^{n} y\right)+d(y\right.$, $\left.\left.T_{1}{ }^{m} x\right)\right]+C\left[d\left(x, T_{1}{ }^{m} x\right)+d\left(y, T_{2}{ }^{n} y\right)\right]$
For all $x, y \in X$, where $A, B, C \in[0,1]$ are non negative real numbers with $A+2 B+2 C<1$
Then $T_{1}{ }^{m} \& T_{2}{ }^{n}$ are a unique common fixed point.
Proof:- For $x_{0} \in X$ and $k \geq 0$, and define the sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{gathered}
\boldsymbol{x}_{\mathbf{2 k + 1}}=T_{1}{ }^{m} x_{2 k} \quad \text { and } \\
\boldsymbol{x}_{2 \boldsymbol{k}+2}=T_{2}^{n} x_{2 k+1}
\end{gathered}
$$

For all $k=0,1,2, \ldots$.
We obtain

$$
\begin{aligned}
& d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{2 \boldsymbol{k}+2}\right)=d\left({T_{1}}^{m} x_{2 k}, T_{2}^{n} x_{2 k+1}\right) \\
& \leq \operatorname{Ad}\left(x_{2 k}, \quad x_{2 k+1}\right)+B\left[d \left(x_{2 k}, T_{2}{ }^{n}\right.\right. \\
& x_{2 k+1} \text {) } \\
& \left.+d\left(x_{2 k+1}, T_{1}{ }^{m} x_{2 k}\right)\right] \\
& +C\left[d\left(x_{2 k}, T_{1}{ }^{m} \quad x_{2 k}\right)+d\left(x_{2 k+1}, T_{2}{ }^{n}\right.\right. \\
& \left.\left.x_{2 k+1}\right)\right] \\
& \leq A d\left(x_{2 k}, x_{2 k+1}\right)+B\left[d\left(x_{2 k+1}, x_{2 k}\right)+d\left(x_{2 k},\right.\right. \\
& \left.\left(x_{2 k+1}\right)\right] \\
& +C\left[d\left(x_{2 k+1}, x_{2 k}\right) \quad+d\left(x_{2 k},\right.\right. \\
& \left.\left.x_{2 k+1}\right)\right] \\
& \leq[A+B+C] d\left(x_{2 k+1} \quad x_{2 k}\right) \quad+[B+C] d\left(x_{2 k},\right. \\
& \left.x_{2 k+1}\right) \text {. }
\end{aligned}
$$

It implies that

$$
d\left(\boldsymbol{x}_{2 k+1}, \boldsymbol{x}_{2 k+2}\right) \leq \frac{A+B+C]}{(1-B-C)}\left(d\left(x_{2 k}, x_{2 k+1}\right)\right.
$$

where

$$
F=(A+B+C) /(1-B-C)<1
$$

Similarly,
It can be shown that
Induction, we obtain for each $k=0,1,2, \ldots \ldots$

$$
d\left(x_{2 k+2}, x_{2 k+3}\right) \leq F d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{\mathbf{2 k + 2}}\right)
$$

for all

$$
\begin{aligned}
d\left(x_{2 k+2}, x_{2 k+3}\right) & \leq F d\left(\boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \boldsymbol{x}_{2 \boldsymbol{k}+2}\right) \\
& \leq \ldots \ldots \leq F^{k+1} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

For $p<q$ we have

$$
\begin{aligned}
& \quad d\left(x_{2 p+1}, x_{2 q+1}\right) \leq d\left(x_{2 p+1}, x_{2 q+2}\right)+d\left(x_{2 p+2,} x_{2 q+3}\right) \\
&+d\left(x_{2 p+3,+} x_{2 q+4}\right)+ \\
& \ldots+d\left(x_{2 p}, x_{2 q+1}\right)
\end{aligned} \quad \begin{aligned}
d\left(x_{0,} x_{1}\right) .
\end{aligned}
$$

By the definition of normal cone

$$
\begin{gathered}
d\left(x_{2 p+1}, x_{2 q+1}\right) \\
\leq\left[\left(F^{2 p+1} / 1-F\right] \mathrm{K} d\left(x_{0}, x_{1}\right) .\right.
\end{gathered}
$$

which implies that $\mathrm{d}\left(x_{2 p+1}, x_{2 q+1}\right) \rightarrow 0$ as $p, q \rightarrow \infty$
Hence $\left\{x_{n}\right\}$ is Cauchy sequence since $\left\{x_{n}\right\}$ is a cauchy sequence in $T_{1}{ }^{m} x$ which is complete there exists $u \in X$

Let us prove that

$$
u=T_{1}^{m} u
$$

Then by the triangle inequality
We have

$$
\begin{aligned}
d\left(T_{1}{ }^{m} u, u\right) & \leq d\left(T_{1}^{m} u, T_{2}^{n} x_{2 k-1},\right)+d\left(T_{2}^{n} x_{2 k-1} u\right) \\
& \leq A d\left(u, x_{2 k-1},\right)+B\left[d\left(u, T_{2}^{n} x_{2 k-1}\right)\right. \\
& \left.\left.+d\left(x_{2 k-1},\right), T_{1}^{m} u\right)\right] \\
& \left.+C\left[d\left(u, \mathrm{~T}_{1}^{m} \mathbf{u}\right)+\mathrm{d}\left(x_{2 k-1}\right),{T_{2}}^{n} x_{2 k-1}\right)\right]
\end{aligned}
$$

By the definition of normal cone
$d\left(T_{1}{ }^{m} u, u\right) \leq K\left(A d\left(u, x_{2 k-1}\right)+B\left[d\left(u, T_{2}^{n} x_{2 k-1}\right)+\right.\right.$ $\left.d\left(x_{2 k-1}, T_{1}{ }^{m} u\right)\right]+C\left[d\left(u, T_{1}{ }^{m} u\right)\right]$

$$
\left.+d\left(x_{2 k-1}, T_{2}^{n} x_{2 k-1}\right)\right] \quad+d\left(T_{2}^{n}\right.
$$

$\left.x_{2 k-1}, u\right)$
let $k \rightarrow \infty$ we obtain

$$
\begin{aligned}
d\left(T_{1}{ }^{m} u, u\right) & \leq A d(u, u)+B\left[d(u, u)+d\left(u, T_{1}{ }^{m} u\right)\right. \\
& +C\left[d\left(u, T_{1}^{m} u\right)+d(u, u)\right]+d(u, u) \\
& \leq(B+C) d\left(u, T_{1}{ }^{m} u\right) .
\end{aligned}
$$

Which is a contradiction
since

$$
A+2 B+2 C<1
$$

So,

$$
T_{1}{ }^{m} u=u
$$

Therefore

$$
u=T_{1}^{m} u
$$

where u is a contradiction point
since another point u^{*} in X , such that

$$
\begin{aligned}
& T_{1}{ }^{m} u^{*}=u^{*} \\
& d\left(T_{1}{ }^{m} u^{*}, u^{*}\right) \leq d\left(T_{1}{ }^{m} u^{*}, T_{2}{ }^{n} u^{*}\right) \\
& \leq A d\left(u, u^{*}\right)+B\left[d\left(u, T_{2}{ }^{n} u^{*}\right)\right) \\
&+\left.\mathrm{d}\left(\mathbf{u}^{*}, \mathrm{~T}_{1}{ }^{\mathrm{m}} \mathbf{u}\right) \quad\right]+C\left[d\left(u, \mathrm{~T}_{1}{ }^{\mathrm{m}} \mathbf{u}\right) \quad+\right. \\
&\left.\left.\mathrm{d}\left(\mathrm{u}^{*}, T_{2}{ }^{n} u^{*}\right)\right)\right] \\
& \leq A d\left(u, u^{*}\right)+B\left[d\left(u, u^{*}\right)\right. \\
&+\left.\left.\mathrm{d}\left(u^{*}, T_{2}{ }^{n} u^{*}\right)\right)\right] \quad+C\left[d\left(u, \quad u^{*}\right) \quad+\right. \\
&\left.\left.\mathrm{d}\left(u^{*}, T_{2}^{n} u^{*}\right)\right)\right] \\
&\left.\leq(B+C) d\left(u, T_{2}{ }^{n} u^{*}\right)\right)
\end{aligned}
$$

Which is a contradiction,
since

$$
A+2 B+2 C<1
$$

S0
$T_{1}{ }^{m} u^{*}=u^{*}$ we can show that $u=T_{2}{ }^{n} u$, which in turn implies that u is a common fixed point of
$T_{1}{ }^{m}, T_{2}{ }^{n}$ and, that is $\quad u=T_{1}{ }^{m} u=T_{2}{ }^{n} u$. Hence complete the proof

Theorem 3.4:- Let (X, d) be cone metric space with respect to cone P containing in a real Banach E. let T_{1} $\& T_{2}$ be any two surjection self maps of X satisfying .

$$
\begin{aligned}
d\left(T_{1}{ }^{m} x, T_{2}^{n} y\right) & \leq A d(x, y)+B\left[d\left(x,, T_{1}^{m} x\right)\right] \\
& +C\left[d\left(y, T_{2}^{n} y\right)\right]
\end{aligned}
$$

For all $x, y \in X$, where $A, B, C \geq 0$ are non negative real numbers with $A+B+C>1$, Then $T_{1}{ }^{m} \& T_{2}{ }^{n}$ are a unique common fixed point.

Proof:- For x_{0} be an arbitrary point in X. since $T_{1} \&$ T_{2} surjection mapping and there exist point $\mathrm{x}_{1} \in T_{1}{ }^{m}$ $\left(x_{0}\right)$ and $\mathrm{x}_{2} \in T_{2}^{n}\left(x_{1}\right)$ that is

$$
T_{1}^{m}\left(x_{1}\right)=x_{0} \text { and } T_{2}^{n}\left(x_{2}\right)=x_{1}
$$

In this way,
We define the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ with $\boldsymbol{x}_{\mathbf{2 k + 1}} \in T_{1}{ }^{m} x_{2 n}$ and $x_{2 k+2} \in T_{2}^{n} \boldsymbol{x}_{2 \boldsymbol{k}+\boldsymbol{1}}$

$$
\begin{gathered}
x_{2 n}=T_{1}^{m} \boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}, \\
x_{2 n+1}=T_{2}^{n} \boldsymbol{x}_{2 \boldsymbol{k}+\mathbf{1}}
\end{gathered}
$$

for $n=0,1,2, \ldots \ldots$.
Note that, if $x_{2 n}=x_{2 n+1}$ for some $\mathrm{n} \geq 0$ then $\mathrm{x}_{2 \mathrm{n}}$ is fixed point of $T_{1}{ }^{m}$ and $T_{2}{ }^{n}$.

Now putting

$$
x=x_{2 n+1} \text { and } y=x_{2 n+2}
$$

we have
$\mathrm{d}\left(T_{1}{ }^{m} x_{2 n+1}, T_{2}{ }^{n} \boldsymbol{x}_{2 \boldsymbol{n + 2}}\right)=\operatorname{Ad}\left(x_{2 n+1}, \boldsymbol{x}_{2 \boldsymbol{n + 2}}\right)+$ $B d\left(x_{2 n+1}, \mathrm{~T}_{1}{ }^{\mathrm{m}} \mathrm{x}_{2 \mathrm{k}+1}\right)+C d\left(\mathrm{x}_{2 \mathrm{k}+2}, \mathrm{~T}_{2}{ }^{\mathrm{n}} \boldsymbol{x}_{2 \mathrm{n}+2}\right)$
$\mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+2}\right) \geq A d\left(x_{2 n+1}, \quad \boldsymbol{x}_{2 n+2}\right)+$ $B d\left(x_{2 n+1}, \mathrm{x}_{2 \mathrm{n}}\right)+C d\left(\boldsymbol{x}_{2 n+2}, \mathrm{x}_{2 \mathrm{k}+1}\right)$

$$
\begin{aligned}
& \quad \mathrm{d}\left(x_{2 n+1}, \quad \boldsymbol{x}_{2 n+2}\right) \leq[1-A / A-C] \\
& \mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+1}\right) \\
& \text { where } \\
& \quad h=[1-A / A-C]<1
\end{aligned}
$$

In general

$$
\begin{aligned}
\mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+1}\right) & \leq h d\left(x_{2 n-1}, x_{2 n}\right) \\
\mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+1}\right) & \leq h^{2 n} d\left(x_{2 n-1}, \mathrm{x}_{2 n}\right)
\end{aligned}
$$

So for every positive integer P. We have,

$$
\begin{array}{cc}
\mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+\boldsymbol{p}}\right) & \leq \quad \mathrm{d}\left(x_{2 n}, \boldsymbol{x}_{2 n+1}\right) \\
\mathrm{d}\left(x_{2 n+1}, \boldsymbol{x}_{2 n+2}\right)+\ldots \ldots \ldots . .+\mathrm{d}\left(x_{2 n+p-1}, \boldsymbol{x}_{2 n+\boldsymbol{p}}\right) \\
& \leq\left(h^{2 n}+h^{2 n+1}+\ldots \ldots \ldots \ldots+\right. \\
\left.h^{2 n+p+1}\right) d\left(x_{0}, x_{1}\right) . & \\
& =\quad h^{2 n}\left(1+h+h^{n}\right. \\
\left.+\ldots \ldots \ldots .+h^{p+1}\right) d\left(x_{0}, x_{1}\right) . \\
& <\left[h^{2 n} / 1-h\right] d\left(x_{0}, x_{1}\right) .
\end{array}
$$

Therefore $\left\{x_{n}\right\}$ is a cauchy sequence which is complete space in X . There exist

$$
x^{*} \in X \text { such that } x_{2 n} \rightarrow x^{*} .
$$

since $\mathrm{T}_{1}{ }^{\mathrm{m}}$ is surjection map. There exist a point y in X , such that

$$
\begin{array}{ll}
& y \in T_{1}^{m}\left(x^{*}\right) \\
\text { i.e. } & x^{*}=T_{1}^{m}(y)
\end{array}
$$

Now consider

$$
\begin{gathered}
d\left(x_{2 n}, x^{*}\right)=d\left(T_{1}^{m} x_{2 n+1}, y\right) \\
\leq A d\left(\mathrm{x}_{2 n+1}, \quad y\right)+B d\left(x_{2 n+1}, \quad T_{1}^{m}\right. \\
\left.x_{2 n+1}\right)+C d\left(y, T_{1}^{m} y\right) \\
\mathrm{d}\left(x^{*}, x^{*}\right) \geq A d\left(x^{*}, y\right)+B d\left(x^{*}, x^{*}\right)+C d\left(y, x^{*}\right) \\
0 \geq[A+C] \mathrm{d}\left(x^{*}, \mathrm{y}\right) \\
\mathrm{d}\left(x^{*}, y\right)=0 \quad
\end{gathered}
$$

Hence x^{*} is a fixed point of $T_{1}{ }^{m}$ as $T_{1}{ }^{m} y=x^{*}=y$
Now if z be another point of $T_{1}{ }^{m}$
i.e. $\quad T_{1}{ }^{m}=Z$

$$
\mathrm{d}\left(x^{*}, z\right)=\mathrm{d}\left(T_{1}{ }^{m} x^{*}, T_{1}^{m} \mathrm{z}\right)
$$

$$
\geq \mathrm{Ad}\left(x^{*}, z\right)+\mathrm{Bd}\left(T_{1}^{m} x^{*}, T_{1}{ }^{m} z\right)+\mathrm{C}
$$

$\mathrm{d}\left(\mathrm{z}, T_{1}{ }^{m} x\right)$

$$
=0
$$

$$
\mathrm{d}\left(x^{*}, z\right)=0
$$

Thus $\quad x^{*}=z$
Therefore $T_{1}{ }^{m}$ has a unique fixed point

Similarly, we can be established that

$$
T_{2}^{n} x^{*}=x^{*}
$$

Hence

$$
\mathrm{x}^{*}=\mathrm{x}^{*}=\mathrm{T}_{2}{ }^{\mathrm{n}} \mathrm{x}^{*}
$$

Thus x* is the common fixed point of $T_{1} \& T_{2}$.

Corollary 3.5 :- Let (X, d) be a cone metric space with respect to a cone P containing in a real Banach space E and $\mathrm{T}_{1}, \& \mathrm{~T}_{2}$ be any two surjection self maps of X satisfying

$$
\mathrm{d}\left(T_{1} x, T_{2} y\right) \geq k d(x, y)
$$

\qquad

For all $x, y \in X$, where $\mathrm{k} \geq 0$. Then $T_{1} \& T_{2}$ have an unique common fixed point.

References:-

[1]. Deza, M.M. and Deza, E. , Encyclopedia of Distances (Springer- Verlag 2009),
[2]. Frechet, M. Sur quelques points du calcul functional. Rendi. Circ. Mat. Palermo,22(1906), 1-74.
[3]. Housdorff, F. Grundzuge der Mengenlehre, Verlag Von Veit \& Company, Leipzig (1914). Reprinted by Chelsea Publishing company, New York (1949).
[4]. Kurepa,D.R. Tableaux ramifies d'ensembles. Espaces pseudo-distancies, C.R. Acad Sci.Paris, 198(1934), 1563-1565.
[5]. Perov, A.I. On Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavan.,2(1964),115-134.
[6]. Proinov, P.D. " A unified theory of cone metric spaces and its applications to the fixed point," In press, http://arxiv.org/abs/1111.4920.
[7]. Zabrejko, P.P. " K- metric and K-normed linear spaces: survey ," Collectanea Mathematica, 48(4-6) (1997), 825-859.
[8]. Huang, L.G. and Zhang, X. Cone Metric spaces and Fixed Point Theorems of Contractive mapping,J. Math. Anal. Appl. , 332(2007), 1467-1475.
[9]. Beg, I. Azam, A. and Arshad, M. Common fixed points for maps on topological vector space valued cone metric spaces, Internal. J. Math. Math. Science, 2009(2009).
[10]. Du, W.S. A note on conev metric fixed point theory and its equivalence, Nonliniear Analysis, 72 (5) (2010), 2259-2261.
[11]. Vandergraft, J.S. " Newton's method for convex operator in partially ordered spaces," SIAM Journal on Numerical Analysis, 4 (1967), 406-432.
[12]. Abbas, M. and Jungck, G. " Common fixed point results for non-commuting mappings without continuity in cone metric spaces," Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 416-421, 2008.
[13]. Altun, I. Damjanovic, B. and Djoric, D. " Fixed point and common fixed point theorems on ordered cone metric spaces," Applied Mathematics Letters, vol. 23, pp. 310-316, 2010.
[14]. Arshad, M. Azam, A. and Vetro, P. " Some common fixed point results in cone metric spaces," Fixed point theory and Applications, vol. 2009, Article ID 493965, 11 pages, 2009.
[15]. Azam, A. and Arshad, M. " Common fixed points of generalized contractive maps in cone metric spaces," Bulletion of the Iranian Mathematical Society, vol. 35, no. 2, pp. 255-264, 2009.
[16]. Azam, A. and Arshad, M. and Beg, I. " Common fixed points of two maps in cone metric spaces," Rendiconti del Circolo Matematico di Palermo, vol. 57, no. 3, pp. 433-441, 2008.
[17]. Azam, A. and Arshad, M. and Beg, I. " Banach contraction principle on cone rectangular metric spaces," Application Analysis and Discrete Mathematics, vol. 3, no. 2, pp. 236-241, 2009.
[18]. Cevik, C. and Altun, I. " Vector metric spaces and some properties, " Topological Mathods in Nonlinear Analysis, vol.34, no. 2, pp. 375-382,2009.
[19]. Choudhury, B. S. and Metiya, N. " Fixed point of weak contractions in cone metric spaces," Non-linear Analysis: Theory Methods \& Applications, vol. 72, no. 3-4, pp.1589-1593, 2010.
[20]. Huang, L.G. and Zhang, X. Cone Metric spaces and Fixed Point Theorems of Contractive mapping, J. of Math. Anal. Appl. ,vol. 332, no. 2, 1468-1476, 2007.
[21]. Illic, D. and Rakocevic, V. " Common fixed point for maps on cone metric spaces," J. of Math. Anal. Appl. ,vol. 341, no. 2, 876-882, 2008.
[22]. Jankovic, S. Kadelburg, Z. Radenoviv, S. and Rhoades, B.E. " Assad Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces, " Fixed point theory and Application vol. 2009, Article ID 761086, 16 pages, 2009.
[23]. Kadelburg, Z. Radenovic, S. and Rosic, B. " Strict contractive condition and common fixed point theorems in cone
metric spaces," Fixed point theory and Application vol. 2009, Article ID 173838, 14 pages, 2009.
[24]. Raja, P. and Vaezpour, S.M. " Some extensions of Banach's contraction principle in complete cone metric spaces," Fixed point theory and Application vol. 2008, Article ID 768294, 11 pages, 2008.
[25]. Radenovic, S. common fixed point theorems in cone metric spaces, " Computers \&Mathematics with Application vol. 58, no. 6 pp. 1273-1278, 2009.
[26]. Rezapour, Sh. And Hamlbarani, R. " Some notes on the paper" Cone metric spaces and fixed point theorems of contractive mapping", ," J. of Math. Anal. Appl. ,vol. 345, no. 2, pp. 719-724, 2008.
[27]. Vetro, P. "Common fixed point in cone metric spaces," Rendiconti del Circolo Matematico di Palermo, vol. 56, no. 3, pp. 464-468, 2007.
[28]. Akabar Azam and B.E.Rhoades, Common fixed point theorems in TVS-Valued cone metric spaces, proceeding of the world congress on engineering 2012 vol.1,4-6.
[29]. Akbar Azam, Ismat Beg and M.Arshad, Fixed point in topological vector space- valued cone metric spaces, Fixed point theory and applications, vol.2010, Article ID6040, 9 pages.
[30]. Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems, Fixed point theory and applications, vol.2010, Article ID170253, 17 pages.

