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Abstract

The aim of this paper is to study idempotents in the matrix ring M2(Z6[x]).
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1 Introduction

Idempotents in rings play a critical role in the study of rings. Several classes of elements
are defined using idempotents and units, for example, clean elements (the elements that
can be expressed as sum of an idempotent and a unit, cf. [8], [13]), strongly clean elements
(the elements that can be expressed as a sum of an idempotent and a unit that commute, cf.
[14]), unit regular elements (the elements that can be written as eu for some idempotent e
and unit u, cf. [6], [14]), Lie regular elements (the elements that can be written as eu− ue
where e is an idempotent and u is a unit, cf. [15]), etc. Due to their importance, the
idempotents generated interest among several researchers and efforts have been made to
compute idempotents of rings.

The problem of obtaining structure and presentation of unit groups of rings have also
drawn attention of several researchers. Important contributions have been made in some
special cases (for example see [1], [2], [3], [5], [9], [10], [12], [15], [16]). These studies,
however, are far from complete and a lot more needs to be done. In the case of polynomial
rings, Kanwar, Leroy and Matczuk showed that for an abelian ring (a ring in which all
idempotents are central) R, idempotents in the polynomial ring R[x] over R are precisely
idempotents in R ([7], Lemma 1). In fact, a ring is reduced if and only if the unit group of
R[x] is same as the unit group of R. Not much, however, is known in the case of polynomial
rings over matrix rings (equivalently, matrix rings over polynomial rings).
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2 Khatkar

In this article, we study idempotents in matrix ring M2(Z6[x]). Throughout, a ring
will mean an associative ring with unity and for any positive integer n, Zn will denote the
ring of integers modulo n. For any ring R, E(R) will denote the set of all idempotents in
R. For any positive integer n, Mn(R) will denote the ring of n × n matrices over a ring
R and GL(n,R) will denote the general linear group (the group of all n × n invertible
matrices over ring R).

We will use standard definitions for determinant and trace of matrices over commutative

rings (cf. [12]). More precisely for a 2× 2 matrix A =

(
a b
c d

)
over a commutative ring

R, determinant of A is ad − bc and trace of A is a + d. Recall that the determinant of
product of two matrices over a commutative ring is the product of the determinant of two
matrices.

2 Idempotents of M2(Z6[x])

We now give some results that will be useful in our study. We begin with the following
proposition that may also be of independent interest.

Proposition 2.1. Let R be any ring with unity and a =
n∑

i=0

aix
i is an element in R[x] such

that a2 − a ∈ R. If any of the following conditions hold:

1. R has no non-zero nilpotent elements,

2. a0ai = aia0 for 1 ≤ i ≤ n and 2a0 − 1 is a unit in R,

then a ∈ R.

Proof. If R has no non-zero nilpotent elements and a2 − a ∈ R, then it is easy to see that
ai = 0 for 1 ≤ i ≤ n. The proof, in the second case, is similar to the proof of Lemma 1 in
[7]. We give a brief outline for the sake of completeness. If a /∈ R and ai (i > 0) is the first
non-zero coefficient in a, then a2 − a ∈ R gives 2a0ai − ai = 0. But then ai = 0 as 2a0 − 1
is a unit in R, a contradiction. Thus a ∈ R.

In particular, we have the following corollary.

Corollary 2.2. [7, Lemma 1] If R is a commutative ring, then E(R[x]) = E(R).

Corollary 2.3. If R is a ring with no non-zero nilpotent elements, then E(R[x]) = E(R).

Theorem 2.4. Any non-trivial idempotent in M2(Z6[x]) is of one of the following forms:

1.

(
3 0
0 3

)
,

(
4 0
0 4

)

2.

(
a(x) b(x)
c(x) 1− a(x)

)
, where a(x){1− a(x)} − b(x)c(x) = 0
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3.

(
3a(x) 3b(x)
3c(x) 3(1− a(x))

)
, where a(x){1− a(x)} − b(x)c(x) = 2f(x)

4.

(
2a(x) 2b(x)
2c(x) 4− 2a(x)

)
, where a(x){1− 2a(x)} − 2b(x)c(x) = 3g(x)

5.

(
3 + 2a(x) 2b(x)

2c(x) 1− 2a(x)

)
, where a(x){1− 2a(x)} − 2b(x)c(x) = 3h(x)

6.

(
1 + 3a(x) 3b(x)

3c(x) 4− pa(x)

)
, where a(x){1− a(x)} − b(x)c(x) = 2φ(x),

where a(x), b(x), c(x), f(x), g(x), h(x), and φ(x) are polynomials in Z6[x], not necessarily
non-zero.

Proof. Since the idempotents in Z6[x] are precisely the idempotents in Z6. Therefore the

idempotents in Z6[x] are 0, 1, 3, and 4. Now let A =

(
a(x) b(x)
c(x) d(x)

)
be a non-trivial idem-

potent of M2(Z6[x]). For convenience, we will write a, b, c, d for a(x), b(x), c(x), d(x)
respectively. Since A is an idempotent, we have a2 + bc = a, b(a + d) = b, c(a + d) = c,
and bc + d2 = d. Also since determinant of A is an idempotent in Z6, so the determinant
of A is 0 or 1 or 3 or 4.

If determinant of A is 1 then A =

(
1 0
0 1

)
, a trivial idempotent in M2(Z6[x]). Hence,

the determinant of A is 0 or 3 or 4. Also, trace of A is in Z6, that is, a+ d ∈ Z6.

Case 1: Determinant of A is 0. This means ad − bc = 0. Since A is an idempotent,
therefore, a2 + bc+ bc+ d2 = a2 + 2bc+ d2 = a2 + 2ad+ d2 = a+ d. It means a+ d is an
idempotent in Z6[x]. Thus a+ d is either 0 or 1 or 3 or 4.
If a+ d = 0 then we get A to be a zero matrix, which is a trivial idempotent in M2(Z6[x]).
If a + d = 1 then d = 1 − a and hence ad − bc = 0 gives a2 + bc = a. Also (a + d)b = b,

(a + d)c = c, and bc + d2 = 1 − a. Thus, A2 =

(
a b
c 1− a

)
. Thus, in this case, A =(

a(x) b(x)
c(x) 1− a(x)

)
, where a(x), b(x), c(x) ∈ Z6[x] such that a(x){1− a(x)} = b(x)c(x).

If a + d = 3 then d = 3 − a and hence ad − bc = 0 gives a2 + bc = 3a. Thus

A2 =

(
3a 3b
3c 3− 3a

)
. Since A is an idempotent, 2a = 0, 2b = 0, and 2c = 0. Therefore,

a = 3a′(x), b = 3b′(x), and c = 3c′(x), where a′(x), b′(x) and c′(x) are polynomials in
Z6[x]. Now since ad − bc = 0, we get 3a′(x){1 − a′(x)} = 3b′(x)c′(x), which is equiva-
lent to a′(x){1 − a′(x)} − b′(x)c′(x) = 2f(x) for some polynomial f(x) ∈ Z6[x]. Hence,

A =

(
3a(x) 3b(x)
3c(x) 3(1− a(x))

)
, where a(x), b(x), c(x) ∈ Z6[x] such that a(x){1 − a(x)} −

b(x)c(x) = 2f(x) for some f(x) ∈ Z6[x].
If a + d = 4 then d = 4 − a and hence ad − bc = 0 gives a2 + bc = 4a. Thus,
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A2 =

(
4a 4b
4c 3a+ 4− a

)
. Since A is an idempotent, 3a = 0, 3b = 0, and 3c = 0.

Hence, as in the previous case, A =

(
2a(x) 2b(x)
2c(x) 4− 2a(x)

)
, where a(x), b(x), c(x) ∈ Z6[x]

such that a(x){1− 2a(x)} − 2b(x)c(x) = 3g(x) for some g(x) ∈ Z6[x].
Next, we consider the case where determinant of A is 3.

Case 2: Determinant of A is 3. This means ad − bc = 3, that is, 2ad − 2bc = 0. Since A
is an idempotent, therefore, a2 + bc + bc + d2 = a2 + 2bc + d2 = a2 + 2ad + d2 = a + d. It
means a+ d is an idempotent in Z6[x]. Thus a+ d is either 0 or 1 or 3 or 4.
If a+ d = 1 then ad− bc = 3 gives a2 + bc = 3 + a(mod 6) and hence

A2 =

(
3 + a b
c 4− a

)
. Since A is an idempotent, we get 3 + a = a, a contradiction.

If a+ d = 3 then ad− bc = 3 gives a2 + bc = 3a− 3 and hence

A2 =

(
3a− 3 3b

3c 3a

)
. Since A is an idempotent, we get 2a = 3. Thus 2a0 = 3(mod 6)

where a0 is the term without x in a. This is not possible as gcd(2, 6) = 2 and 2 does not
divide 6.
It is easy to see that the determinant of (A + 3I) is 0 and the trace of (A + 3I) is trace
of A. Therefore, by the previous case, A + 3I is either the zero matrix in M2(Z6[x])

or

(
2a(x) 2b(x)
2c(x) 4− 2a(x)

)
, where a(x), b(x), c(x) ∈ Z6[x] such that a(x){1 − 2a(x)} −

2b(x)c(x) = 3g(x). HenceA is

(
3 0
0 3

)
or

(
3 + 2a(x) 2b(x)

2c(x) 1− 2a(x)

)
, where a(x), b(x), c(x) ∈

Z6[x] such that a(x){1− 2a(x)} − 2b(x)c(x) = 3h(x) for some h(x) ∈ Z6[x].
Finally, we consider the case where determinant of A is 4.

Case 3: Determinant of A is 4. In this case, ad− bc = 4, a2 + bc = a, and bc+ d2 = d give
(a+ d)2 = a+ d+ 2. Since a+ d ∈ Z6, we get a+ d is either 2 or 5.
If a + d = 2 then d = 2 − a and hence ad − bc = 4 gives a2 + bc = 2a − 2. Thus

A2 =

(
2a+ 2 2b

2c 4a

)
. Since A is an idempotent, we get a = 4, b = c = 0. Thus

A =

(
4 0
0 4

)
.

If a + d = 5 then d = 5 − a and hence ad − bc = 4 gives a2 + bc = 5a + 2. Thus

A2 =

(
5a+ 2 5b

5c 3 + a

)
. Since A is an idempotent, we have 4a = 4, 4b = 0, and 4c = 0.

Hence, as earlier, A =

(
1 + 3a(x) 3b(x)

3c(x) 4− 3a(x)

)
, where a(x), b(x), c(x) ∈ Z6[x] such that

a(x){1− a(x)} − b(x)c(x) = 2φ(x) for some φ(x) ∈ Z6[x].
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