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I. Introduction 

In 2006 Aggarwal et al. [1] investigated the non-

linear stability of the triangular libration point 

4L of the Restricted Three Body Problem under the 

presence of the third and fourth order resonances, 

when both the primaries are triaxial and source of 

radiation. They discussed the non linear stability of 
L4 in the absence of resonances. In 2015, Jain and 

Aggarwal [2] discussed the existence and stability 

of libration points in restricted problem under the 

effect of dissipative force. They observed that the 

non-collinear libration points are unstable for all 

values of mass parameter. Leontovich [3] 

investigated the critical case of the stability of the 

triangular libration points and proved that the 

triangular libration points in the restricted problem 

are stable for all permissible mass ratios except for 

a set of measure zero. Deprit and Deprit [4] 

calculated the exceptional values for the triangular 
libration points and proved that the non-linear 

stability of these points can be answered in the 

affirmative for all values of the mass ratio in the 

range of linear stability except at three mass ratios 

0.024293..., 0.013516... and 0.010913.... Bhatnagar 

and Hallan [5] studied the effect of perturbations 

 and     in the coriolis and the centrifugal forces 

respectively on the nonlinear stability of the 

libration points in the restricted problem. They 

established that, in the non-linear sense, the 

collinear points are unstable for all mass ratios and 

the triangular points are stable in the range of linear 

stability except for three mass ratios. Gyorgyey [6] 

investigated the non-linear stability of motion 

around L5 in the elliptic restricted problem of three 

bodies numerically with emphasis on the effect of 

orbital eccentricity of the primaries on shape of the 

established stability regions. It is shown that with 

increasing eccentricity, the width of these regions 

is decreasing. Gozdziewski et al. [7] investigated 
the non-linear stability of the triangular libration 

points in the photogravitational restricted three-

body problem in the whole range of parameters. 

Bhatnagar et al. [8] studied the effect of perturbed 

potentials on the non-linear stability of L4 and 

proved that the triangular libration point L4 is 

stable in the range of linear stability except for 

three mass ratios. Bhatnagar and Hallan [9] studied 

the non-linear stability of an ellipsoidal cluster of 

stars sharing galactic rotation. They found that the 

cluster is stable for all densities in the range of 
linear stability except for those satisfying certain 

equations where Arnold’s theorem is not 

applicable. 

The equilibrium solutions and linear stability of m3 

and m4 considering one of the primaries as an 

oblate spheroid have been examined by Aggarwal 

and Kaur [10]. They concluded that there are no 

non-collinear equilibrium solutions of the system. 

Subbarao and Sharma [11] investigated the non-

linear stability of L4 in the restricted three-body 

problem when the bigger primary is an oblate 

spheroid. They found that the triangular libration 
point L4 is stable in the range of linear stability 

except for three mass ratios. In a series of paper 

Sharma Ravinder, Taqvi and Bhatnagar. [12] and 

[13] have studied the linear stability of the libration 

points of the planar restricted three body problem 

when the primaries are triaxial rigid bodies and 

source of radiations. They have observed that the 

collinear points are unstable, while the triangular 

points are stable for the mass parameter 

0 crit   (the critical mass parameter). It is 

further seen that the triangular points have long or 

short periodic elliptical orbits in the same range 

of . Douskos et al. [14] have studied the stability 

of equilibrium points in the relativistic restricted 

problem. The result is contrary to recent results of 

other authors. Jain et al.[15], [16] have studied the 
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non linear stability of L4, but they have not taken 

both the primaries as triaxial and source of 

radiation. They have normalized the Hamiltonian 

by  Birkhoff’s normalization technique using 

double d’Alemberts series. Whereas we have taken 
both the primaries as triaxial and source of 

radiation and have normalized the Hamiltonian by 

Birkhoff’s normalization technique using 

generating function. 

 

II. Equations of Motion 

Let there be three masses  1 2 3 1 2, , ;  m m m m m . 

Let the bodies with masses 1 2 and m m  revolve 

with the angular velocity n (say) in circular orbits 

without rotation about their centre of mass O. Let 

there be an infinitesimal mass 3m  which is moving 

in the plane of motion of  1 2 and m m  and is being 

influenced by their motion but not influencing 

them. We consider both the primaries are source of 

radiation and triaxial with one of the axis of each 

as the axis of symmetry and their equatorial plane 

coincident with the plane of motion.  Let the line 

joining 1 2 and m m  be taken as X-axis and O their 

center of mass as origin. Let the line passing 

through O and perpendicular to OX and lying in the 

plane of motion of  1 2 and m m  be the Y-axis. Let 

us consider a synodic system of coordinates 
O(xyz); initially coincident with the inertial system 

O(XYZ), rotating with the angular velocity n about 

Z-axis; (the z-axis is coincident with Z-axis). Let 

initially the principal axes of the primaries be 

parallel to the synodic axes O(xyz) and their axes of 

symmetry be perpendicular to the plane of motion. 

Since the rigid body is revolving without rotation 

about O with the same angular velocity as that of 

synodic axes and so principal axes of 

1 2 and m m will remain parallel to them throughout 

the motion. 
We have adopted the notation and terminology of 

Szebehely[17]. As a consequence the distance 

between the primaries does not change and is taken 

equal to one; the sum of the masses of the 

primaries is also taken as one. The unit of time is 

chosen so as to make the gravitational constant 
unity. Using dimensionless variables, the equations 

of motion of the infinitesimal mass 3m  in the 

synodic co-ordinate system  ,x y are 

2  ,

2  ,

x

y

x ny

y nx

  

  
   (1) 
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1 1 2 20 , , , , , 1A A A A P P    , 

a, b and c are the lengths of the semiaxes of the 

triaxial body of mass m1, 

a, b and c are the lengths of the semiaxes of the 

triaxial body of mass m2, 

R = dimensional distance between the primaries. 

The mean motion n of the primaries is given by  

1 1

3 3
1   .

4 4
n A A    

It may be observed that n is independent of the 

Radiation Parameters  and .P P  

 

III. Location of the Librations Point L4  

 

The co-ordinates (x, y) of the libration point L4 are 

given by: 

1 1 1 1 1 1

1
  ,

2
x A A P P            
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Fig. The configuration of CRTBP 
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2 1 2 1 2 2

3
  ,

2
y A A P P           

where 

1 1

1 1
,               ,  

2 2
    

2 2

1 1
,          ,

2 3 2 3
     

1 1

1 1
,                    ,

3 3
    

2 2

1 1
,            .

3 3 3 3
               

 

IV. First order Normalization 

 

The Hamiltonian function is given by 

   2 2

1 2 1 2

1 13 3

1 2 1 2

1 2

1 2

1
( , , , )

2

                       
2 2

                       .
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Applying the translation given by  

1 1 1 1 1 1  ,
2

x x A A P P

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3
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and substituting the expansions of 
1 1 3 3 5 5

1 2 1 2 1 2, , , ,  and r r r r r r     
in power series of x 

and y, we obtain  
0

k

k

H H




  , where Hk = the sum 

of the terms of kth degree homogenous in variables 

x, y, px, py. 

The linear stability is assured when 0 ,c    

where  
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and o = 0.0385208965…  . 

If1 and 2 are the long and short periodic 

frequencies they are related to each other as 

   2 2

1 2 1 1 2 2

3 3
1 3 1 3 1 ,

2 2
A A A A             

  

  2 2 2

1 2 1 1

9

16

1 3 13 13A A        

 

   

  

2 2

2 2

2

45 45
7 4 3 7 4 3

64 64

3
1

8
,

A A

P P

   



     

  

                       

 2 1

1
0 1 .

2
 

 
    

 
 

 

V. Determination of the Normal Co-

ordinates 
We follow the method of Whittaker [18] to 

determine the normal co-ordinates. Applying the 

transformation  

   1 2 1 2, , , , , ,x yx y p p q q p p     given by X = JT, 

where 

1

2

1

2

,           ,
x

y
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y q
X T  

p p
p

p

 
   
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J is the square matrix given by  

J = ( Jij) . 

All the values of  Jij’s (i, j; 1..4) are given in 

Aggarwal et al. [1].  

Next, we perform the canonical 

transformation

   1 2 1 2 1 2 1 2, , , , , ,q q p p q q p p         

i.e. 1 1 1 1 1 1 1

1

1 1 1
,      ,
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The new Hamiltonian H becomes, 
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where  

1 2 1 2 1 2 1 2 1 2 1 2
h x iy           
   , 

All the values of 
1 2 1 2

x     and  
1 2 1 2

y     ( of order 

four) in terms of 
1 2 1 2

h   
  have been given in 

Aggarwal et al. [1]. 

Next we use the Birkhoff’s transformation [19] 

   1 2 1 2 1 2 1 2
, , , , , ,q q p p q q p p         defined by 

the generating function 

PF 
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1 1 2 2 3 4 ,S q p q p S S        

where 

3 4 ,i i

i i i
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q q
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(i = 1, 2).  

(Szebehely [17]) 

Due to the absence of resonances the new 

Hamiltonian H   will not contain all third order 

terms and is given by 
2
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We shall now apply KAM-theorem according to 

which we shall examine the value of  
2 2

20 2 11 1 2 02 1 .D c c c       

If 0D   for any values of 

1 1 2 2, , , ,  and ,A A A A P P    the motion will be stable 

provided 1 2 1 22  and 3 .       

The cases 1 2 1 22  and 3      coreespond the 

third and fourth order resonance and have been 

discussed by Aggarwal et al. [1]. 

 

VI. Stability  

 

We have calculated the value of D for different 

values of  1 1, ,A A   2 2, ,A A     and ,P P  in the linear 

stability range 0.c  Tables – 1, 2, 3 and 4) 

 
Table – 1 

A A A

A P P

  

   

1 2 1

2

0.01, 0.001, 0.01,

0.001, 0.001, 0.001

 

  D 

0.010 0.090000 

0.011 0.279000 

0.012 0.322000 

0.013 0.231000             

0.014 -0.008889 

0.015 -0.444000 

0.016 -1.180000 

0.020 -23.128000 

0.022 65.648000 

0.025 30.361000 

 

Table – 2 

A A P P     
1 2

0.01, 0.001, 0.001, 0.001

 
  A

1
 A

2
 D 

0.01 0.002 0.0020 -4.2000 

0.01 0.010 0.0020 -3.0494 

0.01 0.020 0.0020 -0.5950 

0.01 0.030 0.0020 3.716 

0.01 0.002 0.0040 13.849 

0.01 0.010 0.0040 19.897 

0.01 0.002 0.0060 290.796 

0.01 0.010 0.0060 278.215 

0.01 0.010 0.0084 -62.110 

0.01 0.010 0.0085 -236.809 

 

From Table – 1, we observe that for   0.013 , 

the value of D is 0.231>0 and for    0.014 , 

the value of D is -0.00889<0. This suggests that for 

some   such that  0.013 0.014,the 

value of  D =0.  
Again from Table – 2 and Table – 3, we observe 

that sign of D changes at the bold values of the 

parameters, therefore for some values of 

parameters the value of D=0. Hence we conclude 

that except for the cases when D = 0 the Libration 

point L4 is stable and when D = 0 the stability of L4 

can not be decided and it needs further 

investigation.
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Table – 3 

A A P P   
1 2

0.01, 0.001, 0.001, 0.001  

  
A 
1

 A 
2

 
D 

0.01 0.02 0.00 -1.14 

0.01 0.02 0.001 -0.449 

0.01 0.02 0.002 0.228 

0.01 0.02 0.01 5.195 

0.01 0.02 0.02 10.272 

0.01 0.01 0.00 -0.595 

0.01 0.002 0.001 0.09 

0.01 0.01 0.01 5.641 

0.01 0.01 0.02 10.536 

0.01 0.01 0.0085 -236.809 

 

Table – 4 

A A A A    
1 2 1 2

0.01, 0.01, 0.01, 0.001  

  P  P  D 

0.01 0.01 0.00 -0.0001456 

0.01 0.01 0.001 -0.0001469 

0.01 0.01 0.005 -0.0001488 

0.01 0.01 0.01 -0.0001511 

0.01 0.01 0.02 -0.0001559 

0.01 0.02 0.001 -0.0001481 

0.01 0.02 0.005 -0.00015 

0.01 0.02 0.01 -0.0001524 

0.01 0.02 0.02 -0.0001572 

 

 

VII. Conclusion 

 

We have investigated the non-linear stability of the 
triangular libration point L4 of the Restricted Three 

Body Problem, when both the primaries are axes 

symmetric and source of radiation. It is found 
through KAM theorem that L4 is stable or unstable 

depending upon the values of the parameters, A1, 

A1, A2, A2, P and P, where A1, A1 A2, and A2, 
depend upon the lengths of the semi axes of the 

primaries and P and P  are the radiation 

parameters. 
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