Non Linear Stability of L4 in photogravitational CRTBP

Satyendra Kumar Satya ${ }^{1}$, Dinesh Kumar*2, Govind Kumar Jha ${ }^{3}$, Pardeep Kumar ${ }^{4}$
${ }^{1}$ Department of Mathematics, Sri Aurobindo College, University of Delhi.
${ }^{2,4}$ Department of Mathematics, Shyama Prasad Mukherji College (For Women), University of Delhi, New Delhi, India.
${ }^{3}$ Department of Mathematics, Vinoba Bhave University, Hazaribagh, Jharkhand, India.

Abstract

We have investigated the non-linear stability of the triangular libration point L_{4} of the Restricted Three Body Problem, when both the primaries are axes symmetric and source of radiation. It is observed that stability of L_{4} depends upon the lengths of the semi axes of the primaries and the radiation parameters.

Key Words: Restricted Three Body Problem, Axis Symmetric Body, Libration Points, Non Linear Stability, KAM Theorem

I. Introduction

In 2006 Aggarwal et al. [1] investigated the nonlinear stability of the triangular libration point L_{4} of the Restricted Three Body Problem under the presence of the third and fourth order resonances, when both the primaries are triaxial and source of radiation. They discussed the non linear stability of L_{4} in the absence of resonances. In 2015, Jain and Aggarwal [2] discussed the existence and stability of libration points in restricted problem under the effect of dissipative force. They observed that the non-collinear libration points are unstable for all values of mass parameter. Leontovich [3] investigated the critical case of the stability of the triangular libration points and proved that the triangular libration points in the restricted problem are stable for all permissible mass ratios except for a set of measure zero. Deprit and Deprit [4] calculated the exceptional values for the triangular libration points and proved that the non-linear stability of these points can be answered in the affirmative for all values of the mass ratio in the range of linear stability except at three mass ratios $0.024293 \ldots, 0.013516 \ldots$ and $0.010913 \ldots$.... Bhatnagar and Hallan [5] studied the effect of perturbations ε and ε^{\prime} in the coriolis and the centrifugal forces respectively on the nonlinear stability of the libration points in the restricted problem. They established that, in the non-linear sense, the collinear points are unstable for all mass ratios and the triangular points are stable in the range of linear stability except for three mass ratios. Gyorgyey [6] investigated the non-linear stability of motion
around L_{5} in the elliptic restricted problem of three bodies numerically with emphasis on the effect of orbital eccentricity of the primaries on shape of the established stability regions. It is shown that with increasing eccentricity, the width of these regions is decreasing. Gozdziewski et al. [7] investigated the non-linear stability of the triangular libration points in the photogravitational restricted threebody problem in the whole range of parameters. Bhatnagar et al. [8] studied the effect of perturbed potentials on the non-linear stability of L_{4} and proved that the triangular libration point L_{4} is stable in the range of linear stability except for three mass ratios. Bhatnagar and Hallan [9] studied the non-linear stability of an ellipsoidal cluster of stars sharing galactic rotation. They found that the cluster is stable for all densities in the range of linear stability except for those satisfying certain equations where Arnold's theorem is not applicable.
The equilibrium solutions and linear stability of m_{3} and m_{4} considering one of the primaries as an oblate spheroid have been examined by Aggarwal and Kaur [10]. They concluded that there are no non-collinear equilibrium solutions of the system. Subbarao and Sharma [11] investigated the nonlinear stability of L_{4} in the restricted three-body problem when the bigger primary is an oblate spheroid. They found that the triangular libration point L_{4} is stable in the range of linear stability except for three mass ratios. In a series of paper Sharma Ravinder, Taqvi and Bhatnagar. [12] and [13] have studied the linear stability of the libration points of the planar restricted three body problem when the primaries are triaxial rigid bodies and source of radiations. They have observed that the collinear points are unstable, while the triangular points are stable for the mass parameter $0 \leq \mu \leq \mu_{\text {crit }}$ (the critical mass parameter). It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of μ. Douskos et al. [14] have studied the stability of equilibrium points in the relativistic restricted problem. The result is contrary to recent results of other authors. Jain et al.[15], [16] have studied the
non linear stability of L_{4}, but they have not taken both the primaries as triaxial and source of radiation. They have normalized the Hamiltonian by Birkhoff's normalization technique using double d'Alemberts series. Whereas we have taken both the primaries as triaxial and source of radiation and have normalized the Hamiltonian by Birkhoff's normalization technique using generating function.

II. Equations of Motion

Fig. The configuration of CRTBP

Let there be three masses $m_{1}, m_{2}, m_{3} ;\left(m_{1} \geq m_{2}\right)$. Let the bodies with masses m_{1} and m_{2} revolve with the angular velocity n (say) in circular orbits without rotation about their centre of mass O. Let there be an infinitesimal mass m_{3} which is moving in the plane of motion of m_{1} and m_{2} and is being influenced by their motion but not influencing them. We consider both the primaries are source of radiation and triaxial with one of the axis of each as the axis of symmetry and their equatorial plane coincident with the plane of motion. Let the line joining m_{1} and m_{2} be taken as X-axis and O their center of mass as origin. Let the line passing through O and perpendicular to $O X$ and lying in the plane of motion of m_{1} and m_{2} be the Y-axis. Let us consider a synodic system of coordinates $O(x y z)$; initially coincident with the inertial system $O(X Y Z)$, rotating with the angular velocity n about Z-axis; (the z-axis is coincident with Z-axis). Let initially the principal axes of the primaries be parallel to the synodic axes $O(x y z)$ and their axes of symmetry be perpendicular to the plane of motion. Since the rigid body is revolving without rotation about O with the same angular velocity as that of synodic axes and so principal axes of m_{1} and m_{2} will remain parallel to them throughout the motion.
We have adopted the notation and terminology of

Szebehely[17]. As a consequence the distance between the primaries does not change and is taken equal to one; the sum of the masses of the primaries is also taken as one. The unit of time is chosen so as to make the gravitational constant unity. Using dimensionless variables, the equations of motion of the infinitesimal mass m_{3} in the synodic co-ordinate system (x, y) are
$\ddot{x}-2 n \dot{y}=\Omega_{x}$,
$\ddot{y}+2 n \dot{x}=\Omega_{y}$,
where

$$
\begin{aligned}
& \Omega=\frac{n^{2}}{2}\left((1-\mu) r_{1}^{2}+\mu r_{2}^{2}\right) \\
&+\left(\frac{1}{r_{1}}+\frac{A_{1}}{2 r_{1}^{3}}+\frac{3 A_{2} y^{2}}{2 r_{1}^{5}}-\frac{P}{r_{1}}\right)(1-\mu) \\
&+\left(\frac{1}{r_{2}}+\frac{A_{1}^{\prime}}{2 r_{2}^{3}}+\frac{3 A_{2}^{\prime} y^{2}}{2 r_{2}^{5}}-\frac{P^{\prime}}{r_{2}}\right) \mu, \\
& \mu=\frac{m_{2}}{m_{1}+m_{2}} \leq \frac{1}{2} \Rightarrow m_{1}=1-\mu, \\
& r_{1}^{2}=(x-\mu)^{2}+y^{2}, r_{2}^{2}=(x+1-\mu)^{2}+y^{2}, \\
& P=\frac{\text { Radiation pressure due to the bigger primary }}{\text { Gravitational force due to the bigger primary }}, \\
& P^{\prime}=\frac{\text { Radiation pressure due to the smaller primary }}{\text { Gravitational force due to the smaller primary }}, \\
& A_{1}=\frac{2 a^{2}-c^{2}-b^{2}}{5 R^{2}}, A_{1}^{\prime}=\frac{2 a^{\prime 2}-c^{\prime 2}-b^{\prime 2}}{5 R^{2}}, \\
& A_{2}=\frac{b^{2}-a^{2}}{5 R^{2}}, A_{2}^{\prime}=\frac{b^{\prime 2}-a^{\prime 2}}{5 R^{2}}, \\
& 0<A_{1}, A_{1}^{\prime}, A_{2}, A_{2}^{\prime}, P, P^{\prime} \ll 1,
\end{aligned}
$$

a, b and c are the lengths of the semiaxes of the triaxial body of mass m_{1},
a^{\prime}, b^{\prime} and c^{\prime} are the lengths of the semiaxes of the triaxial body of mass m_{2},
$R=$ dimensional distance between the primaries. The mean motion n of the primaries is given by
$n=1+\frac{3}{4} A_{1}+\frac{3}{4} A_{1}^{\prime}$.
It may be observed that n is independent of the Radiation Parameters P and P^{\prime}.

III. Location of the Librations Point L_{4}

The co-ordinates (x, y) of the libration point L_{4} are given by:

$$
x=-\frac{1}{2}+\mu+\alpha_{1} A_{1}+\alpha_{1}^{\prime} A_{1}^{\prime}+\beta_{1} P+\beta_{1}^{\prime} P^{\prime}
$$

$y=\frac{\sqrt{3}}{2}+\alpha_{2} A_{1}+\alpha_{2}^{\prime} A_{1}^{\prime}+\beta_{2} P+\beta_{2}^{\prime} P^{\prime}$,
where
$\alpha_{1}=-\frac{1}{2}, \quad \alpha_{1}^{\prime}=\frac{1}{2}$,
$\alpha_{2}=-\frac{1}{2 \sqrt{3}}, \quad \alpha_{2}{ }^{\prime}=-\frac{1}{2 \sqrt{3}}$,
$\beta_{1}=\frac{1}{3}, \quad \quad \beta_{1}^{\prime}=-\frac{1}{3}$,
$\beta_{2}=-\frac{1}{3 \sqrt{3}}, \quad \beta_{2}{ }^{\prime}=-\frac{1}{3 \sqrt{3}}$.

IV. First order Normalization

The Hamiltonian function is given by

$$
\begin{aligned}
H\left(x, y, p_{x}, p_{y}\right) & =\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+n\left(y p_{x}-x p_{y}\right) \\
& -\frac{m_{1}}{r_{1}}-\frac{m_{2}}{r_{2}}-\frac{m_{1}}{2 r_{1}^{3}} A_{1}-\frac{m_{2}}{2 r_{2}^{3}} A_{1}^{\prime} \\
& +\frac{m_{1}}{r_{1}} P+\frac{m_{2}}{r_{2}} P^{\prime} .
\end{aligned}
$$

Applying the translation given by
$x \rightarrow x-\frac{\gamma}{2}+\alpha_{1} A_{1}+\alpha_{1}^{\prime} A_{1}^{\prime}+\beta_{1} P+\beta_{1}^{\prime} P^{\prime}$,
$y \rightarrow y+\frac{\sqrt{3}}{2}+\alpha_{2} A_{1}+\alpha_{2}^{\prime} A_{1}^{\prime}+\beta_{2} P+\beta_{2}^{\prime} P^{\prime}$,
$p_{x} \rightarrow p_{x}-n\left(\frac{\sqrt{3}}{2}+\alpha_{2} A_{1}+\alpha_{2}^{\prime} A_{1}^{\prime}+\beta_{2} P+\beta_{2}^{\prime} P^{\prime}\right)$,
$p_{y} \rightarrow p_{y}+n\left(-\frac{\gamma}{2}+\alpha_{1} A_{1}+\alpha_{1}^{\prime} A_{1}^{\prime}+\beta_{1} P+\beta_{1}^{\prime} P^{\prime}\right)$,
and substituting the expansions of $r_{1}^{-1}, r_{2}^{-1}, r_{1}^{-3}, r_{2}^{-3}, r_{1}^{-5}$ and r_{2}^{-5} in power series of x and y, we obtain $H=\sum_{k=0}^{\infty} H_{k}$, where $H_{k}=$ the sum of the terms of $k^{\text {th }}$ degree homogenous in variables x, y, p_{x}, p_{y}.
The linear stability is assured when $\mu<\mu_{c 0}$,
where

$$
\begin{aligned}
\mu & =\mu_{o}-0.285002 A_{1}-0.06278 A_{1}^{\prime}-1.38127 A_{2} \\
& -0.10349 A_{2}^{\prime}-0.00891747\left(P+P^{\prime}\right) \equiv \mu_{c o},
\end{aligned}
$$

and $\quad \mu_{o}=0.0385208965 \ldots$.
If ω_{1} and ω_{2} are the long and short periodic frequencies they are related to each other as $\omega_{1}^{2}+\omega_{2}^{2}=1-\frac{3}{2} \gamma A_{1}+\frac{3}{2} \gamma A_{1}^{\prime}-3(1+\gamma) A_{2}-3(1-\gamma) A_{2}^{\prime}$,

$$
\begin{aligned}
\omega_{1}^{2} \omega_{2}^{2}=\frac{9}{16} & \left(1-\gamma^{2}\right)\left(3+13 A_{1}+13 A_{1}^{\prime}\right) \\
& +\frac{45}{64}\left(7+4 \gamma-3 \gamma^{2}\right) A_{2}+\frac{45}{64}\left(7-4 \gamma-3 \gamma^{2}\right) A_{2}^{\prime} \\
& +\frac{3}{8}\left(1-\gamma^{2}\right)\left(P+P^{\prime}\right) \\
& \left(0<\omega_{2}<\frac{1}{\sqrt{2}}<\omega_{1}<1\right) .
\end{aligned}
$$

V. Determination of the Normal Coordinates

We follow the method of Whittaker [18] to determine the normal co-ordinates. Applying the transformation
$\left(x, y, p_{x}, p_{y}\right) \rightarrow\left(q_{1}^{\prime}, q_{2}{ }^{\prime}, p_{1}^{\prime}, p_{2}{ }^{\prime}\right)$ given by $X=J T$, where

$$
X=\left(\begin{array}{c}
x \\
y \\
p_{x} \\
p_{y}
\end{array}\right), \quad T=\left(\begin{array}{c}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
p_{1}^{\prime} \\
p_{2}^{\prime}
\end{array}\right),
$$

J is the square matrix given by

$$
J=\left(J_{i j}\right)
$$

All the values of $J_{i j}$'s $(i, j ; 1 . .4)$ are given in Aggarwal et al. [1].
Next, we perform the canonical transformation
$\left(q_{1}^{\prime}, q_{2}{ }^{\prime}, p_{1}^{\prime}, p_{2}{ }^{\prime}\right) \rightarrow\left(q_{1}{ }^{\prime \prime}, q_{2}{ }^{\prime \prime}, p_{1}{ }^{\prime \prime}, p_{2}{ }^{\prime \prime}\right)$
i.e. $q_{1}^{\prime}=\frac{1}{2} q_{1}^{\prime \prime}+\frac{1}{\omega_{1}} i p_{1}^{\prime \prime}, \quad p_{1}^{\prime}=\frac{1}{2} i \omega_{1} q_{1}^{\prime \prime}+p_{1}^{\prime \prime}$,
$q_{2}{ }^{\prime}=-\frac{1}{2} q_{2}{ }^{\prime \prime}+\frac{1}{\omega_{2}} i p_{2}{ }^{\prime \prime}, p_{2}{ }^{\prime}=-\frac{1}{2} i \omega_{2} q_{2}{ }^{\prime \prime}+p_{2}{ }^{\prime \prime}$.
The new Hamiltonian H becomes,
$H=i \omega_{1} q_{1}{ }^{\prime \prime} p_{1}{ }^{\prime \prime}+i \omega_{2} q_{2}{ }^{\prime \prime} p_{2}{ }^{\prime \prime}$

$$
+\sum_{\substack{\alpha+\beta=3 \\ \alpha=\alpha_{+}+\alpha_{2} \\ \beta=\beta_{1}+\beta_{2}}}^{\infty} h_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}^{\prime} q_{1}^{\prime \prime \alpha_{1}} q_{2}^{\prime \alpha_{2}} p_{1}^{\prime \prime \beta_{1}} p_{2}^{\prime \beta_{2}}
$$

where
$h_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}^{\prime}=x_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}+i y_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}$,
All the values of $x_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}$ and $y_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}$ (of order four) in terms of $h_{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}^{\prime}$ have been given in Aggarwal et al. [1].
Next we use the Birkhoff's transformation [19] $\left(q_{1}^{\prime \prime}, q_{2}^{\prime \prime}, p_{1}^{\prime \prime}, p_{2}^{\prime \prime}\right) \rightarrow\left(q_{1}^{\prime \prime \prime}, q_{2}^{\prime \prime \prime}, p_{1}^{\prime \prime \prime}, p_{2}^{\prime \prime \prime}\right)$ defined by the generating function
$S=q_{1}^{\prime \prime} p_{1}^{\prime \prime \prime}+q_{2}{ }^{\prime \prime} p_{2}{ }^{\prime \prime \prime}+S_{3}+S_{4}$,
where
$q_{i}^{\prime \prime \prime}=\frac{\partial S}{\partial p_{i}^{\prime \prime \prime}}=q_{i}^{\prime \prime}+\frac{\partial S_{3}}{\partial p_{i}^{\prime \prime \prime}}+\frac{\partial S_{4}}{\partial p_{i}^{\prime \prime \prime}}$,
$p_{i}^{\prime \prime}=\frac{\partial S}{q_{i}^{\prime \prime}}=p_{i}^{\prime \prime \prime}+\frac{\partial S_{3}}{\partial q_{i}^{\prime \prime}}+\frac{\partial S_{4}}{\partial q_{i}^{\prime \prime}},(i=1,2)$.
(Szebehely [17])
Due to the absence of resonances the new Hamiltonian H^{\prime} will not contain all third order terms and is given by

$$
\begin{aligned}
H^{\prime} & =i \omega_{1} q_{1}^{\prime \prime \prime} p_{1}^{\prime \prime \prime}+i \omega_{2} q_{2}^{\prime \prime \prime} p_{2}^{\prime \prime \prime}-c_{20}\left(q_{1}^{\prime \prime \prime} p_{1}^{\prime \prime \prime}\right)^{2} \\
& +c_{11}\left(q_{1}^{\prime \prime \prime} p_{1}^{\prime \prime \prime}\right)\left(q_{2}^{\prime \prime \prime} p_{2}^{\prime \prime \prime}\right)-c_{02}\left(q_{2}^{\prime \prime \prime} p_{2}^{\prime \prime \prime}\right)^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{20}=-h_{2020}^{\prime}-\frac{3 \omega_{1}{ }^{2}}{8}\left(x_{0030}{ }^{2}+y_{0030}{ }^{2}\right)-\frac{3}{2}\left(x_{1020}{ }^{2}+y_{1020}{ }^{2}\right) \\
& +\frac{1}{2}\left(x_{1011}{ }^{2}+y_{1011}{ }^{2}\right)-\frac{\omega_{1}{ }^{2}}{2 \omega_{2}\left(2 \omega_{1}-\omega_{2}\right)}\left(x_{0120}{ }^{2}+y_{0120}{ }^{2}\right) \\
& +\frac{\omega_{1}^{2} \omega_{2}}{8\left(2 \omega_{1}+\omega_{2}\right)}\left(x_{0021}^{2}+y_{0021}{ }^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\omega_{1}^{2} \omega_{2}}{2\left(2 \omega_{1}+\omega_{2}\right)}\left(x_{\text {©o21 }}{ }^{2}+y_{\text {oxal }}{ }^{2}\right)-\frac{2 \omega_{1}{ }^{2}}{\omega_{2}\left(2 \omega_{1}-\omega_{2}\right)}\left(x_{0120}{ }^{2}+y_{\text {0120 }}{ }^{2}\right) \\
& +2\left(x_{0111} x_{1202}+y_{\text {oin }} y_{1202}\right)-\frac{4}{\omega}\left(x_{020} x_{1011}+y_{1011} y_{0011}\right) \text {, } \\
& c_{02}=h_{002}^{\prime}-\frac{3 \omega_{2}{ }^{2}}{8}\left(x_{0003}{ }^{2}+y_{0003}{ }^{2}\right)+\frac{6}{\omega_{2}{ }^{2}}\left(x_{0011}{ }^{2}+y_{0011}{ }^{2}\right)-\frac{1}{2}\left(x_{0111}{ }^{2}+y_{0111}{ }^{2}\right)
\end{aligned}
$$

We shall now apply KAM-theorem according to which we shall examine the value of $D=c_{20} \omega_{2}{ }^{2}+c_{11} \omega_{1} \omega_{2}+c_{02} \omega_{1}{ }^{2}$.
If $D \neq 0$ for any values of $A_{1}, A_{1}^{\prime}, A_{2}, A_{2}{ }^{\prime}, P$ and P^{\prime}, the motion will be stable provided $\omega_{1} \neq 2 \omega_{2}$ and $\omega_{1} \neq 3 \omega_{2}$.
The cases $\omega_{1}=2 \omega_{2}$ and $\omega_{1}=3 \omega_{2}$ coreespond the third and fourth order resonance and have been discussed by Aggarwal et al. [1].

VI. Stability

We have calculated the value of D for different values of $A_{1}, A_{1}{ }^{\prime}, A_{2}, A_{2}{ }^{\prime}, \quad P$ and P^{\prime}, in the linear stability range $\mu<\mu_{c 0}$. (Tables $-1,2,3$ and 4)

Table - 1

$A_{1}=0.01, A_{2}=0.001, A_{1}^{\prime}=0.01$,	
$A_{2}^{\prime}=0.001, P=0.001, P^{\prime}=0.001$	
μ	D
0.010	0.090000
0.011	0.279000
0.012	0.322000
$\mathbf{0 . 0 1 3}$	$\mathbf{0 . 2 3 1 0 0 0}$
$\mathbf{0 . 0 1 4}$	$\mathbf{- 0 . 0 0 8 8 8 9}$
0.015	-0.444000
0.016	-1.180000
$\mathbf{0 . 0 2 0}$	$\mathbf{- 2 3 . 1 2 8 0 0 0}$
$\mathbf{0 . 0 2 2}$	$\mathbf{6 5 . 6 4 8 0 0 0}$
0.025	30.361000

Table - 2

$A_{1}^{\prime}=0.01, A_{2}^{\prime}=0.001, P=0.001, P^{\prime}=0.001$			
μ	A_{1}	A_{2}	D
0.01	0.002	0.0020	-4.2000
0.01	0.010	0.0020	-3.0494
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 0 0 2 0}$	$\mathbf{- 0 . 5 9 5 0}$
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 3 0}$	$\mathbf{0 . 0 0 2 0}$	$\mathbf{3 . 7 1 6}$
0.01	0.002	0.0040	13.849
0.01	0.010	0.0040	19.897
0.01	0.002	0.0060	290.796
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 0 6 0}$	$\mathbf{2 7 8 . 2 1 5}$
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1 0}$	$\mathbf{0 . 0 0 8 4}$	$\mathbf{- 6 2 . 1 1 0}$
0.01	0.010	0.0085	-236.809

From Table -1 , we observe that for $\mu=0.013$, the value of D is $0.231>0$ and for $\mu=0.014$, the value of D is $-0.00889<0$. This suggests that for some μ such that $0.013<\mu<0.014$, the value of $D=0$.
Again from Table - 2 and Table - 3, we observe that sign of D changes at the bold values of the parameters, therefore for some values of parameters the value of $D=0$. Hence we conclude that except for the cases when $D=0$ the Libration point L_{4} is stable and when $D=0$ the stability of L_{4} can not be decided and it needs further investigation.

Table - 3

$A_{1}=0.01, A_{2}=0.001, P=0.001, P^{\prime}=0.001$			
μ	$A_{1}{ }^{\prime}$	$A_{2}{ }^{\prime}$	D
0.01	0.02	0.00	-1.14
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0 1}$	$\mathbf{- 0 . 4 4 9}$
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 2 2 8}$
0.01	0.02	0.01	5.195
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 2}$	$\mathbf{1 0 . 2 7 2}$
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0}$	$\mathbf{- 0 . 5 9 5}$
0.01	0.002	0.001	0.09
0.01	0.01	0.01	5.641
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{1 0 . 5 3 6}$
$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 8 5}$	$\mathbf{- 2 3 6 . 8 0 9}$

Table - 4

$A_{1}=0.01, A_{2}=0.01, A_{1}^{\prime}=0.01, A_{2}^{\prime}=0.001$			
μ	P	P^{\prime}	D
0.01	0.01	0.00	-0.0001456
0.01	0.01	0.001	-0.0001469
0.01	0.01	0.005	-0.0001488
0.01	0.01	0.01	-0.0001511
0.01	0.01	0.02	-0.0001559
0.01	0.02	0.001	-0.0001481
0.01	0.02	0.005	-0.00015
0.01	0.02	0.01	-0.0001524
0.01	0.02	0.02	-0.0001572

VII. Conclusion

We have investigated the non-linear stability of the triangular libration point L_{4} of the Restricted Three
Body Problem, when both the primaries are axes symmetric and source of radiation. It is found through KAM theorem that L_{4} is stable or unstable depending upon the values of the parameters, A_{1}, $A_{1}^{\prime}, A_{2}, A_{2}, P$ and P^{\prime}, where $A_{1}, A_{1}^{\prime}, A_{2}$, and $A_{2}{ }^{\prime}$, depend upon the lengths of the semi axes of the primaries and P and P, are the radiation parameters.

REFERENCES

[1] R. Aggarwal, Z.A. Taqvi, and I. Ahmad, "Non Linear Stability of L4 in the Restricted Three Body Problem for Radiated Axes Symmetric Primaries with Resonances," Bulletin of Astronomical Society of India, 34, 327-356, 2006.
[2] M. Jain, and R. Aggarwal, "Existence and Stability of Non-Collinear Librations Points in the Restricted

Problem with Poynting Robertson Light Drag Effect," International Journal of Mathematics Trends and Technology, 19, 20-33, 2015.
[3] A.M. Leontovich, "On the stability of Lagrange's periodic solutions of the restricted three-body problem," (Russian). Dokl .Akad. Nauk. SSSR, 143, 525-528, 1962.
[4] A. Depri, and A. Deprit-Bartholome, "Stability of the triangular Lagrangian points," Astronomy and Astrophysics, 72, 173-179, 1967.
[5] K.B. Bhatnagaer, P.P. Hallan, "The effect of perturbation in coriolis and centrifugal forces on the non-linear stability of equilibrium points in the restricted problem of three bodies," Celes. Mech., 30, 97, 1983.
[6] J. Gyorgyey, "On the non-linear stability of motions around L_{5} in the elliptic restricted problem of three bodies," Celestial Mechanics, 36, 281-285, 1985.
[7] G. Krzysztof, J.M. Andrzej, and N. Zuzanna, "About the libration points in the restricted photogravitational three body problem," Celest. Mech. and Dyn. Astron., 52, 195201, 1991.
[8] K.B. Bhatnagar, U. Gupta, and R. Bhardwaj, "Effect of perturbed potential on the non-linear stability of libration point L_{4} in the restricted problem," Celest. Mech. and Dyn. Astron., 59, 345, 1994.
[9] K.B. Bhatnagar, and P.P. Hallan, "Non-linear stability of a cluster of stars sharing galactic rotation," Bull Astr. Soc. India., 23, 177-194, 1995.
[10] R. Aggarwal and B. Kaur, "Robe's restricted problem of $2+2$ bodies with one of the primaries an oblate body," Astrophys and Space Science, 352(2), 467-479, 2014.
[11] P.V. Subba Rao, and R.K. Sharma, "Effect of oblateness on the non-linear stability of L_{4} in the restricted threebody problem," Celest. Mech. and Dyn. Astron., 65, 291312, 1997.
[12] R.K. Sharma, Z.A. Taqvi, and K.B. Bhatnagar, " Existence and Stability of Libration Points in the Restricted Three Body Problem when the Primaries are Triaxial Rigid Bodies and Source of Radiations," Indian J. pure appl. Math., 32(7) 981-994, 2001.
[13] R.K. Sharma, Z.A. Taqvi, and K.B. Bhatnagar, "Stability of Triangular Libration Points in the Restricted Three Body Problem when both the Primaries are Triaxial Rigid Bodies," Indian J. pure appl. Math., 32(9), 1367-1388, 2001.
[14] C.N. Douskos, and E.A. Perdios, "On the Stability of Equilibrium Points in the Relativistic Restricted ThreeBody Problem," Celes. Mech., 82(4),317-321, 2002.
[15] S. Jain, P.P. Hallan, and K.B. Bhatnagar, "The NonLinear Stability of L_{4} in the Restricted Three-Body Problem when the Bigger Primary is a Triaxial Rigid Body," Celest. Mech. and Dyn. Astron., 77(3), 157-184, 2000.
[16] S. Jain, P.P. Hallan, and K.B. Bhatnagar, "Nonlinear stability of L_{4} in the restricted three body when the primaries are triaxial rigid bodies," Indian Journal of Pure \& Applied Mathematics, (32)(3), 413-445, 2001.
[17] V. Szebehely, "Theory of orbits, The Restricted Problem of Three Bodies," Academic Press, New York and London, 1967.
[18] E.T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies," Cambridge Univ., London and New York, Original First ed, 1904, 4 rev. edn., 1937. Reprinted by Dover, New York, 1944.
[19] G.D. Birkhoff, "The restricted problem of three bodies," Rend. Circ. Mat. Palermo, 39, 1915.

