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Abstract - Given a Graph G = ((V(G),E(G)), and a 

subset )(GVS  , S with a given property(covering 

set, Dominating set, Neighbourhood set), we define a  

matrix taking a row for each of the minimal set 

corresponding to the given property and a column 

for each of the vertex of G. The elements of the 
matrix are 1 or 0 respectively as the vertex is 

contained in minimal set or otherwise. That is matrix 

(mij) has elements mij and 

 

mij = 1 if ith row minimal set contains jth vertex 

      = 0 otherwise 

 

This paper initiates a study on these new 

types of matrices of a graph and we characterize 

such matrices for some special classes of graphs. 
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I. INTRODUCTION  

 

All graphs considered here are finite, undirected 

and without self loops and without multiple edges. 

The general notations and definitions conform to 

Harary
1
. 

 
For a graph G = ((V(G),E(G)) let S be a subset of 

V(G) having a property such as a covering set or a 

dominating set or a neighbourhood set. If S is 

dominating set, neighbourhood set, or a point 

covering set then every super set of S in G also has 

the corresponding property. Hence it is interesting to 

study minimal sets with a given property. We 

consider S to be a minimal set with respect to this 

property. That is S – {u} does not have this property 

for any u  S. 
 

We define a matrix corresponding to each 

of this property as follows: The matrix has a row 
corresponding to each of the minimal sets and a 

column for each of the vertices of V(G). The 

elements of this matrix are 1 if the ith row contains jth 

vertex, otherwise it is zero.  

The purpose of this paper is to study such 

matrices, especially for the properties namely the 

minimal point covering set, minimal dominating set 

and the minimal neighbourhood set. Many matrices 

including adjacency matrix, incidence matrix, cycle 

matrix, path matrix are defined and studied in 

literature. See Harary1. 

 

A subset S  V(G) is a point covering set if 
every edge of G has a vertex in S.  The minimum 

cardinality among all minimal point covering sets is 
called the point covering number of the graph and is 

denoted by 0(G).  
 

A subset S  V(G) is a dominating set if 
every vertex in V(G) – S is adjacent to a vertex in S. 

The minimum cardinality among all minimal 

dominating sets is called the domination number of 

the graph and is denoted by (G). This concept was 
introduced by O. Ore2 in 1962 and several authors 

have studied this concept. The first monograph on 

domination sets was written by Walikar et al3. Two 

books on this topic are by Haynes et al7,8.  

 

Sampathkumar and Neeralagi4 define a set 

S  V(G) as a neighbourhood set if G is the union of 
the graphs induced by the closed neighbourhoods of 

S i.e. 
 

 G =   N(u)  { u }  

     u  S 
 

The minimum cardinality among all minimal 

neighbourhood sets is called the neighbourhood 

number of the graph G, denoted by n0(G). This 

invariant is studied by Jayaram et al6, Kulli and 

Sigarkanti9  

Definition1.1: 

For a parameter t where t  {n0, 0, },  GM t  

denotes the matrix of a graph G corresponding to the 
parameter t, defined by   

 

mij = 1 if i
th

 row t-minimal set contains j
th 

vertex 

          = 0 otherwise 
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Thus for a graph G  we have  GM
0n

,  GM
0

 

and  GM
 denote the neighbourhood set matrix, 

point covering set matrix and dominating set matrix 

respectively. 

 

 

 

We consider an example.  For the graph 

  

 G = ({1, 2, 3, 4, 5, 6}, {12, 23, 24, 45, 46, 

56})  
 

                              

   

 GM =

 
 
 
 
 
  


























100101

010101

001101

100010

010010

001010

6,3,1

5,3,1

4,3,1

6,2

5,2

4,2

654321

       

             
 

 

 GM
0n =

 

 
 
  


















001101

100010

010010

001010

4,3,1

6,2

5,2

4,2

654321

             

 
 

 GM
0 =  

 
 
 
 
  






















101101

011101

110010

101010

011010

6,4,3,1

5,4,3,1

6,5,2

6,4,2

5,4,2

654321

  

  
   

 

It is observed that the vertices of a graph need not be 

labelled.  Change of label is equivalent to permuting 

rows or columns in the matrix representation and the 

graph itself is not altered by such permutations. 

Since each row in the matrix corresponds to a 

minimal set no two vertices of G with the same 
closed neighbourhood appear in the same row 

together. In the graph cited above for illustration 

since vertices 5 and 6 have same closed 

neighbourhood they do not appear in the same row 

together.    

 

The following observations are immediate, and can 

be proved easily by the definitions: 

 

1. Each column sum is the number of minimal 

sets (with a property) a vertex belongs to. 

2. Each row sum is the cardinality of the 
corresponding minimal sets. 

3. A row has only one non-zero entry if and 

only if (G) =  n0(G) = α0(G) =1 
4. Since an isolated vertex belongs to both 

minimal dominating set and minimal 

neighbourhood set the corresponding 

column has all entries as 1. 

5. Each column has one non-zero entry, 

equivalently each vertex belongs to at least 

one minimal set with the said property. 

6. If G is a totally disconnected graph on p 

vertices then  GM
0n

 =  GM  and it 

has order 1 x p with every entry as unity. 

2 Results 

 

In what follows below we obtain some results on 

these types of matrices for special classes of graphs. 

 

 

Proposition 2.1 
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 GM
  (  GM

0n
) is a p x p identity matrix if and 

only if G   Kp 

Proof:  Let G   Kp. Then each vertex is a 
minimal dominating set and a neighbourhood set and 

(G) = n0(G) = 1. So the matrix entries can be 
arranged such that mii 

th place is unity, resulting in an 

identity matrix. 

 

 Conversely if  GM
0n

,  GM  is an 

identity matrix, then this implies that each vertex is a 

minimal dominating set and a minimal 

neighbourhood set, and so a vertex is adjacent to the 
remaining vertices hence G   Kp.  

 

Proposition 2.2 

 

If G is a complete k-partite graph with partite sets p1, 

p2,…., pk then  GM
0n

 has k rows with sum of all 

the elements of each column equal to unity and 

conversely. 

 
Proof: Let G be a complete k-partite graph with 

partite sets p1, p2,……., pk, then  GM
0n

 has k rows 

one corresponding to each of the k-partite sets. Also, 

since each partition set is a minimal neighbourhood 

set and any two sets are disjoint, each point of G 

belongs to only one minimal neighbourhood set. 

Hence G is a k x pi matrix. 
  

 Conversely if  GM
0n

 has k rows and the 

sum of all the elements of each column is unity, then 

G has k disjoint minimal neighbourhood sets, and 

hence G is a complete k-partite graph. 

 
It is clear that if two non-isomorphic graphs should 

have the same matrix representation, then they 

should have same number of minimal sets with equal 

cardinalities. Further, they should be labeled in such 

a way that  GM  =  HM
 and  GM

0n
 = 

 HM
0n

.  

  

A necessary condition for two graphs to 

have the same neighbourhood set matrix 

representation is that the graphs should have the 

same number of minimal neighbourhood sets with 

equal cardinality.  

 

The graphs  G = ({ 1, 2, 3, 4, 5 }, { 13, 23, 

34, 45}) and  H = ({ 1, 2, 3, 4, 5 }, { 13, 15,  23, 24, 
35, 45}) cannot be labelled to have the same 

neighbourhood set matrix representation, although 

both have minimal neighbourhood sets of cardinality 

two. The minimal neighbourhood sets of G are {1, 2, 

4}, {3, 4}, {3, 5} and that of H are {1, 2, 4}, {2, 5}, 

{3, 4}, and hence the order of  GM
 and  GM

0n
 

are same.

 

            

 
  

The graph H has two disjoint minimal 

neighbourhood sets of cardinality two, but G has 

intersecting minimal neighbourhood sets of 

cardinality two. 

 

The remarks made earlier lead to 
 

Proposition 2.3 

 

If G and H are two isomorphic graphs then 

they have the same neighbourhood matrix 

representation. Conversely if two graphs G and H 

have the same neighbourhood set matrix 

representation, then they have a label preserving 

isomorphism.  

 

Sampathkumar and Neeralgi4 have shown 

that there are large classes of graphs for which (G) 

= n0(G). So the next question to be considered here 

is if (G) = n0(G) will the neighbourhood set matrix 
representation be same as dominating set matrix 

representation. One can generate families of graphs 

to answer this negatively. (See earlier cited example.) 

 

This raises the next question does there exist a graph 

G such that  GM
0n

=  GM
. 

The answer follows. 

 

Proposition 2.4 

 
Following are equivalent for a graph G 

 

i)  GM
0n

 =  GM
  

ii) G is one of the graphs Kp, pK (the 

complement of complete graph on p 

vertices) Kp
  k K1 where k is a 

positive integer (k copies of K1), K1,p-1.
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iii) G has disjoint minimal dominating, 

neighbourhood sets (except for isolated 

vertices). 

 

Proof: i)  ii) Let G be a graph such that it has 
same dominating and neighbourhood matrix 

representation. This is possible only if every 

minimal dominating set is also a minimal 

neighbourhood set. Then the structure of such graphs 

is Kp , pK , K1,p since the first graph has each vertex 

as a minimal dominating set and the second graph 

has only V( pK ) as the minimal dominating set and 

minimal neighbourhood set. The star graph K1, p-1 

has only two disjoint minimal dominating sets and 

the result holds. Lastly for Kp
  k K1 each vertex of 

Kp
 along with all the vertices of k K1 forms a 

minimal dominating set and also a minimal 

neighbourhood set.  

  

 ii)  iii) If G is one of the graphs, then 

clearly except for the graphs Kp
  k K1 containing  k 

copies of  K1, has isolated vertices contained in each 

of the minimal dominating, neighbourhood sets. 
  

 iii)  i) If G has disjoint minimal 
dominating sets and also disjoint minimal 

neighbourhood sets, so they have same 

neighbourhood and dominating matrix 

representation hence  GM
0n

 =  GM
 

 

Sampathkumar and Neeralagi4 proved that 

every neighbourhood set is also a dominating set. So 

if S  V(G) is a neighbourhood set then it contains a 

dominating set. So it is interesting to see if there 

exist graphs G such that  GM  is a submatrix of 

 GM
0n

. 

 

 

 It is easy to see that 
 

1. For the path P4 on four vertices, (P4) = 2, 

n0(P4) = 2, 0(P4) = 2. Also,  GM
0n

 = 

 nP
0M , whereas dominating matrix is 

different. 

 

2. For a cycle C5 on five vertices, Minimal 

point covering sets and minimal 

neighbourhood sets are same and  GM
0n

 

=  nP
0M . But (C5) = 2, n0(C5)= 3, 

0(C5) = 3. 
 

3. For a cycle C4 on four vertices , (C4) = 2, 

n0(C4)= 2, 0(C4) = 2,   GM
0n

 = 

 nP
0M . 

 
4. For a complete graph K4 on four vertices, 

(K4) = n0(K4) = 1  and  GM
0n

 = 

 GM
. However 0(K4) = 3 and has a 

different point covering matrix 
representation. 

 

 

Given a graph G it is difficult to find all the 

minimal neighbourhood sets of G. However it can be 

done for some special classes of graphs. While 

studying intersection graphs of family of 

neighbourhood sets of a graph Jayaram et al8 have 

enumerated the number of all minimal 

neighbourhood sets of the graphs Pn, Cn. 
 

In what follows, we characterize matrix 
representations of Pn, Cn. 

 

Proposition 2.5 

The point covering set matrix of Pn,  nP
0M is a 

f(n) x n matrix, where f(n) is recursively defined as 

follows: f(2) = f(3) = 2, f(4) = 3 and for n ≥ 5, f(n) = 

f(n-2) + f(n-3). 

 

Proof: Let V(Pn) = { 1, 2, 3, …, n} and E(Pn) = { i, 

i+1 |1 ≤ i < n}. 
If n is odd, then it has a unique minimal point 

covering set namely {2, 4, 6, … , 2n} of cardinality 

n. Any other minimal point covering set has 

cardinality at least n+1. If n is even then the two 

disjoint minimal point covering sets are {2, 4, 

6, … ,2n}, and {1, 3, 5, … , 2n+1}. Let f(n) denote 

the number of minimal point covering sets of a path 

on n vertices. It is clear that for n = 2, f(n) = 2, and 

for n ≥ 3, a minimal point covering set S is 

characterized by the property that not both 1 and 2 

belong to S, not both n, n-1 belong to S, S does not 
contain three continuous vertices and no two 

consecutive vertices can both be omitted from S. 

The following hold: 

1. If S1 is a minimal point covering set containing n, 

then n-1 does not      belong to S1
 and S1

 - {n} is a 

minimal point covering set of Pn-1.  

2. If n does not belong to S1, then n-1 belongs to S1, 

the two possibilities are  

n-2  S1 or it does not belong to, In the former case 
S1 is also a minimal point covering set of Pn-1.  

 

 The total number of minimal point covering sets for 

some n is listed below: 
   

N 2 3 4 5 6 7 8 

f(n) 2 2 3 4 5 7 9 
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Since all minimal point covering sets of Pn
 are 

enumerated, by definition of the point covering set 

matrix of Pn is a f(n) x n matrix. 

 

Paths Pn are bipartite graphs and have one factors, it 

is known that for such graphs n0(G) = 0(G) (See 
[4]); also for bipartite graphs every minimal 

neighbourhood set is a minimal point covering set 
and conversely, hence the following result follows as 

a corollary 

 

 

Corollary 2.6 

 

The Neighbourhood set matrix  nn P
0

M  of Pn, is an 

f(n) x n matrix, where f(n) is recursively defined as 

follows: 

 f(2) = f(3) = 2, f(4) = 3 and for n ≥ 5, f(n) = 

f(n-2) + f(n-3). 

 

 

 

Proposition 2.7 

 

The Neighbourhood set matrix  nn C
0

M  of Cn, n ≥ 

4 is a f(n) x n matrix, where f(n) is recursively 

defined as follows:  

f(4) = 2, f(5) =  f(6) = 5 and for n ≥ 7, f(n) = 

f(n-2) + f(n-3). 

Proof: The proof is similar to proposition 5, so 

only outline of proof is given. Let V(Cn) = { 1, 2, … , 

n} and E(Cn) = { i, i+1 | 1 ≤ i < n } U { 1, n}. If S is 

a minimal neighbourhood set of Cn then the four 

types of S are  

 1. n ε S and 1, n-1  S 

 2. both n-1 and n ε S 

 3. both 1, n ε S 

 4. n  S 

 

 The total number of minimal 

neighbourhood sets of Cn is f(n) and is listed in the 

following table for some n the number of vertices of 

G: 

 

N 4 5 6 7 8 9 10 

f(n) 2 5 5 7 10 12 17 

 

 

So it is now easy to see that the neighbourhood set 
matrix of Cn is a f(n) x n  (0,1) matrix where f(n) is 

recursively defined as above.   

 

Proposition 2.8 

 

The Neighbourhood set matrix  nn W
0

M   of Wn, n 

≥ 4 the wheel on n vertices is an  f(n) x n matrix, 

where f(n) is recursively defined as follows: f(4) = 4, 

f(5) =3,  f(6) = 6 and for n ≥ 7, f(n) = f(n-2) + f(n-3) 

 1. 
 

Proof: The proof is similar to that of Proposition 6, 

Let V(Wn) = { 1, 2, … , n-1, n} , where n is the 

central vertex adjacent to all the other n-1 vertices, 

and E(Wn) = { i, i+1 / 1 ≤ i < n-1 } U { 1, n-1} U {i, 

n / 1 ≤ i < n-1}. If S is a minimal neighbourhood set 
of Wn then the five types of S are  

1. n-1  S and 1, n-2  S 

2. both n-2, n-1  S 

3. both 1, n-1  S 

4. n-1  S 

5. only n  S 
 

The total number of minimal neighbourhood sets of 

Wn is listed in the following table for some n, the 

number of vertices of G: 

 

n 4 5 6 7 8 9 10 11 12 

f(n) 4 3 6 6 8 11 13 18 23 

 

So it is now easy to see that the 

neighbourhood set matrix of Wn,  nn W
0

M  is an 

f(n) x n matrix where f(n) is recursively defined as 
above.   

 

 

Proposition 2.9 

 

For Kn, the complete graph on n vertices, the order 

of  GM
0n

 the neighborhood set matrix,  GM
 

the dominating set matrix, and  GM
0  the point 

covering set matrix, are same and is equal to n x n 

 

Proof: For Kn each vertex is both a minimal 

neighborhood set and a minimal dominating set. 

Hence the corresponding matrices are also the same. 

Each vertex of Kn forms a minimal neighborhood set, 

and hence the total number of minimal 

neighborhood sets are equal to n, consequently the 

order of  GM
0n

 and also the order of  GM
 are 

equal to n. 

  

Any subset of (n-1) vertices of Kn forms a minimal 

point covering set of Kn. There are n different ways 

of considering n-1 vertices out of n vertices, and 

hence the total number of minimal point covering 

sets is equal to n, as a result, the order of  GM
0  

equal to n x n. 

 

3.0 Complement of a Matrix 

 

Definition 3.1: Given a graph G, let  GM t
be a (0, 

1) matrix representation corresponding to a set S, S 
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 V(G)with respect to a property. Then we obtain 

)(GM t
 called as the complementary matrix of 

 GM t
, by changing 1 to 0 and 0 to 1 in  GM t

 

 

Then we have the following observations: 

 

Remark 3.1: For Kn, the dominating set matrix 

 GM and the neighborhood set matrix  GM
0n

 

are n x n identity matrices and also  GM  

=  GM
0n

.  

Let  GM
=  GM

0n
=  GM , then 

)(GM =  GM
0

, the point covering matrix where 

all diagonal elements are zero.  Also 

 GM
0 =  GM . 

Remark 3.2: In Cn, the cycles on n vertices, only C5 

& C6 has the property )(
0

GMn
[= )(

0
GM

] 

=  GM
 , because in Cn, only C5 & C6 has order of 

 GM
0

,  GM
 and  GM

0n
 same. 

Remark 3.3: For Km, n,  GM
0n

 has 2 rows, one 

with a set of cardinality m and the other with a set of 

cardinality n. Hence )(
0n GM =  GM

0n
 for Km, n.  

 

 

Given a graph G if L(G) denotes the line graph of G , 

then 

 

Remark 3.4: Since Cn  L(Cn), n3, we have 

 nCM
0n

,  nCM  and  nCM
0  same as 

 )(
0n nCLM ,  )( nCLM  and  )(

0 nCLM  

respectively.  

Remark 3.5: For Pn, n3, we have L(Pn)=Pn-1, hence  

 )(
0n nPLM =  1n0 nPM , 

 )( nPLM =  1nPM  and 

 )(
0 nPLM =  10 nPM  

 

 

A Few more observations: 

 

Remark 3.6: For Pn, n  2 order of  GM
0n

 (=order 

of  GM
0 )  order of  GM

, since  GM
0n  

and  GM
0  are same for Pn and the number of 

minimal neighborhood sets (= number of minimal 

point covering sets)  number of minimal 
dominating sets  

Remark 3.7: For Cn, n  3, order of  GM
0n

 (=order 

of  GM
0

)  order of  GM   

Since  GM
0n

 and  GM
0

 are same for Cn, and 

hence order of  GM
0n

 = order of  GM
0

  and 

the number of minimal neighborhood sets (= number 

of minimal point covering sets)  number of 
minimal dominating sets 

Remark 3.8: For Wn, n4 Order of  GM
0   order 

of  GM
0n

  order of  GM . 

Since number of minimal point covering sets  

number of minimal neighbourhood sets  number of 

minimal dominating sets.  

Hence  GM  has maximum order, and  GM
0  

has minimum order. 

Remark 3.9: For star graphs K1, n-1  

Order of  GM
0n

= order of  GM
0 = order of 

 GM  = n2  

For star graphs 1,1 nK  number of minimal 

neighbourhood sets = number of minimal point 

covering sets = number of minimal dominating sets, 

and each is 2 
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