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1. Introduction – Model Equation 

 

In this work we intend to solve numerically the problem of 2D transient nonlinear 

convection-diffusion governed by the equation, 
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where 𝑢 is velocity component in x direction, 𝑣 is the cinematic viscosity (m²/s). The Equation 

(1) it is a simplification for only one variable of the 2D Burgers Equation [1-3]. 

 

2. Formulation 

 

The following will be presented the methodological sequence for the formulation of the 

problem governed by Equation (1). 

 

2.1 Temporal Discretization 

For temporal discretization, the traditional Cranck-Nicolson method [4] will be used in 

Equation (1) as follows, 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 46 Number 1 June 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                              Page 44 

 
𝑢𝑛+1 − 𝑢𝑛

∆𝑡
 ≅

1

2
 𝑣

𝜕2𝑢𝑛+1

𝜕𝑥2
+ 𝑣

𝜕2𝑢𝑛+1

𝜕𝑦2
− 𝑢𝑛+1

𝜕𝑢𝑛+1

𝜕𝑥
− 𝑢𝑛+1

𝜕𝑢𝑛+1

𝜕𝑦
 

+
1

2
 𝑣

𝜕2𝑢𝑛

𝜕𝑥2
+ 𝑣

𝜕2𝑢𝑛

𝜕𝑦2
− 𝑢𝑛

𝜕𝑢𝑛

𝜕𝑥
− 𝑢𝑛

𝜕𝑢𝑛

𝜕𝑦
      (2) 

 

2.2 Linearization – Newton Method 

 

Note in Equation (2), in the current step of time n + 1, two non-linear terms. To 

linearize such terms will be used Newton's Method [5-7] that from the reasoning of the 

expression, 
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that when substituted in Equation (2) is obtained, 
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2.3 Spatial Discretization – Galerkin Method 

 

For spatial discretization of Equation (4) the Galerkin Method [8]  will be used by the 

expression, 

 𝑅𝑊𝑑𝛺

𝛺

= 0                 (5) 

 

where W is adopted as the interpolation functions and R is the residual equation. In other words, 

applying Equation (5) in the result obtained in Equation (4), we obtain, 
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Using the principle of part integration of Differential and Integral Calculus, the second-

order terms of Equation (6) can be simplified as follows,  
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In addition to replacing the results presented in Equations (7-8) in Equation (6) we also 

replace the approximation 
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(where Nnodes is number of nodes in element) results in, 
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In the form of matrix system, 

 𝐾  𝑢𝑗
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where, 
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4. Numerical Applications 

 

To analyze the efficiency of the proposed numerical formulation two applications with 

exact solutions to perform the comparison are presented. From the solution of the linear system 

in (11), through a computer code constructed via Fortran Language the numerical results will be 

presented next. It is important to note that for the construction of the linear system in (11), 

knowing that this is highly sparse, it used a technique proposed by [9] where three vectors are 

constructed assuming only the nonzero coefficients of matrix K of system (11). Thus, from 

these three vectors we construct two integers vectors (one containing the row position and the 

other the column position of each non-zero coefficient) and a "ordered" real vector of nonzero 

coefficients. Further details of the advantages of constructing the system in this way can be 

found in [9]. To analyze the numerical efficiency of the proposed formulation will be used the 

L norm that presents the larger absolute error committed in the computer domain. 

 

4.1 First Application 

 

In this first application, it was adopted as spatial domain a square of side 0.1   (L = 0.1) 

and a total time of 0.1 (Lt = 0.1). The viscosity was varied at values 1, 5 and 10, and the spatial 

(Δx = Δy) and temporal (Δt) meshes were varied according to Tables 1 to 3. The spatial mesh 

was constructed from quadrilateral elements with four nodes and the interpolation functions 

used can be found in [10]. For analysis of the error was used as exact solution the expression, 

𝑢 𝑥, 𝑦, 𝑡 = 𝑒
𝑥−𝑦+2𝑡

𝑣  
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Table 1. L norm for 𝑣 = 1. 

Δx = Δy 
Δt 

Lt/10 Lt/20 Lt/30 Lt/50 

L/10 1.04E-02 2.06E-02 3.01E-02 4.72E-02 

L/20 1.03E-02 2.05E-02 2.99E-02 4.69E-02 

L/30 1.03E-02 2.04E-02 2.99E-02 4.69E-02 

L/50 1.03E-02 2.04E-02 2.99E-02 4.69E-02 

 

Table 2. L norm for 𝑣 = 5. 

Δx = Δy 
Δt 

Lt/10 Lt/20 Lt/30 Lt/40 

L/10 3.84E-04 7.83E-04 1.18E-03 1.94E-03 

L/20 3.81E-04 7.78E-04 1.17E-03 1.93E-03 

L/30 3.81E-04 7.77E-04 1.17E-03 1.93E-03 

L/50 3.81E-04 7.76E-04 1.17E-03 1.93E-03 

 

Table 3. L norm for 𝑣 = 10. 

Δx = Δy 
Δt 

Lt/10 Lt/20 Lt/30 Lt/40 

L/10 9.50E-05 1.94E-04 2.93E-04 4.88E-04 

L/20 9.44E-05 1.93E-04 2.91E-04 4.85E-04 

L/30 9.43E-05 1.93E-04 2.91E-04 4.84E-04 

L/50 9.42E-05 1.93E-04 2.91E-04 4.84E-04 

 

From the results presented in Tables 1 to 3 it can be noted that for the spatial 

refinements adopted, the numerical results are already stagnant, while with the increase in 

refinement in time, the numerical results decrease accuracy. Next, another application will be 

presented to assess whether these situations recur. 

 

4.2 Second Application 

 

For this application will only be modified the exact solution proposed that in this case is 

given by the expression, 

𝑢 𝑥, 𝑦, 𝑡 =
1

1 + 𝑒
𝑥+𝑦−𝑡

2𝑣

 

 

After some numerical tests it was noticed that the behavior of the numerical solution for 

this case was similar to that presented in application 1, that is, the greater the number of time 

steps, the lower the numerical precision. However, from detailed studies it was noted that the 
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computational behavior of the first order derivatives of u did not show the same numerical 

efficiency as the numerical solution of u, as can be seen in Tables 4 and 5. 

 

Table 4. L norm for 𝑣 = 1, x = y = L/20, t = Lt/10. 

Time 

steps L norm - u L norm - u/x 

1 7.28E-05 1.83E-02 

2 3.63E-06 1.73E-02 

3 8.60E-05 1.64E-02 

4 1.71E-04 1.54E-02 

5 2.56E-04 1.44E-02 

6 3.43E-04 1.38E-02 

7 4.29E-04 1.73E-02 

8 5.16E-04 2.08E-02 

9 6.03E-04 2.43E-02 

10 6.89E-04 2.78E-02 

 

Note in the first term on the right side of Equation (12) that there is a need to calculate 

the derivative of u, 
𝜕𝑢𝑗

𝑛 ,𝑒

𝜕𝑥
 and 

𝜕𝑢𝑗
𝑛 ,𝑒

𝜕𝑦
, that for the calculations performed and presented in Tables 4 

and 5 the Finite Difference Method (Central Difference Method of order 2) was used. After that, 

we used finite difference expressions of order 4, and the numerical results in the calculation of 

the first derivative did not evolve. 

It is important to note that the numerical results of u are good, however, the need to find 

an alternative to improve the first derivative calculation is clear.  

 

 

Table 5. L norm for 𝑣 = 1, x = y = L/40, t = Lt/10. 

Time 

steps L norm - u L norm - u/x 

1 7.27E-05 1.83E-02 

2 3.60E-06 1.73E-02 

3 8.59E-05 1.64E-02 

4 1.70E-04 1.54E-02 

5 2.56E-04 1.44E-02 

6 3.42E-04 1.50E-02 

7 4.28E-04 1.87E-02 

8 5.15E-04 2.25E-02 

9 6.01E-04 2.63E-02 

10 6.88E-04 3.00E-02 
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5. Conclusion 

 

The numerical results presented by the use of the Galerkin Method have proved to be 

efficient, however, it is noted that the calculation of derivatives the u at each time step should be 

improved. For this, a first proposal for future work is to use quadrilateral elements with nine 

nodes (quadratic elements) and to calculate the derivatives using finite element approximation. 
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