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Abstract 

In the present chapter we have studied the effect of a magnetic field on linear stability of stratified 
horizontal flows of an in viscid compressible fluid by the generalized progressing wave expansion method. Here 

we have discussed the different cases and have established the conditions for the stability. It is found that the 

magnetic field stabilizes the system. 
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Introduction:- 

In the present chapter we have studied the effect of a magnetic field on linear stability of stratified 

horizontal flows of an inviscid compressible fluid by the generalized progressing wave expansion method. Here 

we have discussed the different cases and have established the conditions for the stability. It is found that the 
magnetic field stabilizes the system. 

 

 [11] and [12] has studied the linear stability of stratified horizontal flows of an inviscid compressible 

fluid. He has shown that a shear in the horizontal directions always gives rise to instabilities and also that all 

shear flows are unstable if the external force field vanishes. The same results are also obtained for homogeneous 

incompressible fluid in [2] and [8]. Previously this problem was discussed by [7] for incompressible fluid, and 

also by [6], [4] and [19] under various restrictions. Stability in the rotating Bfenard problem with Newton-Robin 

and fixed heat flux boundary conditions was studied by [3]. Straughan, B. also discussed the problem of 

Stability and wave motion in porous media [15]. 

 

2. Formulation of the problem:- 

 The basic equations for governing the motion of an ideally conducting inviscid, compressible and 

adiabatic fluid in the presence of a magnetic field [13, 15] are 
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Where  denotes the velocity, , the density; B, the magnetic field; V, the external potential force; p, 

the pressure; and  a constant. 
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 The potential for the external forces is assumed to depend on the height z only. Let us introduce a unit 

vector e  (z) such that 

e(z) cos sin j       
      (2.5)

 

Where   and j  be the unit vectors along the x-axis and y-axis respectively. The angle of  depends on 

z only and 

0 0U(x, y,z)e(z), (z),p p (z)      
    (2.6)

 

Since U is constant on every stream line, it follows that  

0 0u
e(z). U 0

x y

 
   

 
       

(2.7) 

Where 0 0 0y Ucos , Usin ,w 0       are the components of the velocity along x, y and z-

axes respectively. We obtain from eq. (2.1) 

20
0 01

dp dV
B

dz dz
          

(2.8)
 

Where we choose 0B B (x, y,z)e(z)   and 01 0B B cos  is the component of magnetic field. 

3. Stability Analysis:- 

To study the stability of basic equations, the following perturbations have been applied: 
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 denotes the local sound speed. 

After linearization, the equations for the perturbation are found to be 
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Where  
T

1 1 1 1 2 3 2 2w u v w b b b S S    

is a transpose matrix and coefficient square matrices A1, A2, A3 and B are defined as 
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and 
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We see that eq. (3.2) is a symmetric hyperbolic system. The characteristic equation associated with eq. 

(3.2) 

 1 1 2 2 3 3det E A E A E A I 0   
      

(3.7) 

The above equation gives 

1 1 0 2 0

2 2 0 2 0

3 1 0 2 0 0

4 1 0 2 0 0

5 1 0 2 0 1 01

6 1 0 2 0 1 01

7 1 0 2 0 1 01

5 1 0 2 0 1 01

E u E v

E u E v

E u E v C K

E u E v C K

E u E v E B

E u E v E B

E u E v E B

E u E v E B

   


  

   


    


    
   


    
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(3.8) 

Where the roots 3 and 4 correspond to acoustic waves 5, 6, 7 and 8 correspond to magnetic waves 

and 1, 2 correspond to interna; gravity waves. We now explore whether gravity and magnetic waves have had 

impact on the stability of the basic flow. 

The ray equations for the gravity waves associated with the characteristic roots 1 and 2 are 
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(3.9) 

Transport equations for gravity waves show the stability of the system. The ray equations for the 

magnetic waves associated with the characteristic roots (5, 6) and (7, 8) are 
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Where we also assume that the generalized progressive wave solution is given as 

a0 (x, y, z t) exp [iw(x, y, z, t)]      (3.11) 

Where w denotes the frequency parameter and solar function (x, y, z, t) is called the phase function. In 

addition to eqns. (3.9) and (3.10), we also have 

0

dx
u ,

dt
  

0

dy
v ,

dt
  

dz
0

dt


     

(3.12) 

The solution of eqns. (3.9), (3.10) are found to be 
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For gravity waves and 
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For magnetic waves, Here 

x = x0 + u0 (x0, y0, z0) t, y = y0 + v0 (x0, y0, z0) t, z  

= z0          (3.15) 

Where x0, y0, z0, E01, E02, E03 denotes the initial values at t = 0. 

We obtain the transport equations for the magnetic waves by following [13], where the amplitude a0 

must have the form 

a0 = a11 + 22        (3.16) 

where1 and 2 are determined by the transport equation which we shall give below, and the 

orthogonal eigenvectors 1 and 2 are given by 
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   
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(3.17) 

Where  2 2 2

1 2 3K 2 E E E    

With the help of eqns. (3.6), (3.16) and (3.17), we obtain the transport equations [12] for the magnetic 

waves 
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 1
1 2 1 3 2 1 22

d 1
2E E ( ) 2E E K

dt K

                    

(3.18) 

2
3 2 1 12

d 1
2E E K

dt K

                   

(3.19) 
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We can rewrite the above set of eqns. (3.18) and (3.19) in the form  

1

2
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1 2 3 2 1
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3 2 1
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1

2




 
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(3.20) 

Eq. (3.20) is nothing but simply the form of the ordinary differential equations 

d
[A]

dt


 

         

(3.21) 

For the amplitude 1 2[ , ]     of the magnetic waves. 

4. Discussion and Conclusions:- 

Stability properties can be determined after finding eigen values of the coefficient matrix [A], i.e. 

2 2 2 2 2 2

1,2 1 2 1 2 1 2

1
[ 2E E ( ) [2E E ( ) 4[E E ( ) ]

2
      


 

2

1 3 2 12K E E ( ) K ]  
        

(4.1) 

To determine the condition for stability of the system [9], the following different cases have to be 

considered. 

Case (i) 

Let 
0

1

v
E 0

x

 
   

 
 and 2 3E 0,E 0.   Eq. (4.1) is reduced to the form 

1,2 2 3E E  
        

(4.2) 

The system would be stable if N2> 0, N2 = –  

Case (ii) 

If E2 = 0 and E1 0, E3 0, we obtain 
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1 = iK1 and 2 = – 1       (4.3) 

This shows that the system would be stable if K1> 0, i.e. 

0 0
3

u u
E1 E

z x

    
   

             

(4.4) 

Case (iii) 

Let E3 = 0 and E1 0, E2 0. Eq. (4.1) is reduced to the form 

2 2 2 2 1/2

1,2 1 2 1 2

1
2E E ( ) [2E E ( ) 4K ]

2
      
 

    

(4.5) 

If  +  = 0, then the system reduces to case (ii). 

Case (iv) 

If E1 = 0  = E2 and E3 0. It gives a stable solution as the coefficient matrix [A] becomes zero. 

Case (v) 

If E3 = 0 = E1 and E2 0. If reduces to case (iv). 

Case (vi) 

Let E3 = 0 = E2 and E1 0. We obtain 

0
1 1 2 1

u
2iE ,

z

 
      

         

(4.6) 

It becomes stable if 
0

1

u
E 0.

z

 
 

 
 

Finally we conclude that basic flow shall be stable if  0   (4.7) 

and 

0 0 0 0 0u v u v v

x x y y z z

               
              

              
 

0 0 01 01 01u v B B B

z z x y z

            
            

            
 

= 0          (4.8) 

This result agrees with that obtained by Storesletten (1982). 
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