Sum Perfect Square Graphs in context of some graph operations

S. G. Sonchhatra ${ }^{1}$, G. V. Ghodasara ${ }^{2}$
${ }^{1}$ Assistant Professor in Mathematics, Government Engineering College, Rajkot - 360001, Gujarat - INDIA
${ }^{1}$ Ph. D. Scholar, School of Science, R.K. University, Rajkot - 360020, Gujarat - INDIA
${ }^{2}$ Assistant Professor in Mathematics, H. \& H. B. Kotak Institute of Science, Rajkot - 360001, Gujarat - INDIA

Abstract

A (p, q) graph $G=(V, E)$ is called sum perfect square if for a bijection $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ there exists an injection $f^{*}: E(G) \rightarrow \mathbb{N}$ defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$, $\forall u v \in E(G)$. Here f is called sum perfect square labeling of G. In this paper we prove that P_{n}^{2}, $K_{n}^{2}, K_{1, n} \cup K_{1, n+1}, m C_{n}, m K_{1, n}, \operatorname{spl}\left(K_{1, n}\right)$ and $D_{2}\left(K_{1, n}\right)$ are sum perfect square graphs. Further we prove that the union of path graph with any sum perfect square graph is also sum perfect square graph.
Key words: Sum perfect square graph.
AMS Subject classification number: 05 C 78 .

1 Introduction

Sonchhatra and Ghodasara [4 initiated the study of sum perfect square graphs. Due to [4] it becomes possible to construct a graph, whose all edges can be labeled by different perfect square integers. In the same paper the authors proved that P_{n}, C_{n}, C_{n} with one chord, C_{n} with twin chords, tree, $K_{1, n}, T_{m, n}$ are sum perfect square graphs. Sonchhatra and Ghodasara [5] proved that several snakes related graphs are sum perfect square. The same authors found some new sum perfect square graphs in 6.

2 Literature survey and Previous work

Throughout this paper we consider graph $G=(p, q)$ (with p vertices and q edges) to be simple, finite and undirected. The set of vertices and edges of G are denoted by $V(G)$ and $E(G)$ respectively. For all other terminology and notations we follow Harary [1].

Definition 2.1 (4]). Let $G=(p, q)$ be a graph. A bijection $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ is called sum perfect square labeling of G, if the induced function $f^{*}: E(G) \rightarrow \mathbb{N}$ defined by $f^{*}(u v)=$ $(f(u))^{2}+(f(v))^{2}+2 f(u) \cdot f(v)$ is injective, $\forall u v \in$ $E(G)$.
A graph which admits sum perfect square labeling is called sum perfect square graph.

Definition 2.2 ([3]). The square of a graph G is denoted by G^{2}, where $V\left(G^{2}\right)=V(G)$ and two vertices $u, v \in V\left(G^{2}\right)$ are adjacent in G^{2} if and only if $d(u, v) \leq 2$ in G, where $d(u, v)$ denotes the distance between u and v.
Definition 2.3 ([3). The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is denoted by $G_{1} \cup G_{2}$, where $V\left(G_{1} \cup G_{2}\right)=V_{1} \cup V_{2}$ and $E\left(G_{1} \cup G_{2}\right)=E_{1} \cup E_{2}$.
Definition 2.4 ([3]). For a graph G the splitting $\operatorname{graph} \operatorname{spl}(G)$ is obtained from G by taking two copies of G say G^{\prime} and $G^{\prime \prime}$ adding for each vertex v^{\prime} of G^{\prime} a new vertex $v^{\prime \prime}$ of $G^{\prime \prime}$ so that v^{\prime} is adjacent to every vertex that is adjacent to $v^{\prime \prime}$.
Definition 2.5 (3). For a graph G the shadow graph is denoted by $D_{2}(G)$ is obtained from G by
adding a new vertex v^{\prime} corresponding to a vertex v of G, so that v^{\prime} is adjacent to every vertex that is adjacent to v.

3 Main Results

Theorem 3.1. P_{n}^{2} is sum perfect square graph, $\forall n \in \mathbb{N}-\{1\}$.
Proof. Let $V\left(P_{n}^{2}\right)=\left\{v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n}^{2}\right)=$
$\left\{e_{i}^{(1)}=v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup\left\{e_{i}^{(2)}=v_{i} v_{i+2}, 1 \leq\right.$ $i \leq n-2\}$.
$\left|V\left(P_{n}^{2}\right)\right|=n$ and $\left|E\left(P_{n}^{2}\right)\right|=2 n-3$.
We define a bijection $f: V\left(P_{n}^{2}\right) \rightarrow\{0,1,2, \ldots, n-$ 1\} by
$f\left(v_{i}\right)=i-1,1 \leq i \leq n$.
Let $f^{*}: E\left(P_{n}^{2}\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+$ $2 f(u) \cdot f(v), \forall u v \in E\left(P_{n}^{2}\right)$.

Injectivity for edge labels:

For $1 \leq i \leq n-1, f^{*}\left(e_{i}^{(1)}\right)$ is increasing in terms of i.
$\Rightarrow f^{*}\left(v_{i} v_{i+1}\right)<f^{*}\left(v_{i+1} v_{i+2}\right), 1 \leq i \leq n-3$.
Similarly $f^{*}\left(e_{i}^{(2)}\right)$ is increasing for $1 \leq i \leq n-2$.
Further $f^{*}\left(e_{i}^{(1)}\right)$ are odd perfect square integers and $f^{*}\left(e_{i}^{(2)}\right)$ are even perfect square integers.
So $f^{*}: E\left(P_{n}^{2}\right) \rightarrow \mathbb{N}$ is injective and hence P_{n}^{2} is sum perfect square graph, $\forall n \in \mathbb{N}-1$.

The below illustration provides better idea about the above defined labeling pattern.

Figure 1: Sum perfect square labeling of P_{5}^{2}.
Theorem 3.2. K_{n}^{2} is sum perfect square graph, $\forall n \in \mathbb{N}-\{1\}, n<4$.
Proof. We know that $K_{n}^{2} \cong K_{n}$ and K_{n} is sum perfect square graph, for $n<4$ (See Theorem 3.5
in [4]). Hence K_{n}^{2} is sum perfect square graph, $\forall n \in$ $\mathbb{N}-1, n<4$.

Theorem 3.3 ([4). P_{n} is sum perfect square graph, $\forall n \in \mathbb{N}$.
Corollary 3.4. For any sum perfect square graph $G, G \cup P_{m}$ is also sum perfect square graph, $\forall m \in \mathbb{N}$.
Proof. Let G be a sum perfect square graph of order n. Consider a sum perfect square labeling $g: V(G) \rightarrow\{0,1,2, \ldots, n-1\}$. By shifting the range set of sum perfect square labeling defined for $P_{m}($ See 4] lemma 3.1) to $\{n, n+1, \ldots, n+m-1\}$ and combination of above two labelings gives required sum perfect square labeling.

Corollary 3.5. $K_{1, m} \cup K_{1, n}$ is sum perfect square graph, $\forall m, n \in \mathbb{N}$.

Proof. Let $V\left(K_{1, m} \cup K_{1, n}\right)=\left\{u, u_{i} ; 1 \leq i \leq\right.$ $m\} \cup\left\{v, v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(K_{1, m} \cup K_{1, n}\right)=$ $\left\{u u_{i} ; 1 \leq i \leq m\right\} \cup\left\{v v_{i} ; 1 \leq i \leq n\right\}$.
$\left|V\left(K_{1, m} \cup K_{1, n}\right)\right|=m+n+2$ and $\left|E\left(K_{1, m} \cup K_{1, n}\right)\right|=$ $m+n$.
We define a bijection $f: V\left(K_{1, m} \cup K_{1, n}\right) \rightarrow$ $\{0,1, \ldots, m+n+1\}$ by
$f(u)=0$.
$f\left(u_{i}\right)=i ; 1 \leq i \leq m$.
$f(v)=m+n+1$.
$f\left(v_{i}\right)=m+i ; 1 \leq i \leq n$.
Let $f^{*}: E\left(K_{1, m} \cup K_{1, n}\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+$ $(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(K_{1, m} \cup K_{1, n}\right)$.

Injectivity for edge labels:

As f is strictly increasing(for increasing values of i) we get $\left\{f^{*}\left(u u_{i}\right) ; 1 \leq i \leq m\right\}$ and $\left\{f^{*}\left(v v_{i}\right) ; 1 \leq i \leq\right.$ $n\}$ are distinct.
Also $\max \left\{f^{*}\left(u u_{i}\right)\right\}=m^{2}>\min \left\{f^{*}\left(v v_{i}\right)\right\}=(2 m+$ $n+2)^{2}$. Therefore f^{*} is injective and hence $K_{1, m} \cup$ $K_{1, n}$ is sum perfect square graph, $\forall m, n \in \mathbb{N}$.

The below illustration provides better idea about the above defined labeling pattern.

Figure 2: Sum perfect square labeling of

$$
K_{1,3} \cup K_{1,4} .
$$

However the authors strongly believe that the union of any two sum perfect square graphs is also a sum perfect square graph. So authors put the following conjecture.

Conjecture 3.6. For any two sum perfect square graphs G and $H, G \cup H$ is sum perfect square.

Theorem 3.7. $m K_{1, n}$ is sum perfect square graph, $\forall m, n \in \mathbb{N}$.

Proof. Let $V\left(m K_{1, n}\right)=\left\{u_{i} ; 1 \leq i \leq m\right\} \cup\left\{v_{i j} ; 1 \leq\right.$ $i \leq m, 1 \leq j \leq n\}$, where $\left\{u_{i} ; 1 \leq i \leq m\right\}$ is the apex vertex of $i^{t h}$ copy of $K_{1, n}$ and $E\left(m K_{1, n}\right)=$ $\left\{u_{i} v_{i j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
$\left|V\left(m K_{1, n}\right)\right|=m(n+1)$ and $\left|E\left(m K_{1, n}\right)\right|=m n$.
We define a bijection $f: V\left(m K_{1, n}\right) \quad \rightarrow$ $\{0,1,2, \ldots, m(n+1)-1\}$ by
$f\left(u_{i}\right)=i-1 ; 1 \leq i \leq m$.
$f\left(v_{i 1}\right)=m+(i-1) n, 1 \leq i \leq m$.
$f\left(v_{i j}\right)=f\left(v_{i 1}\right)+(j-1), 1 \leq i \leq m, 2 \leq j \leq n$.
Let $f^{*}: E\left(m K_{1, n}\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+(f(v))^{2}+$ $2 f(u) \cdot f(v), \forall u v \in E\left(m K_{1, n}\right)$.

Injectivity for edge labels:

As f is increasing (for increasing values of i and j) all $\left\{f^{*}\left(u_{i} v_{i j}\right), 1 \leq i \leq m, 1 \leq j \leq n\right\}$ are distinct. Moreover the largest value of $f^{*}\left(u_{t} v_{t j}\right)$ will be smaller than the smallest value of $f^{*}\left(u_{t+1} v_{(t+1) j}\right)$, $1 \leq t \leq m-1,1 \leq j \leq n$. Hence the induced edge labeling $f^{*}: E\left(m K_{1, n}\right) \rightarrow \mathbb{N}$ is injective and so $m K_{1, n}$ is sum perfect square graph, $\forall n \in \mathbb{N}$.

Theorem 3.8. $m C_{n}$ is sum perfect square graph, $\forall m, n \in \mathbb{N}, n \geq 3$.

Proof. Let $V\left(m C_{n}\right)=\left\{v_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$, and $E\left(m C_{n}\right)=\left\{u_{i j} v_{(i+1) j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$. $\left|V\left(m C_{n}\right)\right|=m n,\left|E\left(m C_{n}\right)\right|=m n$.
We define a bijection $f: V\left(m C_{n}\right) \rightarrow$ $\{0,1,2, \ldots, m n-1\}$ by
$f\left(v_{i j}\right)=\left\{\begin{array}{l}2 i-2+(j-1) n ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil . \\ 2(n-i)+1+(j-1) n ;\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .\end{array}\right.$ and $1 \leq j \leq m$.

Injectivity for edge labels:

For any one copy of $m C_{n}$, it follows from theorem 3.2 [4] that induced edge labels are injective.

Moreover the largest edge label of $t C_{n}$ is smaller than the smallest edge label of $(t+1) C_{n}, 1 \leq t \leq$ $m-1$.
Hence the induced edge labeling $f^{*}: E\left(m C_{n}\right) \rightarrow \mathbb{N}$ is injective.
Therefore $m C_{n}$ is sum perfect square graph, $\forall m, n \in \mathbb{N}, n \geq 3$.

Theorem 3.9. $\operatorname{spl}\left(K_{1, n}\right)$ is sum perfect square graph, $\forall n \in \mathbb{N}$.

Proof. Let $V\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{u, u_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{v, v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(\operatorname{spl}\left(K_{1, n}\right)\right)=\left\{u u_{i} ; 1 \leq i \leq\right.$ $n\} \cup\left\{v v_{i} ; 1 \leq i \leq n\right\} \cup\left\{u v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v u_{i} ; 1 \leq\right.$ $i \leq n\}$.
$\left|V\left(\operatorname{spl}\left(K_{1, n}\right)\right)\right|=2 n+2,\left|E\left(\operatorname{spl}\left(K_{1, n}\right)\right)\right|=4 n$.
We define a bijection $f: V\left(\operatorname{spl}\left(K_{1, n}\right)\right) \rightarrow$ $\{0,1, \ldots, 2 n+1\}$ by
$f(u)=0$.
$f\left(u_{i}\right)=i ; 1 \leq i \leq n$.
$f(v)=2 n+1$.
$f\left(v_{i}\right)=n+i ; 1 \leq i \leq n$.
Let $f^{*}: E\left(\operatorname{spl}\left(K_{1, n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+$ $(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(\operatorname{spl}\left(K_{1, n}\right)\right)$.

Injectivity for edge labels:

We note that $f^{*}\left(u u_{i}\right)$ is increasing for increasing values of $i, 1 \leq i \leq n$ and hence all $f^{*}\left(u u_{i}\right)$ are
distinct. Similarly $f^{*}\left(v v_{i}\right), f^{*}\left(u v_{i}\right)$ and $f^{*}\left(v u_{i}\right)$ are also distinct.
Moveover
(1) $\max \left\{f^{*}\left(u u_{i}\right)\right\} \leq \min \left\{f^{*}\left(v v_{i}\right), f^{*}\left(u v_{i}\right)\right.$, $\left.f^{*}\left(v u_{i}\right)\right\}$.
(2) $\min \left\{f^{*}\left(v v_{i}\right)\right\} \geq \max \left\{f^{*}\left(u v_{i}\right), f^{*}\left(v u_{i}\right)\right\}$.
(3) $\max \left\{f^{*}\left(u v_{i}\right)\right\}<\min \left\{f^{*}\left(v u_{i}\right)\right\}$.
$f^{*}: E\left(\operatorname{spl}\left(K_{1, n}\right)\right) \rightarrow \mathbb{N}$ is injective and hence $\operatorname{spl}\left(K_{1, n}\right)$ is sum perfect square graph, $\forall n \in \mathbb{N}$.

The below illustration provides better idea about the above defined labeling pattern.

Figure 3: Sum perfect square labeling of $\operatorname{spl}\left(K_{1,3}\right)$.
Theorem 3.10. Shadow graph of a star graph $D_{2}\left(K_{1, n}\right)$ is sum perfect square, $\forall n \in \mathbb{N}$.
Proof. Let $V\left(D_{2}\left(K_{1, n}\right)\right)=\left\{u, u_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{v, v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(K_{1, n}\right)\right)=\left\{u u_{i} ; 1 \leq\right.$ $i \leq n\} \cup\left\{u v_{i} ; 1 \leq i \leq n\right\} \cup\left\{v u_{i} ; 1 \leq i \leq n\right\}$. $\left|V\left(D_{2}\left(K_{1, n}\right)\right)\right|=2 n+2$ and $\left|E\left(D_{2}\left(K_{1, n}\right)\right)\right|=3 n$. We define a bijection $f: V\left(D_{2}\left(K_{1, n}\right)\right) \rightarrow$ $\{0,1, \ldots, 2 n+1\}$ by
$f(u)=0$.
$f\left(u_{i}\right)=i ; 1 \leq i \leq n$.
$f(v)=2 n+1$.
$f\left(v_{i}\right)=n+i ; 1 \leq i \leq n$.
Let $f^{*}: E\left(D_{2}\left(K_{1, n}\right)\right) \rightarrow \mathbb{N}$ be the induced edge labeling function defined by $f^{*}(u v)=(f(u))^{2}+$ $(f(v))^{2}+2 f(u) \cdot f(v), \forall u v \in E\left(D_{2}\left(K_{1, n}\right)\right)$.

Injectivity for edge labels:

We note that $f^{*}\left(u u_{i}\right)$ is increasing for increasing values of $i, 1 \leq i \leq n$ and hence all $f^{*}\left(u u_{i}\right)$ are distinct. Similarly $f^{*}\left(u v_{i}\right)$ and $f^{*}\left(v u_{i}\right)$ are also distinct.
Moveover
(1) $\max \left\{f^{*}\left(u u_{i}\right)\right\}<\min \left\{f^{*}\left(u v_{i}\right), f^{*}\left(v u_{i}\right)\right\}$.
(2) $\max \left\{f^{*}\left(u v_{i}\right)\right\}<\min \left\{f^{*}\left(v u_{i}\right)\right\}$.
$f^{*}: E\left(D_{2}\left(K_{1, n}\right)\right) \rightarrow \mathbb{N}$ is injective. Hence $D_{2}\left(K_{1, n}\right)$ is sum perfect square graph, $\forall n \in \mathbb{N}$.

The below illustration provides better idea about the above defined labeling pattern.

Figure 4 : Sum perfect square labeling of $D_{2}\left(K_{1,4}\right)$.

4 Conclusion

In this paper several sum perfect square graphs have been found in context of the graph operations, which are union of graphs, splitting of a graph and shadow graph. A conjecture has been posed related to union of any two sum perfect square graphs.

5 Acknowledgement

Authors are quite thankful to the anonymous referees for their valuable suggestions and remarks.

References

[1] F. Harary, Graph theory, Addision-wesley, Reading, MA, (1969).
[2] J. A. Gallian, A dynemic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015), 1-262.
[3] K. A. Germina, R. Sebastian, Further Results on Square Sum Graph, International Mathematical Forum, 8(2013), 47-57.
[4] S. G. Sonchhatra, G. V. Ghodasara, Sum Perfect Square Labeling of Graphs, International Journal of Scientific and Innovative Mathematical Research, 4(2016), 64-70.
[5] S. G. Sonchhatra, G. V. Ghodasara, Snakes Related Sum Perfect Square Graphs, International Journal of Mathematics And its Applications, 4(2016), 157-168.
[6] S. G. Sonchhatra, G. V. Ghodasara, Some New Sum Perfect Square Graphs, International Journal of Pure \& Applied Mathematics, volume 113, issue 3(2017), 489-499.

