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Abstract

Algebra is largely concerned with the study of abstract sets endowed

with one or more binary operation. In this paper, an algebraic structure

known as ”SP-RING”, which is an extension of SP-Algebra has been in-

troduced. The definition of SP-Ring, integral domain, some theorems,

lemmas, properties and unique factorization theorem are also defined and

discussed briefly.
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1 Introduction

In 1978 K.Iseki and S.Tanaka[4] introduced the concept of BCK-Algebra. K.iseki[5]

introduced BCI-Algebra in 1980. The class of BCK-algebra is a proper subclass

of BCI-algebra. Many authors introduced various algebras like d-algebra, TM-

algebra, PS-algebra and Ku-algebra etc. M.Mullai and K.Shanmuga Priya[9]
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introduced a new notion of algebra known as ”SP-Algebra”, which is the gener-

alization of BCK Algebra. In this paper, SP-Algebra is extended to ”SP-RING”.

Some theorems, corollary, lemmas, Euclidean domain and Unique Factorization

theorem are also established with suitable examples.

2 Preliminaries

Definition 2.1 [9] An Algebra(X, ∗, e) of type (2,0) is said to be SP-Algebra if

i). x ∗ x=e.

ii). x ∗ e=x.

iii). if x ∗ y = e and y ∗ x = e, then x = y, where ∗ is called a binary operation

and e is any constant.

Definition 2.2 [9] A SP-Algebra (X, ∗, e) is said to be abelian if a ∗ b = b ∗ a, ∀
a, b ∈ X and a SP-Algebra which is not abelian is called non-abelian SP-Algebra.

Definition 2.3 [9] Let X be a SP-Algebra and S is a subset of X. Then S is a

SP-Subalgebra of X under the same operation defined on X if

i). S is non empty.

ii). ∀ a,b ∈ S, a ∗ b ∈ S.

Definition 2.4 [9] Let Zn = 0,1,2,......,n-1 and x, y ∈ Zn. Define x 	y as,

x 	y =

(x− y) if x− y ≥ 0

−(x− y) if otherwise.

The binary operation 	 is called subtraction modulo n.

3 SP-Ring

Definition 3.1 A non-empty set X together with two binary operations ’∗’ and

’∆’, is called SP-Ring, if it satisfies the following axioms:

i) (X, ∗) is a SP-Algebra.
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ii) ’∆’ is associative on X.

iii) a ∆ (b ∗ c) = (a ∆ b)∗(a ∆ c).

iv) (a ∗ b)∆ c = (a ∆ c)∗(b ∆ c), ∀ a, b, c ∈ X.

Example 3.2 (R, -, .) and (Z, -, .) are SP-Rings.

Definition 3.3 A SP-Ring is said to be commutative or abelian, if ∀ a,b ∈ X

i) a ∗ b = b ∗ a.

ii) a ∆ b = b ∆ a.

Example 3.4 (Zn, 	, �) is a commutative SP-Ring.

Result 3.5 For any SP-Ring (X, ∗, ∆), c ∆(a ∗ b)∆ d = (c ∆ a ∆ d)∗(c ∆ b

∆ d), ∀ a,b,c,d ∈ X.

Definition 3.6 Let (X, ∗, ∆) be a SP-Ring. X is called a SP-Ring with constant

if there exists e
′ ∈ X such that x ∆ e

′
= x, ∀ x ∈ X.

Example 3.7 (Z, -, .) is a SP-Ring with constant 1.

Theorem 3.8 In every abelian SP-Ring, cancellation laws hold.

(i.e) if a ∆ b = a ∆ c and b ∆ a = c ∆ a then b = c.

Proof:

(a) Right cancellation law:

Let b ∆ a = c ∆ a.

=⇒ b ∆ a ∆ a = c ∆ a ∆ a

=⇒ b ∆ e
′

= c ∆ e
′

=⇒ b = c

(b) Left cancellation law:

Let a ∆ b = a ∆ c

Since ∆ is commutative b ∆ a = c ∆ a

=⇒ b = c.

Therefore in every abelian SP-Ring, cancellation laws hold.
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Theorem 3.9 Let (X,∗,∆) be a SP-Ring with constant e
′
. Then the set of all

elements satisfying x ∆ x = e
′

is a SP-Algebra under ∆.

Proof:

Given X is a SP-Ring with constant e
′
.

Let S be a set of all elements satisfying x ∆ x = e
′

To prove that S is SP-Algebra under ∆, the following conditions are satisfied by

the hypothesis.

i) x ∆ x = e
′

ii)x ∆e
′

= x.

It is enough to prove that, if x ∆ y = e
′

and y ∆ y = e
′

, then x = y.

Since, x ∆ x = e
′
, y ∆ y = e

′
, x ∆ y = x ∆ x and y ∆ x = y ∆ y

=⇒ x ∆ y = x ∆ x

=⇒ (x ∆ y) ∆ y = (x ∆ x) ∆ y

=⇒ x ∆( y ∆ y) = (y ∆ y) ∆ y

=⇒ x ∆e
′

= y ∆(y ∆ y)

=⇒ x = y ∆ e
′

=⇒ x = y

Hence, (S, ∆, e
′

) is SP-Algebra.

4 Integral Domain

Definition 4.1 A SP-Ring (X, ∗, ∆) is called integral domain if it has a con-

stant e
′

and the set of all elements satisfying x ∆ x = e
′

is a SP-Algebra under ∆.

Example 4.2 X = (Z, -, .) is an integral domain if S = {1,-1}. Here (S, ., 1)

forms SP-Algebra under multiplication.

Definition 4.3 An integral domain (X, ∗, ∆) is called ordered integral domain

if X contains a subset S with the following properties:

i) ∀ a, b ∈ S =⇒ a ∗ b ∈ S.

i) ∀ a, b ∈ S =⇒ a ∆ b ∈ S.
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iii) ∀ a, b ∈ S, a < b or a = b or a > b.

Example 4.4 Consider (Z, -, .) is an integral domain. Then, Z is an ordered

integral domain if S=(nZ, -, .).

Definition 4.5 Let (X, ∗, ∆) be an abelian SP-Ring and a, b ∈ X, a 6= 0. a

divides b [write a/b], if there exists an element c ∈ X such that b = a ∆ c.

Example 4.6 i) In (Z, -, .), 5/15 since 15 = 5 × 3.

But in (5Z, -, .), 5 does not divide 15, since there is no 3 ∈ 5Z such that 15 = 5

× 3.

ii)In (Z8, 	, �), 4 = 2 � 2 =⇒ 2/4.

Definition 4.7 Let (X, ∗, ∆) be an abelian SP-Ring and a, b are two non-zero

elements of X. Then, a and b are said to be associates if a/b and b/a.

Example 4.8 i)In (Z, -, .), every a and -a are associates.

ii)In (Z8, 	, �), 2 and 6 are associates, since 2 = 6 � 3 =⇒ 6/2

6 = 2 � 3 =⇒ 2/6.

Theorem 4.9 In any commutative SP-Ring (X,∗,∆), an element e
′ ∈ X satifying

x∆e
′

= x is unique.

Proof:

To prove: e
′

is unique

(i.e) to prove e
′

= e
′′
,

Suppose, there exists e
′′ ∈ X such that x ∆ e

′′
= x

Since, x ∆ e
′

= x and x ∆e
′′

= x, we have x ∆ e
′

= x ∆ e
′′

=⇒ x ∆(x ∆ e
′
) = x ∆(x ∆ e

′′
)

=⇒ (x ∆ x)∆ e
′

= (x ∆ x) ∆ e
′′

Consider e
′

as a constant. Then

e
′
∆e

′
= e

′
∆e

′′

=⇒ e
′

= e
′
∆e

′′

Consider e
′′

as a constant. Then

e
′′

∆ e
′

= e
′′

∆ e
′′

=⇒ e
′′

∆ e
′

= e
′′

Since ∆ is commutative, then we have e
′

∆ e
′′

= e
′′

Hence, e
′

= e
′′
.
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Theorem 4.10 Let (X, ∗, ∆) be an integral domain with commutative property

and the non-zero elements a and b are associates. Then their constants satisfying

a = b ∆ c1 and b = a ∆c2 are equal.

Proof:

Given X is an integral domain with commutative property a/b and b/a, since a

and b are associates.

Therefore by definition, there exist c1 and c2 ∈ X such that

a = b ∆ c1 and b = a ∆ c2

=⇒ a = b ∆ c1

=⇒ a = (a ∆ c2) ∆ c1 = a ∆ (c2 ∆ c1)

=⇒ (c2 ∆ c1) = e
′
, by theorem 4.9

=⇒ c2 = c1.

Theorem 4.11 Let (X, ∗, ∆) be an abelian SP-Ring. In X-{0}, we define a ∼
b if a and b are associates then prove that ∼ is an equivalence relation.

Proof:

Given X is an abelian SP-Ring with constant e
′
.

In X-{0}, define a ∼ b = a/b and b/a.

To prove: ∼ is an equivalence relation

i)Reflexive:

Clearly, for every a ∈ X,

a ∆ e
′

= a

=⇒ a/a

Therefore a ∼ a.

ii)Symmetric:

Let a ∼ b.Then a/b and b/a

=⇒ b/a and a/b

=⇒ b ∼ a

iii)Transitive:

Let a ∼ b and b ∼ c.

Now,

a ∼ b =⇒ a/b and b/a

and

b ∼ c =⇒ b/c and c/b.
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Also,

a/b and b/a =⇒ there exist c1 c2 ∈ X such that a = b ∆ c1 and b = a ∆ c2.

b/c and c/b =⇒ there exist c3 and c4 ∈ X such that b = c ∆ c3 and c = b ∆ c4.

Then, a = b ∆ c1

a=(c ∆ c3) ∆ c1

a=c ∆ (c3 ∆ c1)

=⇒ a/c.

Similarly,

c = b ∆ c4

=⇒ c = (a ∆ c2)∆ c4

=⇒ c = a ∆(c2 ∆ c4)

=⇒ c/a

=⇒ ’∼’ is transitive

Hence ’∼’ is equivalence relation.

Definition 4.12 Let a, b ∈ X. Then d ∈ X is said to be a greatest common

divisor of a and b if i) d/a and d/b.

ii)whenever c/a and c/b then c/d.

It can be written as d = (a,b).

Definition 4.13 If a, b ∈ (X, ∗, ∆) and d is the greatest common divisor of a

and b, then there exist s, t ∈ X such that (a ∗ s)∆(b ∗ t) = d.

Definition 4.14 Let (X, ∗, ∆) be a SP-Ring. If a, b ∈ X are relatively prime,

then (a,b) = e
′
.

Definition 4.15 An integral domain (X, ∗, ∆) is said to be an Euclidean domain

if for every non zero a in X, there is a non-negative integer d(a) such that

i) ∀ a, b ∈ X(a 6= 0 and b 6= 0), d(a) ≤ d(a∆b).

ii) For any a, b ∈ X,(a 6= 0 and b 6= 0),there exist t, r ∈ X such that

a = (t ∆ b)∗ r, either r = 0 or d(r) < d(b).
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Example 4.16 (Z, -, .) is an Euclidean domain, where d(a) = a2.

Proof:

d(a∆b) = d(a.b) (1)

= (ab)2

= a2.b2 ≥ a2

= d(a)

d(a∆b) = d(a)

Let a, b be two non-zero elements of Z.

Let q be the quotient and r be the -(remainder of a/b).

Then, a = (q ∆ b)∗ r = q.b-r, and d(r) = r2,

which is positive for all r, where r = 0 or d(r) < d(b).

Definition 4.17 In an Euclidean domain (X, ∗, ∆), an element a ∈ X is said

to be prime if ’a’ cannot be expressed as a = b∆c, where b, c 6= e
′ ∈ X, and e

′
is

constant in X corresponding to ∆.

Example 4.18 In (Z, -, .), every prime number is prime element.

Definition 4.19 Let a 6= 0 and b are in an abelian SP-Ring (X, ∗, ∆). Then, a

divides b(a/b) if there exists an element c ∈ X such that b = a∆c.

Problem 4.20 1.If a/b and b/c, then a/c.

a/b =⇒ there exist a constant u1 ∈ X such that b = a∆u1.

b/c =⇒ there exist a constant u2 ∈ X such that c = b∆u2.

Then,

c = (a∆u1)∆u2 (2)

= a∆(u1∆u2)

c = a∆u,whereu = u1∆u2

=⇒ a/c.
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Problem 4.21 If a/b and a/c, then a/(b∗c).

Solution: Given a/b =⇒ there exist a constant u1 such that b = a ∆ u1.

Given a/c =⇒ there exist a constant u2 such that c = a ∆ u2.

Then,

b ∗ c = (a∆u1) ∗ (a∆u2) (3)

= a∆(u1 ∗ u2)
b ∗ c = a∆u

=⇒ a/(b∗c).

Theorem 4.22 Let (X, ∗, ∆) be an Euclidean domain with commutative prop-

erty. Suppose that p, a, b ∈ X, p/(a∆b) and (p,a) = e
′
, then p/b.

Proof:

Given (X, ∗, ∆) is an Euclidean domain and p/(a ∆ b) and p does not divide a.

Since, p/(a ∆ b), there exists c ∈ X such that a ∆ b = p∆c

Given (p,a) = e
′
.Then, there exist s, t ∈ X such that (p ∆ s)∗(a ∆ t) = e

′

b ∆[(p ∆ s)∗(a ∆ t)] = b ∆ e
′

=⇒ (b ∆ p ∆ s)∗(b ∗ a ∆t) = b ∆ e
′

=⇒ (p ∆ b ∆ s)∗(a ∗ b ∆ t) = b ∆ e
′

= b

=⇒ (p ∆ b ∆ s)∗(p ∗ c ∆ t) = b

=⇒ p ∆[(b ∆ s)∗(c ∆ t) = b

=⇒ p/b.

Lemma 4.23 Let P be a prime element in an Euclidean domain(X, ∗, ∆). If

p/(a ∆ b) where a, b ∈ X, then p divides either a or b.

Corollary 4.24 If p is a prime element in an Euclidean domain (X, ∗, ∆) and

p/(a1 ∆ a2 ....∆ an), then p divides atleast one ai.

Lemma 4.25 Let (X, ∗, ∆) be an Euclidean domain and a, b ∈ X. If b is not a

constant satisfying x ∆ b = x, ∀ x ∈ X, then d(a) < d(a ∆ b).

Proof:

Given (X, ∗, ∆) is an Euclidean domain.
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Let a,b ∈ X.

By the first condition of Euclidean domain,

d(a) ≤ d(a ∆ b)

Now,

x ∆ b = x, ∀ x, since b is not constant

=⇒ a ∆ b 6= a

=⇒ d(a ∆ b) 6= d(a)

=⇒ d(a) < d(a ∆ b).

Lemma 4.26 Let (X, ∗, ∆) be an Euclidean domain with d(e
′
) = d(1) and X is

abelian SP-Algebra under ∆. Every element in X can be either a constant e
′

in

X or can be written as the product of a finite number of prime elements in X.

Proof:

It can be proved by induction on d(a).

If d(a)= d(e
′
), a is the constant element e

′
in X.

Assume that, this is true for all elements in X satisfying d(x) < d(a)

To prove it for ’a’:

Suppose ’a’ is a prime, there is nothing to prove.

If not, ’a’ can be written as a = b ∆ c, where b and c are not constants in X.

=⇒ d(a) = d(b∆c)

Then by definition of Euclidean domain,

d(b) ≤ d(b ∆ c)

Also, d(b) < d(b ∆ c), d(c) < d(c ∆ b), since ’c’ is not constant.

d(c) < d(b ∆ c) = d(a), since ∆ is commutative.

=⇒ d(c) < d(a)

=⇒ d(b) < d(a)

By our induction hypothesis, b and c can be written as the product of prime

elements.

(i.e) b = b1 ∆ b2.......∆ bn, where bi are prime elements and c= c1 ∆ c2.......∆

cn, where ci are prime elements in X.

We know that, a = b∆c = (b1 ∆ b2.......∆ bn)∆ (c1 ∆ c2.......∆ cn).

Therefore, ’a’ can be written as the product of finite number of prime elements.

Theorem 4.27 UNIQUE FACTORIZATION THEOREM

Let (X,∗, ∆) be an Euclidean domin with commutative property and a 6= 0 be a

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 46 Number 2 June 2017

lalitha
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                              Page 75



11

non-constant in X. If a = π1 ∆ π2......∆ πr = π
′
1 ∆ π

′
2......∆ π

′
s, where πi and

π
′
j are prime elements of X,

then r = s and each πi is an associates of some π
′
j, where 1 ≤ i ≤ r, 1 ≤ j

′ ≤ s.

Proof:

Given (X, ∗, ∆) is an Euclidean domain and a = π1 ∆ π2......∆ πr = π
′
1 ∆

π
′
2......∆ π

′
s,

where πi and π
′
j are prime elements of X.

π
′
1 ∆ π

′
2...∆ π

′
s = π1∆(π2...∆πr).

=⇒ π1/(π
′
1 ∆ π

′
2......∆ π

′
s)

Also, π1/some π
′
j (by corollary 4.25)

Without loss of generality, assume that π1/π
′
1

Since π1 and π
′
1 are both prime elements of X, π1 and π

′
1 must be associates.

=⇒ π
′
1 = π1 ∆ u1, where u1 ∈X.

Eqn(4) =⇒ π1 ∆ u1 ∆ π
′
2 ... ∆ π

′
s = π1 ∆ (π2... ∆ πr)

=⇒ π2......∆ πr = u1 ∆ π
′
2......∆ π

′
s

Now if r < s, then repeating the above process r times,the left side become e
′

and

right side contains the product of some prime elements.

Which is a contradiction to our assumption.

Therefore, r ≥ s

Similarly, s ≤ r

=⇒ s = r

Also every πi associates with some π
′
j and conversly, since each πi/π

′
j and πi and

π
′
j are prime elements.

5 Conclusion

In this paper, the concept of SP-Ring is introduced with examples. Also, some

properties of SP-Ring, Integral and ordered integral domains, theorems and

Unique Factorization Theorem are established. In future, using the concept of

SP-Ring Polynomials in SP-Ring will be extented with suitable examples.
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