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Abstract

Normally, Minimal Spanning Tree algorithm is used to find the shortest route in a network.
Neutrosophic set theory is used when incomplete, inconsistancy and indeterminacy occurs. In
this paper, Bipolar Neutrosophic Numbers are used in Minimal Spanning Tree algorithm for
finding the shortest path on a network when the distances are inconsistant and indeterminate
and it is illustrated by a numerical example.
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1 Introduction

In 1965, Zadeh[23] introduced the concept of fuzzy set in order to deal with uncertainity. After
that, Atanassov[1]incorporated the degree of non-membership in the concept of fuzzy set as an in-
dependent component and defined the concept of intuitionistic fuzzy set. Smarandache [18] coined
the term degree of indeterminacy as an independent component and defined the concept of neutro-
sophic set to deal with incomplete, indeterminate and inconsistent information instead in reality.
Neutrosophic set is a generalization of the theory of fuzzy set, intuitionistic fuzzy set. Neutrosophic
set theory is used in many fields when incomplete, inconsistant or indeterminacy occurs. In a
Neutrosophic logic, a proposition has a degree of truth (T), a degree of indeterminancy (I), and a
degree of falsity (F), where T, I, F are standard or non-standard subsets of ]- 0, 1 + [. Neutrosophic
theory is very useful to the researchers for finding better solutions for real world problems when
incomplete and inconsistant datas are given.
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2 Preliminaries

Definition 2.1 [17-18] Let X be a space of points (objects) with generic elements in X denoted
by x. Then the Neutrosophic Set A is an object having the form A={< x : TA(x), IA(x), FA(x) >
, xεX}, where the function T, I, F : X →]−0, 1+[ define respectively the truth-membership function,
an indeterminacy membership-function, and a falsity-membership function of the element xεX to
the set A with the condition:
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. The function TA(x), IA(x) and FA(x) are real standard or
nonstandard subsets of ]−0, 1+[.

Definition 2.2 [23] Let X be a space of points (objects) with generic elements in X denoted
by x. A Single Valued Neutrosophic Set A is characterized by truth-membership function TA(x),
an indeterminacy-membership function IA(x) and a falsity-membership function FA(x). For each
point x in X TA(x), IA(x), FA(x) ε[0, 1]. A Single Valued Neureosophic Set A can be written as
A = {< x : TA(x), IA(x), FA(x) >, x ∈ X}.

Definition 2.3 [1] A Bipolar Neutrosophic Set A in X is defined as an object of the form A =
{< x : T p(x), Ip(x), F p(x), T n(x), In(x), F n(x) >: xεX}, where T p, Ip, F p : X → [0, 1] and
T n, In, F n : X → [−1, 0]. The positive membership degree T p(x), Ip(x), F p(x) denotes the truth
membership, indeterminate membership and false membership of an element belongs to X corre-
sponding to a bipolar neutrosophic set A and the negative membership degree T n(x), In(x), F n(x)
denotes the truth membership, indeterminate membership and false membership of an element be-
longs to X to some implicit counter-property corresponding to a Bipolar Neutrosophic Set A.

Definition 2.4 [8] Let
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Definition 2.5 [8]. In order to make a comparisons between two BNNs, the score function
is applied to compare the grades of BNNs. This function shows that greater is the value, the
greater is the Bipolar Neutrosophic Sets and by using this concept paths can be ranked. Let Ã =<
T p, Ip, F p, T n, In, F n > be a bipolar neutrosophic number. Then, the score function s(Ã),

accuracy function a(Ã) and certainty function c(Ã) of a BNN are defined as follows:

(i)s(Ã) = (
1

6
)[T p + 1− Ip + 1− F p + 1+

T n − In − F n]

(ii)a(Ã) = T p − F p + T n − F n

(iii)c(Ã) = T p − F n

3 Bipolar Neutrosophic Minimal Spanning Tree Algorithm:

The Minimal spanning tree algorithm in [10] deals with linking the nodes of a network, directly
or indirectly, using the shortest length of connecting branches. A typical application occurs in the
construction of paved roads that link several rural towns. The road between two towns may pass
through one or more towns. The most economical design of the road system calls for minimizing
the total miles of paved roads, a result that is achieved by implementing the minimal spanning tree
algorithm. When it is not possible to identify the distances between two places accurately, neu-
trosophic theory is used in that situation. Here, we introduce the concept of Bipolar Neutrosophic
numbers as distances(lengths) in Minimal Spanning Tree algorithm to find the shortest route in a
network.
The procedure is given as follows.
Let N = {1, 2, ...., n} be the set of nodes of the network and define

C̃k = Set of nodes that have been permanently connected at iteration k

C̃k = Set of nodes as yet to be connected permanently after iteration k
Step 0:

Set C̃0 = φ and C̃0 = N
Step 1:

Start with any node i in the unconnected set C̃0 and set C̃0 = {i} which renders C̃0 = N − {i}.
Set k = 2.
General Step k:

Select a node j∗, in the unconnected set C̃k−1 by using score function s(Ã) in definition 2.5.

Link j∗ permanently to C̃k−1 and remove it from C̃k−1;

C̃k = vCk−1 + {j∗}, vCk
= C̃k−1 − {j∗}

If the set of unconnected nodes, C̃k, is empty, Stop.
Otherwise, set k=k+1 and repeat the step.

This algorithm is illustrated by the following numerical example:
Numerical Example:
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Consider a small network shown in the following figure in which each arc length is represented by a
Bipolar Neutrosophic Number. This problem is to find the shortest path between source node and
destination node on the given network.

Solution:
Iteration 0:
Set C̃0 = φ and C̃0 = N.
Iteration 1:
Let C̃1 = {1} and C̃1 = {2, 3, 4, 5, 6}
s(< 0.7, 0.6, 0.5, −0.1, −0.2, −0.3 >)

= (1
6
)× (4.2− 1.2)

= 0.5
s(< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >)
= (1

6
)× (4.2− 0.7)

= 0.583
minimum{< 0.7, 0.6, 0.5, −0.1, −0.2, −0.3 >,
< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >}
=< 0.7, 0.6, 0.5, −0.1, −0.2, −0.3 > .

Iteration 2:

Let C̃2 = {1, 2} and C̃2 = {3, 4, 5, 6}
s(< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >)
= (1

6
)× (4.2− 0.7)

= 0.583
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s(< 0.1, 0.2, 0.3, −0.3, −0.4, −0.2 >)
= (1

6
)× (3.7− 0.8)

= 0.48
s(< 0.5, 0.3, 0.4, −0.2, −0.4, −0.6 >)
= (1

6
)× (4.5− 0.9)

= 0.6
minimum{< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >,
< 0.1, 0.2, 0.3, −0.3, −0.4, −0.2 >,
< 0.5, 0.3, 0.4, −0.2, −0.4, −0.6 >}
=< 0.1, 0.2, 0.3, −0.3, −0.4, −0.2 > .

Iteration 3:
Let C̃3 = {1, 2, 3} and C̃3 = {4, 5, 6}
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s(< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >)
= (1

6
)× (4.2− 0.7)

= 0.583
s(< 0.5, 0.3, 0.4, −0.2, −0.4, −0.6 >)
= (1

6
)× (4.5− 0.9)

= 0.6
s(< 0.3, 0.4, 0.1, −0.3, −0.5, −0.5 >)
= (1

6
)× (3.9− 0.8)

= 0.51
s(< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >)
= (1

6
)× (4.4− 1.1)

= 0.55
s(< 0.1, 0.3, 0.5, −0.4, −0.3, −0.5 >)
= (1

6
)× (3.9− 1.2)

= 0.45
minimum{< 0.2, 0.3, 0.1, −0.3, −0.4, −0.6 >,
< 0.5, 0.3, 0.4, −0.2, −0.4, −0.6 >,
< 0.3, 0.4, 0.1, −0.3, −0.5, −0.5 >,
< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >,
< 0.1, 0.3, 0.5, −0.4, −0.3, −0.5 >}
=< 0.1, 0.3, 0.5, −0.4, −0.3, −0.5 >.

Iteration 4:
Let C̃4 = {1, 2, 3, 4} and C̃4 = {5, 6}

s(< 0.3, 0.4, 0.1, −0.3, −0.1, −0.5 >)
= (1

6
)× (3.9− 0.8)

= 0.51
s(< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >)
= (1

6
)× (4.4− 1.1)

= 0.55
s(< 0.4, 0.5, 0.2, −0.3, −0.4, −0.6 >)
= (1

6
)× (4.4− 1)

= 0.566
minimum{< 0.3, 0.4, 0.1, −0.3, −0.1, −0.5 >,
< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >,
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< 0.4, 0.5, 0.2, −0.3, −0.4, −0.6 >}
=< 0.3, 0.4, 0.1, −0.3, −0.1, −0.5 >.

Iteration 5:
Let C̃5 = {1, 2, 3, 4, 5} and C̃5 = {6}

s(< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >)
= (1

6
)× (4.4− 1.1)

= 0.55
s(< 0.4, 0.5, 0.2, −0.3, −0.4, −0.6 >)
= (1

6
)× (4.4− 1)

= 0.566
s(< 0.2, 0.4, 0.7, −0.2, −0.5, −0.6 >)
= (1

6
)× (4.3− 1.3)

= 0.5
minimum{< 0.4, 0.3, 0.6, −0.2, −0.4, −0.6 >,
< 0.4, 0.5, 0.2, −0.3, −0.4, −0.6 >,
< 0.2, 0.4, 0.7, −0.2, −0.5, −0.6 >}
=< 0.2, 0.4, 0.7, −0.2, −0.5, −0.6 >.

Finally, Bipolar Neutrosophic Minimal spanning tree is

Hence,
< 0.7, 0.6, 0.5, −0.1, −0.2, −0.3 > +
< 0.1, 0.2, 0.3, −0.3, −0.4, −0.2 >+
< 0.3, 0.4, 0.1, −0.3, −0.1, −0.5 >+
< 0.1, 0.3, 0.5, −0.4, −0.3, −0.5 >+
< 0.2, 0.4, 0.7, −0.2, −0.5, −0.6 >
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=< 0.8299, 0.0144, 0.0375, −0.0036, −0.6976, −0.86 >+
< 0.2, 0.4, 0.7, −0.2, −0.5, −0.6 >
=< 0.86392, 0.00576, 0.02625, −0.00072, −0.8488, −0.944 >.
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