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1. INTRODUCTION 

 In mid-Seventeenth century, Newton and Leibniz created classical calculus considering the deviations 

by difference, i.e. as (𝑥 + 𝑕) − 𝑓(𝑥) . In 1967 Michael Grossman and Robert Katz created the first system of 

non-Newtonian calculus [10] and is called “Multiplicative Calculus” or exponential calculus considering the 

deviation by ratio, i.e. as
𝑓(𝑥+𝑎)

𝑓(𝑎)
. The operations of multiplicative calculus are called as multiplicative derivative 

and multiplicative integral. In 1970 they had created infinite family of non-Newtonian calculi, each of which are 

different from the classical calculus of Newton and Leibniz. 

 

 After Grossman and Katz’s pioneering creation of non-Newtonian calculus, many researches have been 

developing the field of non-Newtonian calculus and its applications. We refer Grossman and Katz [10] , Stanley 

[24] , Bashirov et al. [2, 3], Grossman [9] , K. Boruah and B. Hazarika [13, 14, 15, 16, 17, 18] for elements of 

multiplicative calculus and its applications. An extension of multiplicative calculus to functions of complex 

variables is handled in Bashirov and Riza [1], Uzer [27] ,Bashirov et al. [3] , Çakmak and Başar[5], Tekin and 

Başar [25], Türkmen and Başar [26] . Kadak and Özlük studied the generalized Runge-Kutta method with 
respect to non-Newtonian calculus. Kadak et al [28] studied certain new types of sequence spaces over the Non-

Newtonian Complex Field. 

 

 Geometric calculus is also a type of non-Newtonian calculus. It provides differentiation and integration 

tools based on multiplication instead of addition. Every property in Newtonian calculus has an analog in 

multiplicative calculus. Generally speaking multiplicative calculus is a methodology that allows one to have a 

different look at problems which can be investigated via calculus. In some cases, for example for growth related 

problems, the use of multiplicative calculus is advocated instead of a traditional Newtonian one. 

 

 The main aim of this paper is to discuss about the basic properties of geometric sequences. Before we 

establish new results, we recall the construction of arithmetics generated by different generators and the 
geometric arithmetic, which is the keyword of the whole article. 

2. 𝜶−GENERATOR AND GEOMETRIC REAL FIELD 

 A 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 is a one-to-one function whose domain is the set of real numbers, ℝ and range is a set 

𝐵 ⊂ ℝ. For example, the identity function 𝐼 and the exponential function 𝑒𝑥𝑝 are generators. We consider any 

generator 𝛼 with realm i.e. domain, say, 𝐴 and range 𝐵, by 𝛼 − 𝑎𝑟𝑖𝑡𝑕𝑚𝑒𝑡𝑖𝑐, we mean the arithmetic whose 

operations and ordering relation are defined as follows: 

 

      𝛼 − addition 𝑥+ 𝑦 = 𝛼[𝛼−1(𝑥) + 𝛼−1(𝑦)]

             𝛼 − subtraction 𝑥− 𝑦 = 𝛼[𝛼−1(𝑥) − 𝛼−1(𝑦)]

                  𝛼 − multiplication 𝑥 × 𝑦 = 𝛼[𝛼−1(𝑥) × 𝛼−1(𝑦)]

      𝛼 − division 𝑥/𝑦 = 𝛼[𝛼−1(𝑥)/𝛼−1(𝑦)]

 𝛼 − order 𝑥 < 𝑦 ⇔ 𝛼−1 𝑥 < 𝛼−1 𝑦 .

 

 

for𝑥, 𝑦 ∈ 𝐴, where 𝐴 is a domain of the function 𝛼. 
 

 It is to be noted that each generator generates exactly one arithmetic and each arithmetic is generated 

by exactly one generator. For example, if we choose the exponential function 𝑒𝑥𝑝 as an 𝛼 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 defined 

by 𝛼(𝑥) = 𝑒𝑧  for 𝑥 ∈ ℝ and hence 𝛼−1(𝑥) = ln𝑥, then 𝛼 − 𝑎𝑟𝑖𝑡𝑕𝑚𝑒𝑡𝑖𝑐 turns out to geometric arithmetic as 

follows: 
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geometric addition 𝑥 ⊕ 𝑦 = 𝛼[𝛼−1(𝑥) + 𝛼−1(𝑦)] = 𝑒(ln𝑥+ln𝑦) = 𝑥. 𝑦

         geometric − subtraction 𝑥 ⊖ 𝑦 = 𝛼[𝛼−1(𝑥) − 𝛼−1(𝑦)] = 𝑒(ln𝑥−ln𝑦) =
𝑥

𝑦
,   𝑦 ≠ 0

             geometric − multiplication 𝑥 ⊙ 𝑦 = 𝛼[𝛼−1(𝑥) × 𝛼−1(𝑦)] = 𝑒(ln𝑥×ln𝑦) = 𝑥ln𝑦

 geometric − division 𝑥 ⊘ 𝑦 = 𝛼[𝛼−1(𝑥)/𝛼−1(𝑦)] = 𝑒(ln𝑥÷ln𝑦) = 𝑥
1

ln 𝑦 , 𝑦 ≠ 1.

 

 

Similarly, the identity function generates classical arithmetic. 

 

 It is obvious that ln(𝑥) < ln(𝑦) if 𝑥 < 𝑦 for 𝑥, 𝑦 ∈ ℝ+. That is,  𝑥 < 𝑦 ⇔ 𝛼−1(𝑥) < 𝛼−1(𝑦).  So, 

without loss of generality, we use 𝑥 < 𝑦 instead of the geometric order 𝑥 < 𝑦. 
C. Türkmen and F. Başardefined the sets of geometric integers, geometric real numbers and geometric complex 

numbers ℤ(𝐺),ℝ(𝐺) and ℂ(𝐺), respectively, as follows: 

 
ℤ(𝐺) = {𝑒𝑥 : 𝑥 ∈ ℤ}
ℝ(𝐺) = {𝑒𝑥 : 𝑥 ∈ ℝ} = ℝ^ +∖ {0}

ℂ(𝐺) = {𝑒𝑧 : 𝑧 ∈ ℂ} = ℂ ∖ {0}.
 

 

 If we take extended real number line, then ℝ(𝐺) = [0,∞]. 
(ℝ(𝐺),⊕,⊙)is a field with geometric zero 1 and geometric identity 𝑒, since 

     (1). (ℝ(𝐺), ⊕) is a geometric additive Abelian group with geometric zero 1, 

     (2). (ℝ(𝐺) ∖ {1}, ⊙) is a geometric multiplicative Abelian group with geometric identity 𝑒, 

     (3). ⊙ is distributive over ⊕. 

But (ℂ(𝐺),⊕,⊙) is not a field, however, geometric binary operation ⊙ is not associative in ℂ(𝐺). For, we take 

𝑥 = 𝑒1/4 , 𝑦 = 𝑒4 and 𝑧 = 𝑒(1+𝑖𝜋/2) = 𝑖𝑒. Then 

(𝑥 ⊙ 𝑦) ⊙ 𝑧 = 𝑒 ⊙ 𝑧 = 𝑧 = 𝑖𝑒 

But𝑥 ⊙ (𝑦⊙ 𝑧) = 𝑥 ⊙ 𝑒4 = 𝑒. 
 

 Let us define geometric positive real numbers and geometric negative real numbers as follows: 

ℝ+ 𝐺 =  𝑥 ∈ ℝ 𝐺 : 𝑥 > 1 

ℝ− 𝐺 =  𝑥 ∈ ℝ 𝐺 : 𝑥 < 1 .
 

 

2.1 Some Useful Relations between Geometric Operations and Ordinary Arithmetic Operations: 

For all 𝑥, 𝑦 ∈ ℝ(𝐺) 

• 𝑥 ⊕ 𝑦 = 𝑥𝑦 

• 𝑥 ⊖ 𝑦 = 𝑥/𝑦 

• 𝑥 ⊙ 𝑦 = 𝑥ln𝑦 = 𝑦 ln𝑥  

•  
𝑎

𝑏
 ⊙ 𝑦 =  

𝑎

𝑏
 

ln𝑦

=
𝑎 ln 𝑦

𝑏 ln 𝑦 =
𝑎⊙𝑦

𝑏⊙𝑦
 

• 
𝑎

𝑏
⊙

𝑐

𝑑
=  

𝑎

𝑏
 

ln 
𝑐

𝑑
 

=  
𝑏

𝑎
 
−ln 

𝑐

𝑑
 

=  
𝑏

𝑎
 

ln 
𝑑

𝑐
 

=
𝑏

𝑎
⊙

𝑑

𝑐
 

• 𝑥 ⊘ 𝑦 or 
𝑥

𝑦
𝐺 = 𝑥

1

ln 𝑦 , 𝑦 ≠ 1 

• 𝑥2𝐺 = 𝑥 ⊙ 𝑥 = 𝑥ln𝑥  

• 𝑥𝑝𝐺 = 𝑥ln𝑝−1𝑥  

•  𝑥
𝐺

= 𝑒(ln𝑥)
1
2  
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• 𝑥−1𝐺 = 𝑒
1

log 𝑥  

• 𝑥 ⊙ 𝑒 = 𝑥 and 𝑥 ⊕ 1 = 𝑥 

• 𝑒𝑛 ⊙𝑥 = 𝑥 ⊕ 𝑥⊕. . . . . (upto 𝑛 numberof 𝑥) = 𝑥𝑛  

 𝑥 𝐺 =  

𝑥, if                  𝑥 > 1
1, if                  𝑥 = 1
1

𝑥
, if          0 < 𝑥 < 1.

  

  Thus  𝑥 𝐺 ≥ 1. 

•  𝑥2𝐺
𝐺

=  𝑥 𝐺  

•  𝑒𝑦  𝐺 = 𝑒  𝑦   

•   𝑥 ⊙ 𝑦  𝐺 =  𝑥 𝐺 ⊙   𝑦  𝐺 

•   𝑥 ⊕ 𝑦  
𝐺
≤  𝑥 𝐺 ⊕   𝑦  

𝐺
 

•   𝑥 ⊘ 𝑦  
𝐺

=  𝑥 𝐺 ⊘   𝑦  
𝐺

 

•   𝑥 ⊖ 𝑦  𝐺 ≥  𝑥 𝐺 ⊖   𝑦  𝐺 

• 0𝐺 ⊖ 1𝐺 ⊙  𝑥 ⊖𝑦 = 𝑦⊖ 𝑥 , 𝑖. 𝑒. in short ⊖  𝑥 ⊖𝑦 = 𝑦⊖ 𝑥. 

Further 𝑒−𝑥 =⊖𝑒𝑥  holds for all 𝑥 ∈ ℤ+. Thus the set of all geometric integers turns out to the following: 

 

ℤ(𝐺) = {. . . , 𝑒−3 , 𝑒−2 , 𝑒−1 , 𝑒0 , 𝑒1 , 𝑒2 , 𝑒3 , . . . } = {. . . ,⊖ 𝑒3 ,⊖ 𝑒2 ,⊖ 𝑒, 1, 𝑒, 𝑒2 , 𝑒3 , . . . }. 
 

3. MAIN RESULTS: GEOMETRIC REAL SEQUENCE 

 

 A function whose domain is the set ℕ of natural numbers and range a set of geometric real numbers is 

called a geometric real sequence. We denote geometric real sequence as 𝑆:ℕ → ℝ(𝐺). 
 

 Since, we will discuss about geometric real sequences only, we shall use the term geometric sequence 

to denote geometric real sequence. 

 

 A geometric sequence will be denoted by {𝑆𝑛 }  or {𝑆1 , 𝑆2 , 𝑆3 , . . . , 𝑆𝑛 , . .. } where 𝑛 ∈ ℕ.  Numbers 

𝑆1 , 𝑆2 , 𝑆3 , . .. will be called first term, second term, third term, of the sequence, respectively. As well as the 

ordinary real sequence, all the terms of geometric sequence will be treated as distinct terms although some terms 

are equal in different situations. 

Example of geometric sequence: 

1.      {𝑆𝑛 } = {𝑒(−1)𝑛 , 𝑛 ∈ ℕ}. 
2.      {𝑆𝑛 } = {𝑒𝑛 , 𝑛 ∈ ℕ}. 

3.      {𝑆𝑛 } = {𝑒1+(−1)𝑛 , 𝑛 ∈ ℕ}. 
3.1 Bounds of Geometric Sequence: 

 It is obvious that the set ℝ(𝐺) = ℝ+ ∖ {0} of geometric real numbers is bounded bellow. So, geometric 

sequences are always bounded bellow. A geometric sequence is said to be bounded if it is bounded above. That 

is, a sequence {𝑆𝑛 } is bounded if there exists a real number 𝐾 such that 𝑆𝑛 ≤ 𝐾,∀𝑛 ∈ ℕ. 
 

3.2 G-Convergence of Geometric Sequences: 

Definition:3.1. A geometric sequence {𝑆𝑛 } is said to be convergent to a real number 𝑙 > 0 if for 𝜀 > 1, there 

exists a positive integer 𝑚 depending on 𝜀 such that   𝑆𝑛 ⊖ 𝑙  
𝐺

< 𝜀, for all 𝑛 ≥ 𝑚.In ordinary sense 
𝑙

𝜀
< 𝑆𝑛 < 𝑙𝜀 

for all 𝑛 ≥ 𝑚. 
 In other word, terms of the sequence approach the value 𝑙 by ratio as 𝑛 becomes larger and larger. 

Symbolically, we write 

𝐺 lim
𝑥→𝑎

𝑆𝑛 = 𝑙    or     𝑆𝑛
𝐺
→ 𝑙 
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and we say that the sequence geometrically converges to 𝑙 or G-convergent to 𝑙. 

Since, 
𝑙

𝜀
< 𝑆𝑛 < 𝑙𝜀, for all 𝑛 ≥ 𝑚, hence infinite number of terms lie to the left of 𝑙𝜀 and infinite number of 

terms lie to the right of 
𝑙

𝜀
. 

 

Theorem 3.1.G-convergent sequence are bounded. 

 

Proof. Let the geometric sequence {𝑆𝑛 } converge to 𝑙. Then for given 𝜀 > 1, there exists a positive integer 𝑚 

such that 
𝑙

𝜀
< 𝑆𝑛 < 𝑙𝜀, for all 𝑛 ≥ 𝑚. Now, since 𝜀 > 1 and 𝑙 > 0, hence 

𝑙

𝜀
 and 𝑙𝜀 are finite numbers. Let 

𝐿 = min{ 
𝑙

𝜀
, 𝑆1 , 𝑆2 , . . , 𝑆𝑚−1}.

𝑈 = max{𝑙𝜀, 𝑆1 , 𝑆2 , . . , 𝑆𝑚−1}.
 

Then, 𝐿 ≤ 𝑆𝑛 ≤ 𝑈, for all 𝑛 ≥ 𝑚. Hence the sequence is bounded. 

 

Theorem 3.2.Boundedness need not imply geometric convergence. 

Proof. Let us consider the sequence {𝑆𝑛 }, where 𝑆𝑛 = 𝑒(−1)𝑛 , 𝑛 ∈ ℕ such that𝑆𝑛
𝐺
→ 𝑙. Then for 𝜀 = 𝑒, ∃𝑚 ∈ ℕ, 

such that 
𝑙

𝜀
< 𝑆𝑛 < 𝑙𝜀∀𝑛 ≥ 𝑚

⇒
𝑙

𝑒
< 𝑒(−1)𝑛 < 𝑙𝑒

⇒
𝑙

𝑒
< 𝑒(−1)2𝑚

< 𝑙𝑒    and  
𝑙

𝑒
< 𝑒(−1)2𝑚−1

< 𝑙𝑒

⇒
𝑙

𝑒
< 𝑒 < 𝑙𝑒    and  

𝑙

𝑒
< 𝑒−1 < 𝑙𝑒

⇒
𝑙

𝑒2
< 1 < 𝑙    and  𝑙 < 1 < 𝑙𝑒2

⇒   1 < 𝑙    and     𝑙 < 1

 

 

which is impossible at the same time. Hence, the sequence is not convergent. 

Also, it can be proved that a geometric sequence can not G-converse to more than one limits. 

3.3 G-Limit of a Function: 

 According to Grossman and Katz [10], geometric limit of a positive valued function defined in a 

positive interval is same to the ordinary limit. We have defined 𝐺-limit of a function with the help of geometric 

arithmetic in as follows: 

 A function 𝑓, which is positive in a given positive interval, is said to tend to the limit 𝑙 > 0 as 𝑥 tends 

to 𝑎 ∈ ℝ, if, corresponding to any arbitrarily chosen number 𝜀 > 1, however small(but greater than 1), there 

exists a positive number 𝛿 > 1, such that 

1 <   𝑓(𝑥) ⊖ 𝑙  
𝐺 < 𝜀 

 

for all values of 𝑥 for which 1 <  𝑥 ⊖ 𝑎 𝐺 < 𝛿. We write 

𝐺 lim
𝑥→𝑎

f(x) = 𝑙    or  f(x)
𝐺
→ 𝑙. 

Here, 

 𝑥 ⊖ 𝑎 𝐺 < 𝛿 ⇒   
 𝑥

𝑎 
  
𝐺

< 𝛿

⇒
1

𝛿
<

𝑥

𝑎
< 𝛿

⇒
𝑎

𝛿
< 𝑥 < 𝑎𝛿.

 

Similarly,   𝑓(𝑥) ⊖ 𝑙  
𝐺

< 𝜀 ⇒
𝑙

𝜀
< 𝑓(𝑥) < 𝑙𝜀. 

 

 Thus, in ordinary sense, f(x)
𝐺
→ 𝑙means that for any given positive real number 𝜀 > 1,no matter 

however closer to 1, ∃ a finite number 𝛿 > 1 such that 𝑓(𝑥) ∈]
𝑙

𝜀
, 𝑙𝜀[ for every 𝑥 ∈]

𝑎

𝛿
, 𝑎𝛿[.It is to be noted that 

lengths of the open intervals ]
𝑎

𝛿
, 𝑎𝛿[ and ]

𝑙

𝜀
, 𝑙𝜀[ decreases as 𝛿 and 𝜀 respectively decreases to 1. Therefore, as 𝜀 
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decreases to 1, 𝑓(𝑥) becomes closer and closer to 𝑙, as well as 𝑥 becomes closer and closer to 𝑎 as 𝛿 decreases to 

1. Hence, 𝑙 is also the ordinary limit of 𝑓(𝑥). i.e. f x 
𝐺
→ 𝑙 ⇒ 𝑓 𝑥 → 𝑙.In other words, we can say that 𝐺-limit 

and ordinary limit are same for bipositive functions whose functional values as well as arguments are positive in 

the given interval. Only difference is that in 𝐺-calculus we approach the limit geometrically, but in ordinary 

calculus we approach the limit linearly. 

 

 A function 𝑓 is said to tend to limit 𝑙 as 𝑥 tends to 𝑎 from the left, if for each 𝜀 > 1 (however small), 

there exists 𝛿 > 1 such that  𝑓(𝑥) ⊖ 𝑙  𝐺< 𝜀 when 𝑎/𝛿 < 𝑥 < 𝑎.In symbols, we write 

𝐺 lim
𝑥→𝑎−

𝑓(𝑥) = 𝑙 or 𝑓(𝑎 − 1) = 𝑙. 

 Similarly, a function 𝑓 is said to tend to limit 𝑙 as 𝑥 tends to 𝑎 from the right, if for each 𝜀 > 1(however 

small), there exists 𝛿 > 1 such that  𝑓(𝑥) ⊖ 𝑙  𝐺< 𝜀 when 𝑎 < 𝑥 < 𝑎𝛿.In symbols, we then write 

𝐺 lim
𝑥→𝑎+

𝑓(𝑥) = 𝑙 or 𝑓(𝑎 + 1) = 𝑙. 

If 𝑓(𝑥) is negative valued in a given interval, it will be said to tend to a limit 𝑙 < 0 if for 𝜀 > 1, ∃𝛿 > 1 such 

that 𝑓(𝑥) ∈]𝑙𝜀,
𝑙

𝜀
[ whenever 𝑥 ∈]

𝑎

𝛿
, 𝑎𝛿[. 

3.4 𝑮-Continuity of a Function[16]: 

 A function 𝑓 is said to be 𝐺-continuous at 𝑥 = 𝑎 if 

1. 𝑓(𝑎) i.e., the value of 𝑓(𝑥) at 𝑥 = 𝑎, is a definite number, 

2. the 𝐺-limit of the function 𝑓(𝑥) as 𝑥
𝐺
→ 𝑎 exists and is equal to 𝑓(𝑎). 

 Alternatively, a function 𝑓 is said to be 𝐺-continuous at 𝑥 = 𝑎, if for arbitrarily chosen𝜀 > 1, however 

small, there exists a number 𝛿 > 1 such that 

  𝑓(𝑥) ⊖ 𝑓(𝑎)  
𝐺 < 𝜀 

for all values of 𝑥 for which,  𝑥 ⊖ 𝑎 𝐺 < 𝛿. 
 On comparing the above definitions of limits and continuity, we can conclude that a function 𝑓 is 𝐺-

continuous at 𝑥 = 𝑎 if 

lim
𝑥→𝑎

𝑓(𝑥)

𝑓(𝑎)
= 1. 

3.5 G-Limit Point of a Geometric Sequence: 

 A real number 𝜉 is said to be a G-limit point of a geometric sequence {𝑆𝑛 } if for a given 𝜀 > 1 however 

small but greater than 1, 𝑆𝑛 ∈]
𝜉

𝜀
, 𝜉𝑙[ for an infinite number of values of 𝑛 ∈ ℕ. Thus, 𝜉 is a limit point of the 

sequence if every neighborhood of 𝜉 contains an infinite number of members of the sequence. 

 

 It can be easily proved that Bolzano-Weierstrass Theorem is also valid for infinite set of geometric 

real numbers and geometric sequences. 
 

Theorem 3.1 (Cauchy’s general principle of geometric convergence). A necessary and sufficient condition for 

the convergence of a geometric sequence {𝑆𝑛 } is that, for 𝜀 > 1 there exists a positive integer 𝑚0 such that 

  𝑆𝑛 ⊖𝑆𝑚   𝐺 < 𝜀, ∀𝑛,𝑚 ≥ 𝑚0 . 
That is, 

  𝑆𝑚+1 ⊕𝑆𝑚+2 ⊕⋯⊕𝑆𝑛   
𝐺 < 𝜀, ∀𝑛,𝑚 ≥ 𝑚0

⇒   𝑆𝑚+1𝑆𝑚+2 ⋯𝑆𝑛   
𝐺 < 𝜀.

 

 

 Equivalently, we can say that the sequence {𝑆𝑛 } is convergent if and only if for 𝜀 > 1 there exists a 

positive integer 𝑚 such that 

  𝑆𝑛+𝑝 ⊖𝑆𝑛   
𝐺

< 𝜀, ∀𝑛 ≥ 𝑚,𝑝 ≥ 1. 

Theorem3.2  If{𝑎𝑛 } and {𝑏𝑛 } be two convergent sequences such that 𝐺𝑙𝑖𝑚𝑎𝑛 = 𝑎, 𝐺𝑙𝑖𝑚𝑏𝑛 = 𝑏, then for all 

𝑛 ∈ ℕ 

1. 𝐺 lim(𝑎𝑛 ⊕𝑏𝑛) = 𝑎 ⊕ 𝑏, 

2. 𝐺 lim(𝑎𝑛 ⊖𝑏𝑛) = 𝑎 ⊖ 𝑏, 

3. 𝐺 lim(𝑎𝑛 ⊙𝑏𝑛) = 𝑎 ⊙ 𝑏, 
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4. 𝐺 lim(𝑎𝑛 ⊘𝑏𝑛) = 𝑎 ⊘ 𝑏. 

Proof. (i) We have discussed that in case of bi-positive functions, geometric limit and ordinary limit are same. 

Since terms of a geometric sequence are always positive, hence 𝐺 lim𝑎𝑛 = 𝑎 ⇒ lim𝑎𝑛 = 𝑎 and 𝐺 lim𝑏𝑛 =
𝑏 ⇒ lim𝑏𝑛 = 𝑏.Now, 

 

𝐺 lim(𝑎𝑛 ⊕𝑏𝑛) =
𝐺

lim(𝑎𝑛𝑏𝑛)

= lim(𝑎𝑛𝑏𝑛)

= lim(𝑎𝑛 )lim(𝑏𝑛) = 𝑎𝑏.

 

(ii) 

𝐺 lim(𝑎𝑛 ⊖𝑏𝑛 ) =
𝐺

lim(𝑎𝑛/𝑏𝑛)

= lim(𝑎𝑛/𝑏𝑛)

= lim(𝑎𝑛 )/lim(𝑏𝑛)

= 𝑎/𝑏 = 𝑎 ⊖𝑏.

 

(iii) 

𝐺 lim(𝑎𝑛 ⊙𝑏𝑛 ) =
𝐺

lim (𝑎𝑛 )ln(𝑏𝑛 ) 

= lim (𝑎𝑛 )ln(𝑏𝑛 ) 

= lim 𝑒ln(𝑎𝑛 ).ln (𝑏𝑛 ) 

= 𝑒lim  ln (𝑎𝑛 ).ln (𝑏𝑛 ) 

= 𝑒 ln𝑎 .ln𝑏 

= 𝑎ln (𝑏) = 𝑎 ⊙𝑏.

 

(iv) Proof is similar. 

 

Theorem3.3  If 𝐺𝑙𝑖𝑚𝑎𝑛 = 𝑙, such that 𝑙 > 0, then 

𝐺 𝑙𝑖𝑚
𝑛→∞

 
𝑎1 ⊕𝑎2 ⊕. . .⊕ 𝑎𝑛

𝑒𝑛
𝐺 = 𝑙. 

Proof. We know that, if a positive term series {𝑎𝑛 } converges to positive number 𝑙, then lim
𝑛→∞

 𝑎1𝑎2 . . . 𝑎𝑛  
1

𝑛 =

𝑙.Since, terms of a geometric sequence age always positive and 𝐺 lim𝑎𝑛 = 𝑙 ⇒ lim𝑎𝑛 = 𝑙, hence 
 

𝐺 lim
𝑛→∞

 
𝑎1 ⊕𝑎2 ⊕. . .⊕ 𝑎𝑛

𝑒𝑛
𝐺 =

𝐺
lim
𝑛→∞

 𝑎1𝑎2 . . . 𝑎𝑛  
1/ln (𝑒𝑛 )

=
𝐺

lim
𝑛→∞

 𝑎1𝑎2 . . . 𝑎𝑛  
1/𝑛

= lim
𝑛→∞

 𝑎1𝑎2 . . . 𝑎𝑛  
1/𝑛

= 𝑙.
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6. CONCLUSION 

 Here we have discussed about some basic properties of geometric real sequences. In [13] we have 

introduced geometric difference sequence spaces which are based on geometric arithmetic. Here we have just 

introduce geometric real sequences, G-limit, G-continuity and their basic properties which will be helpful for the 

development of the Geometric Calculus. 
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