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ABSTRACT 
The present paper advocates  the estimation of population mean of the study variable by utilizing the 

information on median of the study variable. A generalized ratio type estimator has been proposed for this 
purpose. The expressions for the bias and mean squared error of the proposed estimator have been derived up to 

the first order of approximation. The optimum value of the characterizing scalar has also been obtained. The 

minimum value of the proposed estimator for this optimum value of the characterizing scalar is obtained. A 

theoretical efficiency comparison of the proposed estimator has been made with the mean per unit estimator, 

usual ratio of Cochran (1940) and usual regression estimator of Watson (1937),Bahl and Tuteja (1991)estimator, 

Kadilar (2016) and Subramani (2016) estimators. Theoretical results are supported by the numerical illustration 

and  foundthat proposed estimatorperforms  better than theexisting estimators.   
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1. INTRODUCTION:  

In many real life situations we observed many cases where population mean of the study variable is not known 

but the population median of the main variable under study is known. For example if we ask for the weight or 

basic salary of a person, it is very hard to get the exact value but we get the information in terms of interval or 

the pay band. Here we can easily get the median of the study variable which can be used for improving the 

estimation procedure of population mean of study variable. In sampling theory use of auxiliary information is a 

very common practice for improving the precision of estimates.  But the use of auxiliary information has a 

serious drawback in terms of increased survey cost for collectionof this additional information.The use of 

median of study variable may be an important attempt in this direction as it increases  the efficiency of estimator 

without any additional survey cost. In the present paper we have proposed an improved estimator of population 

mean of the study variable using median of the study variable. 

Let us consider a finite population consisting of N distinct and identifiable units and let 

niyx ii ...,,2,1),,(  be a bivariate sample of size n taken from (X, Y) using a simple random sampling 

without replacement (SRSWOR) scheme. Let X and Y respectively be the population means of the auxiliary 

and the study variables, and let x  and y  be the corresponding sample means. In SRSWOR, It is well 

established fact that sample means x  and y are unbiased estimators of population means of X and Y  

respectively.  

To demonstrate the above problem in a more effective manner, let us consider an interesting example 

of mean estimation of study variable using median of study variable given by Subramani (2016).  The table has 

been used with permission of the author.  

Example.1. The problem is to estimate the average salary drawn by the faculty members (population mean) per 

month in an Indian university 800 faculty members are working in different categories and the basic salary 

drawn by different categories of the faculty members.  
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Table2: Salary of University faculty members 

 

Category 

Basic Salary in  

Indian Rupees (IRs)  

Per month*  

Number of  

faculty members  

Cumulative 

total 

Senior Professor  56000+10000**  20  20  

Professor - Grade I  43000+10000  40  60  

Professor - Grade II  37400+10000  60  120  

Associate Professor - Grade I  37400+10000  80  200  

Associate Professor - Grade II  37400+9000  100  300  

Assistant Professor - Grade I  15100+8000  110  410  

Assistant Professor - Grade II  15100+7000  140  550  

Assistant Professor - Grade III  15100+6000  250  800  

 Total 800 800 

*Actual salary depends on their experience in their designation and other allowances.  

**The Basic salary is the sum of the basic (the first value) and the academic grade pay (the second value), which 

will differentiate people with same designation but different grades.  

The population median value will be assumed as IRs. 15100+8000 = IRs. 23100. 

 

2. REVIEW OF EXISTING ESTIMATORS 

The sample mean is the most suitable estimator of population mean of the study variable, given by, 
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It is an unbiased estimator and its variance, up to the first order of approximation, is given by  
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Watson (1937) first utilized the highly correlated auxiliary variable and proposed the usual linear regression 

estimator of population mean as,  

)(1 xXbyt yx      (3) 

Where yxb is the regression coefficient of  Y on X. 

This estimator is also unbiased for population mean and its variance up to the first order of approximation, is 

given by, 
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Cochran (1940) made use of highly positively correlated auxiliary variable and proposed the following usual 

ratio estimator as,  

x

X
yt 2       (5) 

It is a biased estimator of population mean and  the expressions for the bias and mean squared error for this 

estimator, up to the first order of approximation  are given as,  ][
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Bahl and Tuteja (1991) proposed the following exponential ratio type estimator of population mean by making 

use of positively correlated auxiliary variable as, 
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The above estimator is biased and the bias and the mean squared error of this estimator, up to the first order of 

approximation, are given respectively by,  
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Kadilar (2016), using positively correlated auxiliary variable proposed the following exponential type estimator 

of population mean as, 
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where is a characterizing scalar to be determined such that  the MSE of above estimator is minimum.  

The bias and the mean squared error of the above estimator up to the first order of approximation respectively 

are,  






























 yxx CCY
n

f
tB

2

1

8

3

2

)1(1
)( 2

4 


 





















 yxxy CCCY

n

f
tMSE )12(

4

11
)( 2222

4      (10) 

The optimum value of the characterizing scalar   which minimizes the mean squared error of 6t  is,  
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The minimum value of the mean squared error of above estimator is,  
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which is equal to the variance of the usual regression estimator of Watson (1937). 

 

Subramani (2016) used the population median of the study variable and proposed the following ratio estimator 

of population mean of the study variable,  

 

 (12) 

 

where M and m are the population and sample medians of study variable respectively. 

It is a biased estimator and its bias and the mean squared error, up to the first order of approximation, are 

respectively given by, 
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Many authors have given various modified estimators of population mean using auxiliary variables. The latest 

references can be found inSubramani (2013), Subramani and Kumarapandiyan (2012, 2013), Yan and Tian 

(2010), Yadav and Kadilar (2013), Yadav et al. (2014, 2015), and Yadav et al. (2016). 

 

3. PROPOSED ESTIMATOR 

We propose the following ratio type estimators of population mean using known population median of study 

variable as,  

 

 (14) 

 

where  a is a characterizing scalar to be determined such that the mean squared error of the proposed estimator 

tR is minimum.  

The following approximations have been made to study the properties of the proposed estimators as,    
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The proposed estimator tR can be expressed in terms of sei ' ( 2,1i ) as, 
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Taking expectation on both sides we get Bias( ) 

 

Squaring (15) both sides and taking expectation we get the MSE upto first order approximation,  
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                             (16) 

which is minimum for, 

 
and the minimum mean squared error of the proposed estimator  is, 

.                                                          (17) 

 

4. EFFICIENCY COMPARISON  

Under this section, a theoretical comparison of the proposed estimator has been made with the competing 

estimators of population mean. The conditions under which the proposed estimator performs better than the 

competing estimators have also been given.  

From equation (17) and equation (2), we have, 
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Thus the proposed estimator is better than the usual mean per unit estimator of population mean. 

From equation (17) and equation (4), we have, 
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Under the above condition, the proposed estimator is better than the usual regression estimator of Watson 

(1937).  

From equation (17) and equation (6), we have, 
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Under the above condition, proposed estimators perform better than the usual ratio estimator given by Cochran 

(1940). 

From equation (17) and equation (8), we have, 
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Under the above condition, the proposed estimator performs better than Bahl and Tuteja (1991) ratio type 

estimator of population mean.  

From equation (17) and equation (11), we have, 
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Under the above condition, the proposed estimator is better than the  Kadilar (2016) estimatorFrom equation 

(17) and equation (13), we have, 
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Under the above condition, the proposed estimator is better than the Subramani (2016) estimator of population 

mean using information on median of the study variable. 
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5. NUMERICAL STUDY 

To judge the theoretical findings, we have considered the natural populations given in Subramani (2016). He has 

used three natural populations. The population 1 and 2 have been taken from Singh and Chaudhary (1986, page 

no. 177) and the population 3 has been taken from Mukhopadhyay (2005, page no. 96). In populations 1 and 2, 

the study variable is the estimate the area of cultivation under wheat in the year 1974, whereas the auxiliary 

variables are the cultivated areas under wheat in 1971 and 1973 respectively. In population 3, the study variable 

is the quantity of raw materials in lakhs of bales and the number of labourers as the auxiliary variable, in 

thousand for 20 jute mills. Tables 3 and 4 represent the parameter values along with constants, along with 

proposed estimator, variances and mean squared errors of existing and proposed estimator  

 

Table-3. Parameter values and constants for three natural populations 

Parameter Population-1  Population-2  Population-3  

N  34 34 20 

n  5 5 5 

n

N C  278256 278256 15504 

Y  856.4118 856.4118 41.5 

M  736.9811 736.9811 40.0552 

M  767.5 767.5 40.5 

X  208.8824 199.4412 441.95 

7R  1.1158 1.1158 1.0247 

2

yC  0.125014 0.125014 0.008338 

2

xC  0.088563 0.096771 0.007845 

2

mC  0.100833 0.100833 0.006606 

ymC  0.07314 0.07314 0.005394 

yxC  0.047257 0.048981 0.005275 

yx  0.4491 0.4453 0.6522 

 

Table-4. Mean squared error of various estimators 

Estimator Popln-1 Popln-2 Popln-3 

0t  15640.97 15640.97 2.15 

1t  12486.75 12539.30 1.24 

2t  14895.27 15492.08 1.48 

3t  
12498.01 12539.30 1.30 

 12486.75 12539.30 1.24 

 10926.53 10926.53 1.09 

 
9002.22 9002.22 0.98 

 

6. RESULTS AND CONCLUSION  

From Table-4, it can be seen that the proposed estimator has minimum mean squared error among other 

competing estimators of population mean of study character. Thus proposed estimator is better than usual mean 

per unit estimator, Watson (1937) usual regression estimator, Cochran (1940) usual ratio estimator, Bahl and 

Tuteja (1991) exponential ratio type estimator, Kadilar (2016) estimator and Subramani (2016) estimator. 
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Therefore it is recommended that the proposed estimator may be used for improved estimation of population 

mean under simple random sampling scheme. 
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