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Abstract: In this paper, we have studied the 
regions of motion in the restricted three body 

problem (R3BP). The smaller primary is taken as 

a finite straight segment and bigger one as an 

oblate spheroid. There exist five libration points 

in this problem, out of which three are collinear 

and two are non-collinear, with the primaries. 

The collinear libration points are unstable for all 

values of mass parameter   and the non-

collinear libration points are stable for a critical 

value of  . The location of libration points for 

different values of mass parameter, length of 

straight segment and oblateness parameter are 

also discussed numerically and shown 

graphically. The regions of motion of the 

infinitesimal mass are also studied.  
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I. Introduction 

The restricted problem of three bodies describes 

the motion of the infinitesimal mass 3m  moving in 

the gravitational field of two massive primaries in 

the same plane or out of plane called two 

dimensional or three dimensional problem 

accordingly. The primaries are revolving around 

their center of mass either in circular or elliptical 

orbits under the influence of their mutual 

gravitational attraction. If the orbit of the primaries 

around their center of mass is circular, problem is 

said to be circular restricted three body problem or 

restricted three body problem (R3BP). The 
problem possesses five libration points out of 

which three are collinear and two are non-

collinear. 

Bhatnagar and Chawla (1977) have studied the 

effect of oblateness on the collinear libration 

points in the restricted three body problem. They 

found that the location of libration points and the 

roots of the characteristic equation at these points 

also depend on the oblateness term of the bigger 

primary. Sharma (1987) studied the linear stability 

of stationary solutions of the photogravitational 
restricted three body problem when the more 

massive primary is a source of radiation and the 

smaller primary is an oblate spheroid. He found 

that the collinear equilibria have conditional 

retrograde elliptical periodic orbits around them in 

the linear sense, while the triangular points have 

long or short periodic retrograde elliptical orbits. 

Jain and Sinha (2014) have studied stability and 

regions of motion in the restricted three body 

problem by taking both primaries as finite straight 

segments. They observed that the collinear 

equilibrium points are unstable for all values of 
mass parameter and the triangular equilibrium 

points are conditionally stable for c 0  and 

unstable in the range ,2/1 c  where   is 

the mass ratio. They have also discussed the 

regions of motion of the infinitesimal mass and 

found that the Jacobian constant decreases in 

comparison to the classical case of the R3BP, for 

a fixed value of   and lengths  1l  and 2l of the 

segments. In 1999, Riaguas et al. have studied 
periodic orbits around a massive straight segment 

and observed many periodic orbits and 

bifurcations in their study. Non-linear stability of 

the equilibria in the gravity field of a finite 

straight segment has been studied by Riaguas et 

al. in 2001, by considering one body as a finite 

straight segment and other is a point mass. They 

have observed that there exist four equilibrium 

points. Kumar et al. (2016) studied existence and 

stability of libration points in the restricted three 

body problem under the combined effects of finite 

straight segment and oblateness. They found that, 
there exist five libration points, out of which three 

are collinear and two are non-collinear with the 

primaries. The collinear libration points are 

unstable for all values of mass parameter  , and 

the non-collinear libration points are stable 

if c  , where 

Ac 285002.000735612.0038521.0  . Jain 

and Aggarwal (2015) determined the existence 

and stability of libration points in the restricted 

problem under the effect of Poynting Robertson 
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Light Drag and conclude that both the non-

collinear libration points are unstable. By 

considering smaller primary as an oblate spheroid, 

the existence and stability of the non-collinear 

libration points with Stokes drag effect have 
examined by Jain and Aggarwal (2015). They 

found that the non-collinear libration points are 

unstable. Khanna and Bhatnagar (1999) studied 

R3BP by taking one of the primary as an oblate 

spheroid. They found that the collinear libration 

points are unstable and the triangular libration 

points are stable for a critical value of mass 

parameter. Aggarwal et al. (2006) discussed the 

non-linear stability of the triangular libration point 

4L  of the restricted three body problem under the 

presence of the third and fourth order resonances 

by taking bigger primary as an oblate body and 

the smaller one as a triaxial body and both are 

source of radiation. They found that 4L  is always 

unstable. The equilibrium solutions and linear 

stability of 3m  and 4m  considering one of the 

primaries as an oblate spheroid have been 

examined by Aggarwal and Kaur (2014). They 

concluded that there are no non-collinear 

equilibrium solutions of the system. 

 

II. Equations of Motion 

 
Fig.1. The configuration of R3BP when m1 is an oblate 

spheroid and m2 is a finite straight segment 

 

Let 21,mm  be the masses of an oblate spheroid 

and finite straight segment (called primaries), that 

are moving with angular velocity n (say) in 

circular orbits about their common centre of mass 

O. Suppose there is an infinitesimal mass 3m , 

which is moving in the plane of motion of 1m and 

2m  )( 21 mm  . )(XYZO  and )(xyzO  are inertial 

and synodic coordinate system respectively. The 

line joining 1m and 2m  is taken as X-axis and O 

their centre of mass as origin and the line passing 

through O and perpendicular to OX and lying in 

the plane of motion of 1m and 2m  is taken as Y -

axis. )(xyzO initially coincident with the inertial 

coordinate system )(XYZO . The synodic axes are 

rotating with angular velocity n (say) about Z -

axis (the z -axis is coincident with Z -axis) (Fig. 

1). The equations of motion of 3m  in the 

dimensionless synodic coordinate system are 

(Kumar et al. (2016)) 

,2 xynx      (1)

  ,2 yxny     
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Here, we are taking terms containing l up to 

second order, and terms containing A up to first 

order. 
 

III. Libration points 

The libration points are the solution of the 

equations 
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Collinear libration points: 

The collinear libration points are obtained from 

Eqs. (3) and (4) by taking  0y . The abscissa 

of the collinear libration points are the roots of the 

equation 
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There exist three collinear libration 

points 1L , 2L and 3L . In Table 1, we have 

calculated numerical values of these collinear 

libration points 

  L1 L2 L3 L4,5 

0.05 (-1.21570, 0) (-0.727161, 0) (1.02100, 0) (-0.514603, 

 0.822535) 

0.09 (-1.23508, 0) (-0.649120, 0) (1.03978, 0) (-0.474671, 

 0.822571) 

0.15 (-1.24198, 0) (-0.549070, 0) (1.06796, 0) (-0.414787, 

 0.822631) 

0.20 (-1.23798, 0) (-0.472851, 0) (1.09142, 0) (-0.364896, 

 0.822688) 

0.25 (-1.22894, 0) (-0.400162, 0) (1.11477, 0) (-0.315020, 

 0.822753) 

0.30 (-1.21652, 0) (-0.329698, 0) (1.13797, 0) (-0.265162, 

 0.822827) 

Table 1. Location of Libration points, when .1.0,15.0  lA  

 

A  L1 L2 L3 L4,5 

0.00001 (-1.27665, 0) (-0.511016, 0) (1.05913, 0) (-0.351590, 

 0.861617) 

0.00005 (-1.27654, 0) (-0.511163, 0) (1.05916, 0) (-0.351790, 

 0.861504) 

0.0010 (-1.27640, 0) (-0.511345, 0) (1.05920, 0) (-0.352040, 

 0.861363) 

0.0100 (-1.27399, 0) (-0.514528, 0) (1.05993, 0) (-0.356480, 

 0.858841) 

0.1000 (-1.25236, 0) (-0.539062, 0) (1.06566, 0) (-0.396013, 

 0.834934) 

0.1500 (-1.24198, 0) (-0.549070, 0) (1.06796, 0) (-0.414787, 

 0.822631) 

Table 2. Location of Libration points, when .1.0,15.0  l  

 

l  L1 L2 L3 L4,5 

0.001 (-1.23420, 0) (-0.558627, 0) (1.07025, 0) (-0.413271, 

 0.826272) 

0.005 (-1.23422, 0) (-0.558605, 0) (1.07025, 0) (-0.413274, 

 0.826263) 

0.010 (-1.23428, 0) (-0.558533, 0) (1.07023, 0) (-0.413286, 

 0.826236) 

0.050 (-1.23614, 0) (-0.556243, 0) (1.06968, 0) (-0.413650, 

 0.825360) 

0.100 (-1.24198, 0) (-0.549070, 0) (1.06796, 0) (-0.414787, 

 0.822631) 

0.150 (-1.25181, 0) (-0.537073, 0) (1.06514, 0) (-0.416680, 

 0.818106) 

Table 3. Location of Libration points, when .15.0,15.0  A  

 
Libration points Coordinates Jacobian constant 

)0,( 11 xL  (-1.253290, 0) C1=3.58226 

)0,( 22 xL  (-0.290965, 0) C2=3.95603 

)0,( 33 xL  (1.124790, 0) C3=3.32301 

),( 444 yxL  (-0.20502, 

0.863097) 
C4=3.80895 

Table 4. Coordinates and value of Jacobian constant of all 

libration points when 001.0,01.0,3.0  Al  

for fixed values of ,15.0A 1.0l  and 

different values 

of 30.0,25.0,20.0,15.0,09.0,05.0 . In Table 

2, we have calculated numerical values of these 

collinear libration points for fixed values 

of 15.0 , 1.0l  and different values of 

A 0.0001, 0.0005, 0.001, 0.01, 0.1, 0.15. In 
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Table 3, we have calculated numerical values of 

these collinear libration points for fixed values of 

15.0 , 15.0A  and different values of 

15.0,1.0,05.0,01.0,005.0,001.0l . 

 

Non-collinear libration points: 

The non-collinear libration points are obtained 

from Eqs. (3) and (4) by taking 0y . There 

exist two non-collinear libration points namely 

4L  and 5L . The numerical values of non-

collinear libration points for different values of 

parameters are given in Table 1, 2 and 3. 

 

IV. Regions of Motion 

To find the possible regions of motion, we find 
the Jacobian integral. On multiplying Eq. (1) by 

x , Eq. (2) by y  and add them , we have 

)5(.yx yxyyxx    

 
Fig. 2(a) The location of libration points  for ,05.0  

05.0,10 5   lk  and .30.0,25.0,20.0,15.0,09.0,05.0  

 

 
Fig. 2(b) The location of libration points  for ,15.0  

1.0l  and .15.0,1.0,01.0,001.0,0005.0,0001.0A  

 

 
Fig. 2(c) The location of libration points  for ,15.0  

15.0A  and .15.0,1.0,05.0,01.0,005.0,001.0l  

 
On integrating both sides of Eq. (5), we get the 

Jacobian integral 

)6(,222 Cyx    

where C  is Jacobi constant. We have calculated 

coordinates of libration points, for fixed values of 

01.0,3.0  l and 001.0A . Then, for these 

libration points we have determined the values of 

various Jacobian constant C, by using the zero-

velocity curve  ,222 Cyx   which are 

given in Table 4.  
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The zero velocity curves are shown on the xy 

plane. The four possibilities are (a) C2 < C, (b)C1 

< C <C2, (c)C3 < C <C1, (d)C4=C5 < C < C3. 
Now, we discuss all these cases. The values of 

Jacobian constant are given in Table 4, and we 

have chosen some value of C  arbitrarily. 

 
Fig. 3(a) Curves of zero velocity  for ,3.0 C=5(black), 

C=4.2(purple), C=C2=3.92404(red). 

 

 
Fig. 3(b) Curves of zero velocity  for 

,3.0 C=3.75(black), C=C1=3.55924(red). 

 
Case (a) In Fig. 3(a), the zero velocity curves are 

shown for 5C (black), 2.4C (blue) and  

95603.32 CC (red). We observe that as C  
decreases, the size of the zero velocity ovals 

surrounding 1m and 2m  increase while the outer 

ovals shrink. We have also seen that when 

2CC  , inside oval enlarge, meet at the point 2L  

and form a figure eight. In this process, the ovals 

never enclose 1L  and 3L , since the 

corresponding values of 1C  and 3C  are smaller 

than 2C .  

 

Fig. 3(c) Curves of zero velocity  for 

,3.0 C=3.45(black), C=C3=3.29463(red). 

 

 

Fig. 3(d) Curves of zero velocity  for 

,3.0 C=3.0(black), C=C4=2.79196. 

 

Case (b) In Fig. 3(b), we observe that when 

21 CCC  , the curves of zero velocity 

constitutes two branches. The first branch is 

http://www.ijmttjournal.org/
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dumbbell or pear-shaped figure inside of which 

motion is possible. This curve encloses 21, mm  

and 2L , but 1L  and 3L  are outside. In this case 

we have taken 75.3C . Secondly, we see that as 

the value of C  decreases and reach at 

58226.31 CC , the dumbbell shape ends at 

1L  between the inner and outer area. In this case 

motion is always possible outside these ovals. 
 

Case (c) In Fig. 3(c), we observe that as the value 

of C  decreases from 1CC  , the point on the 

curve is not on the curve of zero velocity. The 

cusp at 1L exists when 1CC  , disappears and the 

curve does not intersect the x-axis. We see a 

horseshoe shaped curve which encloses only 3L  

as 3CC  . Here we have taken 45.3C . If we 

take 32301.33 CC , we observe that the curve 

forms a cusp at 3L . The horseshoe shaped curve 

begins at 1C  when a cusp is formed at 1L  and 

end with 3C  when the cusp is at 3L . Motion is 

possible everywhere outside the area enclosed by 

the horseshoes. 
 

Case (d) In Fig. 3(d), we observe that as the 

value of  C  decreases, the cusp disappears and 

the curve leaves 3L . The zero-velocity curve 

form two branches, one enclosing 4L  and the 

other 5L . In this case, we take 9.2C . If we 

take 80895.24 CC , then these curves shrink 

to the point 4L  and 5L . Motion is possible 

everywhere outside the tadpole like area. 

V. Conclusion 

We have investigated the motion of the 

infinitesimal mass in the restricted three body 

problem when the bigger primary is an oblate 

spheroid and smaller one as a finite straight 

segment. It is observed that, there exist five 

libration points, three collinear and two non-

collinear. The numerical values of libration 

points for different values of parameters A,  

and l  are given in Table 1, 2 and 3. We 

observed that, as we increase the parameters 

A,  and l , 1L  moves away from the smaller 

primary along x-axis. 2L  moves towards the 

center of mass of the primaries along x-axis. 3L  

moves away from the bigger primary along x-

axis. 5,4L  moves towards y-axis, parallel to x-

axis. The locations of libration points are shown 

graphically for different values of parameters, 

A,  and l  in Fig.2. We have also discussed the 

regions of motion of the infinitesimal mass 3m . 

In our case for 3.0 , the value of Jacobian 

constants 

are ,32301.3,95603.3,58226.3 321  CCC
 

.80895.24 C  And in the classical case 

for 3.0 , Jacobian constant are ,033.41 C
 

,130.42 C  0.3,501.3 43  CC  (Szebehely 

1967). We observed that in our case for a fixed 

value of mass parameter   due to the presence 

of A  and l   in the Jacobi integral the value of 

the Jacobian constant decreases in comparison to 
classical case while increases in comparison to 

Jain and Sinha (2014).  
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