Numerical Simulation of 1D Heat Conduction in Spherical and Cylindrical Coordinates by Fourth-Order Finite Difference Method

Letícia Helena Paulino de Assis ${ }^{1, a}$, Estaner Claro Romão ${ }^{\text {1,b }}$
Department of Basic and Environmental Sciences, Engineering School of Lorena, University of São Paulo

Abstract

This paper aims to apply the Fourth Order Finite Difference Method to solve the onedimensional Convection-Diffusion equation with energy generation (or sink) in in cylindrical and spherical coordinates.

Keywords. Central Difference Method, Cylindrical and Spherical coordinates, Numerical Simulation, Numerical Efficiency.

1. Introduction

According to [1-2] heat conduction refers to the transport of energy in a medium due to the temperature gradient. To represent the physical phenomena of three-dimensional heat conduction in steady state and in cylindrical and spherical coordinates, respectively, [1] present the following equations,

$$
\begin{align*}
& \rho c_{p} v_{r} \frac{\partial T}{\partial r}=k\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right)+\dot{q} \tag{1}\\
& \rho c_{p} v_{r} \frac{\partial T}{\partial r}=k\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right)\right)+\dot{q} \tag{2}
\end{align*}
$$

where, T is the temperature, r, z and θ are the spatial coordinates, ρ is the specific mass, c_{p} is the specific heat, v_{r} is the velocity, k the thermal conductivity, \dot{q} is a heat flux.

In this work the numerical solution will be proposed by using the Fourth Order Finite Difference Method, of the reduction of the problems described in Equations (1-2) for only one spatial dimension, according to the following equations,

$$
\begin{gather*}
\rho c_{p} v_{r} \frac{\partial T}{\partial r}=k\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)\right)+\dot{q} \tag{3}\\
\rho c_{p} v_{r} \frac{\partial T}{\partial r}=k\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)\right)+\dot{q} \tag{4}
\end{gather*}
$$

This proposal is a numerical evolution in the work proposed in [3] where the Second Order Finite Difference Method is used to solve the problems governed by Equations (3-4). It is important to emphasize that the idea of using the Fourth Order Finite Difference Method has already been successful in [4-8] for problems in cartesian coordinates, and thus, the same idea of solution to problems in cylindrical and spherical coordinates is now proposed.

2. Numerical Formulation - Spatial Discretization

Before starting the spatial discretization, here it will be realized a reorganization of Equations (3-4), respectively, as follows (adopting $\alpha=k /\left(\rho c_{p}\right)$),

$$
v_{r} \frac{\partial T}{\partial r}=\alpha\left(\frac{1}{r}\right)\left(\frac{\partial T}{\partial r}+r \frac{\partial^{2} T}{\partial r^{2}}\right)+\dot{q} \Rightarrow
$$

$$
\begin{gather*}
\alpha \frac{\partial^{2} T}{\partial r^{2}}+\left(\frac{\alpha}{r}-v_{r}\right) \frac{\partial T}{\partial r}=-\dot{q} \tag{5}\\
v_{r} \frac{\partial T}{\partial r}=\alpha\left(\frac{1}{r^{2}}\right)\left(2 r \frac{\partial T}{\partial r}+r^{2} \frac{\partial^{2} T}{\partial r^{2}}\right)+\dot{q} \Rightarrow \\
\alpha \frac{\partial^{2} T}{\partial r^{2}}+\left(\frac{2 \alpha}{r}-v_{r}\right) \frac{\partial T}{\partial r}=-\dot{q} \tag{6}
\end{gather*}
$$

Internal nodes

In the internal nodes of the computational mesh, the following fourth order central finite differences were used to discretize the first and second order partial derivatives, respectively [9-10],

$$
\begin{align*}
& \frac{\partial T_{i}}{\partial r}=\frac{-T_{i+2}+8 T_{i+1}-8 T_{i-1}+T_{i-2}}{12 \Delta r} \tag{7}\\
& \frac{\partial^{2} T_{i}}{\partial r^{2}}=\frac{-T_{i+2}+16 T_{i+1}-30 T_{i}+16 T_{i-1}-T_{i-1}}{12 \Delta r^{2}} \tag{8}
\end{align*}
$$

After replacing the approximations (7-8) in Equations (5-6), the following expressions are obtained,

$$
\begin{align*}
& \alpha\left(\frac{-T_{i+2}+16 T_{i+1}-30 T_{i}+16 T_{i-1}-T_{i-2}}{12 \Delta r^{2}}\right)+\left(\frac{\alpha}{r}-v_{r}\right)\left(\frac{-T_{i+2}+8 T_{i+1}-8 T_{i-1}+T_{i-2}}{12 \Delta r}\right)=-\dot{q} \Rightarrow \\
& \left(\frac{-\alpha}{12 \Delta r^{2}}+\frac{\alpha}{12 r \Delta r}-\frac{v_{r}}{12 \Delta r}\right) T_{i-2}+\left(\frac{4 \alpha}{3 \Delta r^{2}}-\frac{2 \alpha}{3 r \Delta r}+\frac{2 v_{r}}{3 \Delta r}\right) T_{i-1}+\left(\frac{-5 \alpha}{2 \Delta r^{2}}\right) T_{i} \\
& \quad+\left(\frac{4 \alpha}{3 \Delta r^{2}}+\frac{2 \alpha}{3 r \Delta r}-\frac{2 v_{r}}{3 \Delta r}\right) T_{i+1}+\left(\frac{-\alpha}{12 \Delta r^{2}}-\frac{\alpha}{12 r \Delta r}+\frac{v_{r}}{12 \Delta r}\right) T_{i+2}=-\dot{q} \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
& \alpha\left(\frac{-T_{i+2}+16 T_{i+1}-30 T_{i}+16 T_{i-1}-T_{i-2}}{12 \Delta r^{2}}\right)+\left(\frac{2 \alpha}{r}-v_{r}\right)\left(\frac{-T_{i+2}+8 T_{i+1}-8 T_{i-1}+T_{i-2}}{12 \Delta r}\right)=-\dot{q} \\
& \left(\frac{-\alpha}{12 \Delta r^{2}}+\frac{\alpha}{6 r \Delta r}-\frac{v_{r}}{12 \Delta r}\right) T_{i-2}+\left(\frac{4 \alpha}{3 \Delta r^{2}}-\frac{4 \alpha}{3 r \Delta r}+\frac{2 v_{r}}{3 \Delta r}\right) T_{i-1}+\left(\frac{-5 \alpha}{2 \Delta r^{2}}\right) T_{i} \\
& \quad+\left(\frac{4 \alpha}{3 \Delta r^{2}}+\frac{4 \alpha}{3 r \Delta r}-\frac{2 v_{r}}{3 \Delta r}\right) T_{i+1}+\left(\frac{-\alpha}{12 \Delta r^{2}}-\frac{\alpha}{6 r \Delta r}+\frac{v_{r}}{12 \Delta r}\right) T_{i+2}=-\dot{q} \tag{10}
\end{align*}
$$

Nodes distant Δx and/or Δy of the boundary

For discretization of nodes near the boundary it is not possible to use the expressions (7-8), for example, a node at a distance Δx from the boundary will not have two nodes to its left. Thus, for these nodes will be used to discretize the Equations (5-6) the following second order central finite difference,

$$
\begin{equation*}
\frac{\partial T}{\partial r}=\frac{T_{i+1}-T_{i-1}}{\Delta r} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}=\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta r^{2}} \tag{12}
\end{equation*}
$$

what resulted in the following expressions,

$$
\begin{align*}
& \alpha\left(\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta r^{2}}\right)+\left(\frac{\alpha}{r}-v_{r}\right)\left(\frac{T_{i+1}-T_{i-1}}{2 \Delta r}\right)=-\dot{q} \Rightarrow \\
& \quad\left(\frac{\alpha}{\Delta r^{2}}-\frac{\alpha}{2 r \Delta r}+\frac{v_{r}}{2 \Delta r}\right) T_{i-1}+\left(\frac{-2 \alpha}{\Delta r^{2}}\right) T_{i}+\left(\frac{\alpha}{\Delta r^{2}}+\frac{\alpha}{2 r \Delta r}-\frac{v_{r}}{2 \Delta r}\right) T_{i+1}=-\dot{q} \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& \alpha\left(\frac{T_{i+1}-2 T_{i}+T_{i-1}}{\Delta r^{2}}\right)+\left(\frac{2 \alpha}{r}-v_{r}\right)\left(\frac{T_{i+1}-T_{i-1}}{2 \Delta r}\right)=-\dot{q} \Rightarrow \\
& \quad\left(\frac{\alpha}{\Delta r^{2}}-\frac{\alpha}{r \Delta r}+\frac{v_{r}}{2 \Delta r}\right) T_{i-1}+\left(\frac{-2 \alpha}{\Delta r^{2}}\right) T_{i}+\left(\frac{\alpha}{\Delta r^{2}}+\frac{\alpha}{r \Delta r}-\frac{v_{r}}{2 \Delta r}\right) T_{i+1}=-\dot{q} \tag{14}
\end{align*}
$$

In summary, Equations (9) and (13) constructs the linear system that solves the problem governed by Equation (5) (cylindrical coordinates) and Equations (10) and (14) solves Equation (6) (spherical coordinates).

3. Numerical Applications

To analyze the numerical efficiency of the formulation presented in this work will be presented two applications. The first makes a comparison of numerical results with the presented in [3] while the second application presents an exact solution to analyze the numerical efficiency. In both applications it was considered $\alpha=1$ and $v_{\mathrm{r}}=1$.

Aplicação 1: The analytical solutions for the cylindrical and spherical coordinates that will be used for comparison with the numerical results are, respectively,

$$
T(r)=A \ln r+B \quad \text { e } \quad T(r)=\frac{A}{r}+B
$$

where A and B are constant.
In this case, the following boundary conditions were considered $T(0.5)=0$ and $T(1)=C$, with C constant. From the analytical solutions and using the boundary conditions, the following solutions were obtained, respectively:

$$
T(r)=C(\ln (r) / \ln (2))+C \quad \text { and } \quad T(r)=-(C / r)+2 C .
$$

Table 1. Maximum Error for various C values (cylindrical coordinates).

\boldsymbol{C}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Fourth Order	$1.85 \mathrm{E}-11$				
Second Order $[\mathbf{2}]$	$7.59 \mathrm{E}-05$	$1.51 \mathrm{E}-04$	$2.27 \mathrm{E}-04$	$3.03 \mathrm{E}-04$	$3.79 \mathrm{E}-04$

Table 2. Maximum Error for various C values (spherical coordinates).

\boldsymbol{C}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Fourth Order	$6.95 \mathrm{E}-10$	$1.39 \mathrm{E}-09$	$2.08 \mathrm{E}-09$	$2.78 \mathrm{E}-09$	$3.47 \mathrm{E}-09$
Second Order [2]	$8.94 \mathrm{E}-07$	$1.78 \mathrm{E}-06$	$2.62 \mathrm{E}-06$	$3.57 \mathrm{E}-06$	$4.05 \mathrm{E}-06$

Analyzing Tables 1 and 2 it is evident that the use of a discretization by Fourth Order Finite Difference Method presents an evolution in numerical precision.

Aplicação 2: In this case, the exact solution $T(r)=\mathrm{e}^{r}$ was used for comparison with the numerical solution. For this, the values of Δr were varied to analyze how much it improved the numerical efficiency of the proposed formulation (see Table 3). It is evident the improvement of the numerical accuracy as Δr decreases.
Table 3. Maximum error of the numerical solution in Application 2.

$\boldsymbol{\Delta r}$	Cylindrical	Spherical	$\Delta \boldsymbol{r}$	Cylindrical	Spherical
0.05000	$2.56 \mathrm{E}-06$	$6.38 \mathrm{E}-06$	0.00455	$2.00 \mathrm{E}-10$	$4.71 \mathrm{E}-10$
0.02500	$1.72 \mathrm{E}-07$	$4.15 \mathrm{E}-07$	0.00417	$1.42 \mathrm{E}-10$	$3.33 \mathrm{E}-10$
0.01667	$3.48 \mathrm{E}-08$	$8.32 \mathrm{E}-08$	0.00385	$1.03 \mathrm{E}-10$	$2.42 \mathrm{E}-10$
0.01250	$1.12 \mathrm{E}-08$	$2.65 \mathrm{E}-08$	0.00357	$7.66 \mathrm{E}-11$	$1.80 \mathrm{E}-10$
0.01000	$4.61 \mathrm{E}-09$	$1.09 \mathrm{E}-08$	0.00333	$5.85 \mathrm{E}-11$	$1.37 \mathrm{E}-10$
0.00833	$2.23 \mathrm{E}-09$	$5.28 \mathrm{E}-09$	0.00313	$4.51 \mathrm{E}-11$	$1.06 \mathrm{E}-10$
0.00714	$1.21 \mathrm{E}-09$	$2.86 \mathrm{E}-09$	0.00294	$3.52 \mathrm{E}-11$	$8.26 \mathrm{E}-11$
0.00625	$7.12 \mathrm{E}-10$	$1.68 \mathrm{E}-09$	0.00278	$2.79 \mathrm{E}-11$	$6.56 \mathrm{E}-11$
0.00556	$4.45 \mathrm{E}-10$	$1.05 \mathrm{E}-09$	0.00263	$2.25 \mathrm{E}-11$	$5.30 \mathrm{E}-11$
0.00500	$2.93 \mathrm{E}-10$	$6.88 \mathrm{E}-10$	0.00250	$1.86 \mathrm{E}-11$	$4.34 \mathrm{E}-11$

4. Conclusion

The expectation of using fourth order discretization and obtaining better results, in a very expressive way was achieved. It is important to note that a more detailed study of the cost benefit, for example, the increase of the computational cost versus the numerical efficiency when choosing between a second or fourth order discretization should be evaluated in more complex applications.

Acknowledgements

The FAPESP (Procs. 2014/06679-8 and 2016/16867-1) and CNPq (Proc. 400898/2016-0) supported the present work.

References

[1] Incropera, F. P.; DeWitt, D. P.. Fundamentals of Heat and Mass Transfer, Fifth Edition. John Wiley \& Sons, Inc, 2003.
[2] Welty, J. R., Wilson, C. E., and Rorrer, G. L., 2001, Fundamental of Heat and Mass Transfer, 4th ed., Wiley.
[3] Santos, L. P.; Marino Júnior, J. O.; Campos, M. D. ; Romão, E. C.. A Study about One-Dimensional Steady State Heat Transfer in Cylindrical and Spherical Coordinates. Applied Mathematical Sciences (Ruse), v. 7, p. 6227-6233, 2013.
[4] Romão, E. C.; Aguillar, J. C. Z.; Campos, M. D.; Moura, L. F. M.. Central difference method of O($\left.\Delta \mathrm{x}^{6}\right)$ in solution of the CDR equation with variable coefficients and Robin condition, Int. J. Appl. Math., v. 25, n. 1, p. 1-15, 2012.
[5] Campos, M. D.; Romão, E. C.; Moura, L. F. M.. A Finite-Difference Method of High-Order Accuracy for the Solution of Transient Nonlinear Diffusive-Convective Problem in Three Dimensions. Case Studies Thermal Eng., vol. 3, pp. 43-50, 2014.
[6] Cruz, M. M.; Campos, M. D.; Martins, J. A.; Romão, E. C.. An Efficient Technique of Linearization towards Fourth Order Finite Differences for Numerical Solution of the 1D Burgers Equation. Defect and Diffusion Forum, vol. 348, pp. 285-290, 2014.
[7] Radwan, S. F.. Comparison of higher-order accurate schemes for solving the two-dimensional unsteady Burgers' equation. J. Comput. Appl. Math., vol. 174, pp. 383-397, 2005.
[8] Cui, M.. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numerical Algorithms, vol. 62, no. 3, pp. 383-409, 2013.
[9] Chung, T. J.. Computational fluid dynamics. Cambridge: Cambridge University Press, 2002, 1012 p..
[10] Mitchell, A. R.; Griffiths, D. F.. The finite difference method in partial differential equations. John Wiley \& Sons, 1987, 284 p..

