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1. Introduction 

According to [1-2] heat conduction refers to the transport of energy in a medium due to the 

temperature gradient. To represent the physical phenomena of three-dimensional heat conduction in 

steady state and in cylindrical and spherical coordinates, respectively, [1] present the following equations, 
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where, T is the temperature, r, z and  are the spatial coordinates,  is the specific mass, cp is the specific 

heat, vr is the velocity, k the thermal conductivity, q  is a heat flux. 

In this work the numerical solution will be proposed by using the Fourth Order Finite Difference 

Method, of the reduction of the problems described in Equations (1-2) for only one spatial dimension, 

according to the following equations, 
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This proposal is a numerical evolution in the work proposed in [3] where the Second Order Finite 

Difference Method is used to solve the problems governed by Equations (3-4). It is important to 

emphasize that the idea of using the Fourth Order Finite Difference Method has already been successful 

in [4-8] for problems in cartesian coordinates, and thus, the same idea of solution to problems in 

cylindrical and spherical coordinates is now proposed. 

 

2. Numerical Formulation – Spatial Discretization 

Before starting the spatial discretization, here it will be realized a reorganization of Equations (3-4), 

respectively, as follows (adopting )/( pck   ),  
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Internal nodes 

In the internal nodes of the computational mesh, the following fourth order central finite differences 

were used to discretize the first and second order partial derivatives, respectively [9-10], 
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After replacing the approximations (7-8) in Equations (5-6), the following expressions are obtained, 
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Nodes distant Δx and/or Δy of the boundary 

For discretization of nodes near the boundary it is not possible to use the expressions (7-8), for 
example, a node at a distance Δx from the boundary will not have two nodes to its left. Thus, for these 

nodes will be used to discretize the Equations (5-6) the following second order central finite difference, 
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what resulted in the following expressions, 
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In summary, Equations (9) and (13) constructs the linear system that solves the problem governed by 

Equation (5) (cylindrical coordinates) and Equations (10) and (14) solves Equation (6) (spherical 

coordinates). 

 

3. Numerical Applications 

To analyze the numerical efficiency of the formulation presented in this work will be presented two 

applications. The first makes a comparison of numerical results with the presented in [3] while the second 

application presents an exact solution to analyze the numerical efficiency. In both applications it was 

considered α = 1 and vr = 1. 

 

 Aplicação 1: The analytical solutions for the cylindrical and spherical coordinates that will be used for 

comparison with the numerical results are, respectively, 
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where  A and B are constant. 

In this case, the following boundary conditions were considered T(0.5) = 0 and T(1) = C, with C 

constant. From the analytical solutions and using the boundary conditions, the following solutions were 

obtained, respectively:  

 

T(r) = C(ln(r)/ln(2)) + C  and  T(r) = -(C/r) + 2C. 

Table 1. Maximum Error for various C values (cylindrical coordinates). 

C 1 2 3 4 5 

Fourth Order 1.85E-11 1.85E-11 1.85E-11 1.85E-11 1.85E-11 

Second Order [2] 7.59E-05 1.51E-04 2.27E-04 3.03E-04 3.79E-04 
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Table 2. Maximum Error for various C values (spherical coordinates). 

C 1 2 3 4 5 

Fourth Order 6.95E-10 1.39E-09 2.08E-09 2.78E-09 3.47E-09 

Second Order [2] 8.94E-07 1.78E-06 2.62E-06 3.57E-06 4.05E-06 

 

Analyzing Tables 1 and 2 it is evident that the use of a discretization by Fourth Order Finite 

Difference Method presents an evolution in numerical precision. 
 

Aplicação 2: In this case, the exact solution T(r) = er was used for comparison with the numerical 

solution. For this, the values of Δr were varied to analyze how much it improved the numerical efficiency 

of the proposed formulation (see Table 3). It is evident the improvement of the numerical accuracy as Δr 

decreases. 
 

Table 3. Maximum error of the numerical solution in Application 2. 

Δr Cylindrical Spherical Δr Cylindrical Spherical 

0.05000 2.56E-06 6.38E-06 0.00455 2.00E-10 4.71E-10 

0.02500 1.72E-07 4.15E-07 0.00417 1.42E-10 3.33E-10 

0.01667 3.48E-08 8.32E-08 0.00385 1.03E-10 2.42E-10 

0.01250 1.12E-08 2.65E-08 0.00357 7.66E-11 1.80E-10 

0.01000 4.61E-09 1.09E-08 0.00333 5.85E-11 1.37E-10 

0.00833 2.23E-09 5.28E-09 0.00313 4.51E-11 1.06E-10 

0.00714 1.21E-09 2.86E-09 0.00294 3.52E-11 8.26E-11 

0.00625 7.12E-10 1.68E-09 0.00278 2.79E-11 6.56E-11 

0.00556 4.45E-10 1.05E-09 0.00263 2.25E-11 5.30E-11 

0.00500 2.93E-10 6.88E-10 0.00250 1.86E-11 4.34E-11 

 

4. Conclusion 

The expectation of using fourth order discretization and obtaining better results, in a very expressive 

way was achieved. It is important to note that a more detailed study of the cost benefit, for example, the 

increase of the computational cost versus the numerical efficiency when choosing between a second or 

fourth order discretization should be evaluated in more complex applications. 
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