Finite integral involving the spheroidal function, a class of polynomials multivariable Aleph-functions and Fresnel integral

$F.Y. AYANT^1$

1 Teacher in High School, France

ABSTRACT

In the present paper we evaluate a generalized finite integral involving the product of the spheroidal function, the Fresnel integral, the multivariable Aleph-functions and general class of polynomials of several variables with general arguments. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializating the parameters their in.

Keywords: Multivariable Aleph-function, general class of polynomials, spheroidal function, multivariable I-function, Aleph-function of two variables, Fresnel integral.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1.Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [4], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occuring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

$$\text{We define}: \aleph(z_1, \cdots, z_r) = \aleph_{p_i, q_i, \tau_i; R: p_{i(1)}, q_{i(1)}, \tau_{i(1)}; R^{(1)}; \cdots; p_{i(r)}, q_{i(r)}; \tau_{i(r)}; R^{(r)} \\ = \begin{bmatrix} (\mathbf{a}_j; \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{1, \mathbf{n}} \end{bmatrix} \cdot \begin{bmatrix} \tau_i(a_{ji}; \alpha_{ji}^{(1)}, \cdots, \alpha_{ji}^{(r)})_{\mathbf{n}+1, p_i} \end{bmatrix} : \\ \vdots \\ [\tau_i(b_{ji}; \beta_{ji}^{(1)}, \cdots, \beta_{ji}^{(r)})_{m+1, q_i} \end{bmatrix} :$$

$$\begin{array}{l} [(\mathbf{c}_{j}^{(1)});\gamma_{j}^{(1)})_{1,n_{1}}], [\tau_{i^{(1)}}(c_{ji^{(1)}}^{(1)};\gamma_{ji^{(1)}}^{(1)})_{n_{1}+1,p_{i}^{(1)}}]; \cdots; [(\mathbf{c}_{j}^{(r)});\gamma_{j}^{(r)})_{1,n_{r}}], [\tau_{i^{(r)}}(c_{ji^{(r)}}^{(r)};\gamma_{ji^{(r)}}^{(r)})_{n_{r}+1,p_{i}^{(r)}}] \\ [(\mathbf{d}_{j}^{(1)});\delta_{j}^{(1)})_{1,m_{1}}], [\tau_{i^{(1)}}(d_{ji^{(1)}}^{(1)};\delta_{ji^{(1)}}^{(1)})_{m_{1}+1,q_{i}^{(1)}}]; \cdots; [(\mathbf{d}_{j}^{(r)});\delta_{j}^{(r)})_{1,m_{r}}], [\tau_{i^{(r)}}(d_{ji^{(r)}}^{(r)};\delta_{ji^{(r)}}^{(r)})_{m_{r}+1,q_{i}^{(r)}}] \end{array}$$

$$= \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \cdots, s_r) \prod_{k=1}^r \theta_k(s_k) y_k^{s_k} ds_1 \cdots ds_r$$
 (1.1)

with $\omega = \sqrt{-1}$

$$\psi(s_1, \dots, s_r) = \frac{\prod_{j=1}^n \Gamma(1 - a_j + \sum_{k=1}^r \alpha_j^{(k)} s_k)}{\sum_{i=1}^R [\tau_i \prod_{j=n+1}^{p_i} \Gamma(a_{ji} - \sum_{k=1}^r \alpha_{ji}^{(k)} s_k) \prod_{j=1}^{q_i} \Gamma(1 - b_{ji} + \sum_{k=1}^r \beta_{ji}^{(k)} s_k)]}$$
(1.2)

and
$$\theta_k(s_k) = \frac{\prod_{j=1}^{m_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{n_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i^{(k)}=1}^{R_i^{(k)}} \prod_{j=m_k+1}^{q_{i^{(k)}}} \Gamma(1 - d_{ii^{(k)}}^{(k)} + \delta_{ii^{(k)}}^{(k)} s_k) \prod_{j=n_k+1}^{p_{i^{(k)}}} \Gamma(c_{ii^{(k)}}^{(k)} - \gamma_{ii^{(k)}}^{(k)} s_k)]}$$
 (1.3)

Suppose, as usual, that the parameters

$$a_j, j=1,\cdots,p; b_j, j=1,\cdots,q;$$

$$c_{j}^{(k)}, j = 1, \cdots, n_{k}; c_{ji^{(k)}}^{(k)}, j = n_{k} + 1, \cdots, p_{i^{(k)}};$$

$$d_{j}^{(k)}, j = 1, \cdots, m_{k}; d_{ji^{(k)}}^{(k)}, j = m_{k} + 1, \cdots, q_{i^{(k)}};$$

with
$$k=1\cdots,r, i=1,\cdots,R$$
 , $i^{(k)}=1,\cdots,R^{(k)}$

are complex numbers , and the $\alpha's, \beta's, \gamma's$ and $\delta's$ are assumed to be positive real numbers for standardization purpose such that

$$U_{i}^{(k)} = \sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)} + \tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{ji}^{(k)} + \sum_{j=1}^{n_{k}} \gamma_{j}^{(k)} + \tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i(k)}} \gamma_{ji^{(k)}}^{(k)} - \tau_{i} \sum_{j=1}^{q_{i}} \beta_{ji}^{(k)} - \sum_{j=1}^{m_{k}} \delta_{j}^{(k)}$$

$$-\tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i(k)}} \delta_{ji^{(k)}}^{(k)} \leq 0$$

$$(1.4)$$

The reals numbers au_i are positives for i=1 to R , $au_{i^{(k)}}$ are positives for $i^{(k)}=1$ to $R^{(k)}$

The contour L_k is in the s_k -p lane and run from $\sigma-i\infty$ to $\sigma+i\infty$ where σ is a real number with loop, if necessary ensure that the poles of $\Gamma(d_j^{(k)}-\delta_j^{(k)}s_k)$ with j=1 to m_k are separated from those of

$$\Gamma(1-a_j+\sum_{i=1}^r\alpha_j^{(k)}s_k)$$
 with $j=1$ to n and $\Gamma(1-c_j^{(k)}+\gamma_j^{(k)}s_k)$ with $j=1$ to n_k to the left of the

contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

$$|argz_k|<rac{1}{2}A_i^{(k)}\pi$$
 , where

$$A_{i}^{(k)} = \sum_{j=1}^{\mathfrak{n}} \alpha_{j}^{(k)} - \tau_{i} \sum_{j=\mathfrak{n}+1}^{p_{i}} \alpha_{ji}^{(k)} - \tau_{i} \sum_{j=1}^{q_{i}} \beta_{ji}^{(k)} + \sum_{j=1}^{n_{k}} \gamma_{j}^{(k)} - \tau_{i(k)} \sum_{j=n_{k}+1}^{p_{i}(k)} \gamma_{ji(k)}^{(k)}$$

$$+ \sum_{j=1}^{m_{k}} \delta_{j}^{(k)} - \tau_{i(k)} \sum_{j=m_{k}+1}^{q_{i}(k)} \delta_{ji(k)}^{(k)} > 0, \quad \text{with } k = 1, \cdots, r, i = 1, \cdots, R, i^{(k)} = 1, \cdots, R^{(k)}$$

$$(1.5)$$

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

$$\aleph(z_1, \dots, z_r) = 0(|z_1|^{\alpha_1}, \dots, |z_r|^{\alpha_r}), max(|z_1|, \dots, |z_r|) \to 0$$

$$\aleph(z_1, \dots, z_r) = 0(|z_1|^{\beta_1}, \dots, |z_r|^{\beta_r}), min(|z_1|, \dots, |z_r|) \to \infty$$

where, with
$$k=1,\cdots,r$$
: $\alpha_k=min[Re(d_j^{(k)}/\delta_j^{(k)})], j=1,\cdots,m_k$ and

$$\beta_k = max[Re((c_j^{(k)} - 1)/\gamma_j^{(k)})], j = 1, \dots, n_k$$

Serie representation of Aleph-function of several variables is given by

$$\aleph(y_1, \dots, y_r) = \sum_{G_1, \dots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \dots \sum_{g_r = 0}^{m_r} \frac{(-)^{G_1 + \dots + G_r}}{\delta_{g_1} G_1! \dots \delta_{g_r} G_r!} \psi(\eta_{G_1, g_1}, \dots, \eta_{G_r, g_r})$$

$$\times \ \theta_1(\eta_{G_1,g_1}) \cdots \theta_r(\eta_{G_r,g_r}) y_1^{-\eta_{G_1,g_1}} \cdots y_r^{-\eta_{G_r,g_r}}$$
(1.6)

Where $\psi(., \dots, .)$, $\theta_i(.)$, $i = 1, \dots, r$ are given respectively in (1.2), (1.3) and

$$\eta_{G_1,g_1} = \frac{d_{g_1}^{(1)} + G_1}{\delta_{g_1}^{(1)}}, \dots, \quad \eta_{G_r,g_r} = \frac{d_{g_r}^{(r)} + G_r}{\delta_{g_r}^{(r)}}$$

which is valid under the conditions $\delta_{g_i}^{(i)}[d_j^i+p_i]\neq \delta_j^{(i)}[d_{g_i}^i+G_i]$ (1.7)

for
$$j \neq m_i, m_i = 1, \dots, \eta_{G_i, g_i}; p_i, n_i = 0, 1, 2, \dots, y_i \neq 0, i = 1, \dots, r$$
 (1.8)

Consider the Aleph-function of s variables

$$\aleph(z_1, \cdots, z_s) = \aleph_{P_i, Q_i, \iota_i; r': P_{i^{(1)}}, Q_{i^{(1)}}, \iota_{i^{(1)}}; r^{(1)}; \cdots; P_{i^{(s)}}, Q_{i^{(s)}}; \iota_{i^{(s)}}; r^{(s)}} \begin{pmatrix} z_1 \\ \vdots \\ \vdots \\ z_s \end{pmatrix}$$

$$\begin{array}{l} [(\mathbf{a}_{j}^{(1)});\alpha_{j}^{(1)})_{1,N_{1}}], [\iota_{i^{(1)}}(a_{ji^{(1)}}^{(1)};\alpha_{ji^{(1)}}^{(1)})_{N_{1}+1,P_{i}^{(1)}}]; \cdots; [(\mathbf{a}_{j}^{(s)});\alpha_{j}^{(s)})_{1,N_{s}}], [\iota_{i^{(s)}}(a_{ji^{(s)}}^{(s)};\alpha_{ji^{(s)}}^{(s)})_{N_{s}+1,P_{i}^{(s)}}] \\ [(\mathbf{b}_{j}^{(1)});\beta_{j}^{(1)})_{1,M_{1}}], [\iota_{i^{(1)}}(b_{ji^{(1)}}^{(1)};\beta_{ji^{(1)}}^{(1)})_{M_{1}+1,Q_{i}^{(1)}}]; \cdots; [(\mathbf{b}_{j}^{(s)});\beta_{j}^{(s)})_{1,M_{s}}], [\iota_{i^{(s)}}(b_{ji^{(s)}}^{(s)};\beta_{ji^{(s)}}^{(s)})_{M_{s}+1,Q_{i}^{(s)}}] \end{array}$$

$$= \frac{1}{(2\pi\omega)^s} \int_{L_1} \cdots \int_{L_s} \zeta(t_1, \cdots, t_s) \prod_{k=1}^s \phi_k(t_k) z_k^{t_k} dt_1 \cdots dt_s$$

$$\tag{1.9}$$

with $\omega = \sqrt{-1}$

$$\zeta(t_1, \dots, t_s) = \frac{\prod_{j=1}^{N} \Gamma(1 - u_j + \sum_{k=1}^{s} \mu_j^{(k)} t_k)}{\sum_{i=1}^{r'} \left[\iota_i \prod_{j=N+1}^{P_i} \Gamma(u_{ji} - \sum_{k=1}^{s} \mu_{ji}^{(k)} t_k) \prod_{j=1}^{Q_i} \Gamma(1 - v_{ji} + \sum_{k=1}^{s} v_{ji}^{(k)} t_k) \right]}$$
(1.10)

$$\text{and } \phi_k(t_k) = \frac{\prod_{j=1}^{M_k} \Gamma(b_j^{(k)} - \beta_j^{(k)} t_k) \prod_{j=1}^{N_k} \Gamma(1 - a_j^{(k)} + \alpha_j^{(k)} s_k)}{\sum_{i^{(k)} = 1}^{\Gamma^{(k)}} [\iota_{i^{(k)}} \prod_{j=M_k+1}^{Q_{i^{(k)}}} \Gamma(1 - b_{ji^{(k)}}^{(k)} + \beta_{ji^{(k)}}^{(k)} t_k) \prod_{j=N_k+1}^{P_{i^{(k)}}} \Gamma(a_{ji^{(k)}}^{(k)} - \alpha_{ji^{(k)}}^{(k)} s_k)]} (1.11)$$

ISSN: 2231-5373 http://www.ijmttjournal.org

Suppose, as usual, that the parameters

$$\begin{split} u_j, j &= 1, \cdots, P; v_j, j = 1, \cdots, Q; \\ a_j^{(k)}, j &= 1, \cdots, N_k; a_{ji^{(k)}}^{(k)}, j = n_k + 1, \cdots, P_{i^{(k)}}; \\ b_{ji^{(k)}}^{(k)}, j &= m_k + 1, \cdots, Q_{i^{(k)}}; b_j^{(k)}, j = 1, \cdots, M_k; \\ \text{with } k &= 1 \cdots, s, i = 1, \cdots, r', i^{(k)} = 1, \cdots, r^{(k)} \end{split}$$

are complex numbers , and the $\alpha's, \beta's, \gamma's$ and $\delta's$ are assumed to be positive real numbers for standardization purpose such that

$$U_{i}^{(k)} = \sum_{j=1}^{N} \mu_{j}^{(k)} + \iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{ji}^{(k)} + \sum_{j=1}^{N_{k}} \alpha_{j}^{(k)} + \iota_{i(k)} \sum_{j=N_{k}+1}^{P_{i(k)}} \alpha_{ji(k)}^{(k)} - \iota_{i} \sum_{j=1}^{Q_{i}} v_{ji}^{(k)} - \sum_{j=1}^{M_{k}} \beta_{j}^{(k)}$$

$$-\iota_{i(k)} \sum_{j=M_{k}+1}^{Q_{i(k)}} \beta_{ji(k)}^{(k)} \leqslant 0$$

$$(1.12)$$

The reals numbers au_i are positives for $i=1,\cdots,r$, $\iota_{i^{(k)}}$ are positives for $i^{(k)}=1\cdots r^{(k)}$

The contour L_k is in the t_k -p lane and run from $\sigma-i\infty$ to $\sigma+i\infty$ where σ is a real number with loop , if necessary ,ensure that the poles of $\Gamma(b_j^{(k)}-\beta_j^{(k)}t_k)$ with j=1 to M_k are separated from those of $\Gamma(1-u_j+\sum_{i=1}^s\mu_j^{(k)}t_k)$ with j=1 to N and $\Gamma(1-a_j^{(k)}+\alpha_j^{(k)}t_k)$ with j=1 to N_k to the left of the contour L_k . The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

$$|argz_k|<rac{1}{2}B_i^{(k)}\pi$$
 , where

$$B_{i}^{(k)} = \sum_{j=1}^{N} \mu_{j}^{(k)} - \iota_{i} \sum_{j=N+1}^{P_{i}} \mu_{ji}^{(k)} - \iota_{i} \sum_{j=1}^{Q_{i}} \upsilon_{ji}^{(k)} + \sum_{j=1}^{N_{k}} \alpha_{j}^{(k)} - \iota_{i(k)} \sum_{j=N_{k}+1}^{P_{i(k)}} \alpha_{ji}^{(k)}$$

$$+ \sum_{j=1}^{M_{k}} \beta_{j}^{(k)} - \iota_{i(k)} \sum_{j=M_{k}+1}^{q_{i(k)}} \beta_{ji}^{(k)} > 0, \text{ with } k = 1, \dots, s, i = 1, \dots, r, i^{(k)} = 1, \dots, r^{(k)}$$

$$(1.13)$$

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

$$\begin{split} \aleph(z_1,\cdots,z_s) &= 0(\ |z_1|^{\alpha_1'},\cdots,|z_s|^{\alpha_s'})\ , max(\ |z_1|,\cdots,|z_s|\) \to 0 \\ \aleph(z_1,\cdots,z_s) &= 0(\ |z_1|^{\beta_1'},\cdots,|z_s|^{\beta_s'})\ , min(\ |z_1|,\cdots,|z_s|\) \to \infty \\ \text{where, with } k = 1,\cdots,z: \alpha_k' = min[Re(b_j^{(k)}/\beta_j^{(k)})], j = 1,\cdots,M_k \text{ and} \\ \beta_k' &= max[Re((a_j^{(k)}-1)/\alpha_j^{(k)})], j = 1,\cdots,N_k \end{split}$$

We will use these following notations in this paper

$$U = P_i, Q_i, \iota_i; r'; V = M_1, N_1; \dots; M_s, N_s$$
 (1.15)

$$W = P_{i(1)}, Q_{i(1)}, \iota_{i(1)}; r^{(1)}, \cdots, P_{i(r)}, Q_{i(r)}, \iota_{i(s)}; r^{(s)}$$
(1.16)

$$A = \{(u_j; \mu_j^{(1)}, \cdots, \mu_j^{(s)})_{1,N}\}, \{\iota_i(u_{ji}; \mu_{ji}^{(1)}, \cdots, \mu_{ji}^{(s)})_{N+1,P_i}\}$$
(1.17)

$$B = \{ \iota_i(v_{ji}; v_{ji}^{(1)}, \cdots, v_{ji}^{(s)})_{M+1, Q_i} \}$$
(1.18)

$$C = (a_{j}^{(1)}; \alpha_{j}^{(1)})_{1,N_{1}}, \iota_{i^{(1)}}(a_{ji^{(1)}}^{(1)}; \alpha_{ji^{(1)}}^{(1)})_{N_{1}+1, P_{i^{(1)}}}, \cdots, (a_{j}^{(s)}; \alpha_{j}^{(s)})_{1,N_{s}}, \iota_{i^{(s)}}(a_{ji^{(s)}}^{(s)}; \alpha_{ji^{(s)}}^{(s)})_{N_{s}+1, P_{i^{(s)}}}$$
(1.19)

$$D = (b_j^{(1)}; \beta_j^{(1)})_{1,M_1}, \iota_{i^{(1)}}(b_{ji^{(1)}}^{(1)}; \beta_{ji^{(1)}}^{(1)})_{M_1+1,Q_{i^{(1)}}}, \cdots, (b_j^{(s)}; \beta_j^{(s)})_{1,M_s}, \iota_{i^{(s)}}(\beta_{ji^{(s)}}^{(s)}; \beta_{ji^{(s)}}^{(s)})_{M_s+1,Q_{i^{(s)}}}$$
(1.20)

The multivariable Aleph-function write:

$$\aleph(z_1, \dots, z_s) = \aleph_{U:W}^{0, N:V} \begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ \cdot \\ z_s \end{pmatrix} A : C$$

$$(1.21)$$

The generalized polynomials defined by Srivastava [7], is given in the following manner:

$$S_{N_1,\dots,N_t}^{M_1,\dots,M_t}[y_1,\dots,y_t] = \sum_{K_1=0}^{[N_1/M_1]} \dots \sum_{K_t=0}^{[N_t/M_t]} \frac{(-N_1)_{M_1K_1}}{K_1!} \dots \frac{(-N_t)_{M_tK_t}}{K_t!}$$

$$A[N_1, K_1; \cdots; N_t, K_t] y_1^{K_1} \cdots y_t^{K_t}$$
(1.22)

Where M_1, \dots, M_s are arbitrary positive integers and the coefficients $A[N_1, K_1; \dots; N_t, K_t]$ are arbitrary constants, real or complex. In the present paper, we use the following notation

$$a_1 = \frac{(-N_1)_{M_1 K_1}}{K_1!} \cdots \frac{(-N_t)_{M_t K_t}}{K_t!} A[N_1, K_1; \cdots; N_t, K_t]$$
(1.23)

In the document, we note

$$G(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r}) = \phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})\theta_1(\eta_{G_1,g_1})\cdots\theta_r(\eta_{G_r,g_r})$$
(1.24)

where $\phi(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})$, $\theta_1(\eta_{G_1,g_1}),\cdots,\theta_r(\eta_{G_r,g_r})$ are given respectively in (1.2) and (1.3)

The spheroidal function $\psi_{\alpha n}(c,\eta)$ of general order $\alpha>-1$ can be expansed as ([3] an [8].

$$\psi_{\alpha n}(c,\eta) = \frac{i^n \sqrt{2\pi}}{V_{\alpha n(c)}} \sum_{k=0, \alpha r, 1}^{\infty_*} a_k(c|\alpha n)(c\eta)^{-\alpha - \frac{1}{2}} J_{k+\alpha + \frac{1}{2}}(c\eta)$$
(1.25)

which represents the function uniformly on (∞, ∞) , where the coefficients $a_k(c|\alpha n)$ satisfy the recursion formula [14,eq.67] and the asterisk over the summation sign indicates that the sum is taken over only even or odd values of k according as n is even or odd. As $c \to 0$, $a_k(c|\alpha n) \to 0$, $k \ne n$

The Fresnel integral denoted S(z) is defined by : see Abramowitz M and Stegun I.A. ([1],page 89(300))

$$S(z) = \int_0^z \sin\left(\frac{\pi}{2}t^2\right) dt \tag{1.25}$$

2. Required integral

We have the following integral, see Brychkow ([2], 4.5.1, 1page 189).

$$\int_0^a x^{s-1} (a-x)^{t-1} S\left(b\sqrt{x(a-x)}\right) \mathrm{d}x = \frac{a^{s+t+\frac{1}{2}}}{3} \sqrt{\frac{2b^3}{\pi}} \ B\left(s+\frac{3}{4},t+\frac{3}{4}\right)$$

$$\times {}_{3}F_{4}\left(\begin{array}{ccc} \frac{3}{4}, s + \frac{3}{4}, t + \frac{3}{4} \\ & \cdot & \cdot \\ \frac{3}{2}, \frac{7}{4}, \frac{s+t}{2} + \frac{3}{4}, \frac{s+t}{2} + \frac{5}{4} \end{array}; -\frac{(ab)^{2}}{16}\right)$$

$$(2.1)$$

where
$$a>0, Re(s)>-\frac{3}{4}, Re(t)>-\frac{3}{4}$$

3. Main integral

Let $X_{s,t} = x^s(a-x)^t$, We have the following generalized finite integral:

$$\int_0^a x^{s'-1} (a-x)^{t'-1} S(b\sqrt{x(a-x)}) \psi_{\alpha n}(c^{\sigma}, X_{\alpha,\beta}) S_{N_1, \dots, N_t}^{M_1, \dots, M_t} \begin{pmatrix} y_1 X_{\gamma_1, \mu_1} \\ \dots \\ y_t X_{\gamma_t, \mu_t} \end{pmatrix}$$

$$\aleph_{u:w}^{0,\mathfrak{n}:v} \left(\begin{array}{c} \mathbf{z}_1 X_{\alpha_1,\beta_1} \\ \dots \\ \mathbf{z}_r X_{\alpha_r,\beta_r} \end{array} \right) \aleph_{U:W}^{0,N:V} \left(\begin{array}{c} \mathbf{Z}_1 X_{\eta_1,\epsilon_1} \\ \dots \\ \mathbf{Z}_s X_{\eta_s,\epsilon_s} \end{array} \right) \mathrm{d}x = \frac{a^{s'+t'+\frac{1}{2}}}{3} \sqrt{\frac{2b^3}{\pi}} \sum_{n'=0}^{\infty} \sum_{k=0,or1}^{\infty_*} \sum_{m=0}^{\infty_*} \sum_{m=0}^$$

$$\sum_{G_1,\cdots,G_r=0}^{\infty} \sum_{g_1=0}^{m_1} \cdots \sum_{g_r=0}^{m_r} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{K_t=0}^{[N_t/M_t]} a_1 \frac{(-)^{G_1+\cdots+G_r}}{\delta_{g_1}G_1!\cdots\delta_{g_r}G_r!} G(\eta_{G_1,g_1},\cdots,\eta_{G_r,g_r})$$

$$\frac{(-)^m a_k(c^{\sigma}|\alpha n)}{m!\Gamma(m+k+\alpha+\frac{3}{2})} \frac{\left(\frac{3}{4}\right)_{n'}(-ab)^{2n'}}{16^{n'}\left(\frac{3}{2}\right)_{n'}\left(\frac{7}{4}\right)_{n'}n'!} x_1^{p_1} \cdots x_s^{p_s} z_1^{\eta_{G_1,g_1}} \cdots z_r^{\eta_{G_r,g_r}} y_1^{K_1} \cdots y_t^{K_t} c^{\sigma(2m+k)}$$

$$a^{(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i})} \aleph_{U_{43}:W}^{0,N+3:V} \begin{pmatrix} Z_{1}a^{\eta_{1}+\epsilon_{1}} & & \\ & \ddots & & \\ & & \ddots & \\ & & \ddots & \\ & & Z_{s}a^{\eta_{s}+\epsilon_{s}} \end{pmatrix}$$

$$(\frac{1}{4} - n' - (s' + (2m + k)\alpha + \sum_{i=1}^{t} K_i \gamma_i + \sum_{i=1}^{r} \eta_{G_i, g_i} \alpha_i); \eta_1, \dots, \eta_s),$$

$$(-\frac{1}{2} - (s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i)); \epsilon_1 + \eta_1, \dots, \epsilon_s + \eta_s),$$

$$(\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(-\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(-\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$\frac{(\frac{1}{4}-n'-(t'+(2m+k)\beta+\sum_{i=1}^{t}K_{i}\mu_{i}+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}\beta_{i});\epsilon_{1},\cdots,\epsilon_{s}),A:C}{\vdots}$$
B: D
(3.1)

where $U_{43} = P_i + 4$; $Q_i + 3$; ι_i ; r'

Provided that

a)
$$min\{\alpha, \beta, \rho_i, \delta_i, \gamma_j, \mu_j, \alpha_k, \beta_k, \eta_l, \epsilon_l\} > 0, i = 1, \dots, s, j = 1, \dots, t, k = 1, \dots, r, l = 1, \dots, R$$

$$\text{b)}\, Re\big[s' + (2m+k)\alpha + \sum_{i=1}^r \alpha_i \min_{1\leqslant j\leqslant m_i} \frac{d_j^{(i)}}{\delta_j^{(i)}} + \sum_{i=1}^R \eta_i \min_{1\leqslant j\leqslant M_i} \frac{b_j^{(i)}}{\beta_j^{(i)}}\big] > -\frac{3}{4}$$

c)
$$Re\left[t' + (2m+k)\beta + \sum_{i=1}^{r} \beta_{i} \min_{1 \leqslant j \leqslant m_{i}} \frac{d_{j}^{(i)}}{\delta_{j}^{(i)}} + \sum_{i=1}^{R} \epsilon_{i} \min_{1 \leqslant j \leqslant M_{i}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right] > -\frac{3}{4}$$

d)
$$|argz_k|<rac{1}{2}A_i^{(k)}\pi$$
 , $\ \ ext{where}\ A_i^{(k)}$ is defined by (1.5) ; $i=1,\cdots,r$

f) The series occurring on the right-hand side of (3.1) is absolutely and uniformly convergent and a>0

Proof

First, expressing the spheroidal function $\psi_{\alpha n}(c^\sigma, X_{\alpha,\beta})$ in serie with the help of equation (1.25), the Aleph-function of r variables in series with the help of equation (1.6), the general class of polynomial of several variables $S_{N_1,\cdots,N_t}^{M_1,\cdots,M_t}$ with the help of equation (1.22) and the Aleph-function of s variables in Mellin-Barnes contour integral with the help of equation (1.9), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process) and then evaluating the resulting integral with the help of equation (2.1) and expressing the generalized hypergeometric function ${}_3F_4$ in serie , use the following relations $\Gamma(a)(a)_n = \Gamma(a+n)$ and $a = \frac{\Gamma(a+1)}{\Gamma(a)}$ with Re(a) > 0. Finally interpreting the result thus obtained with

the Mellin-barnes contour integral, we arrive at the desired result.

4. Multivariable I-function

If $\iota_i, \iota_{i^{(1)}}, \cdots, \iota_{i^{(s)}} \to 1$, the Aleph-function of several variables degenere to the I-function of several variables. The simple integral have been derived in this section for multivariable I-functions defined by Sharma et al [4].

Corollary 1

$$\int_0^a x^{s'-1} (a-x)^{t'-1} S(b\sqrt{x(a-x)}) \psi_{\alpha n}(c^{\sigma}, X_{\alpha,\beta}) S_{N_1, \dots, N_t}^{M_1, \dots, M_t} \begin{pmatrix} y_1 X_{\gamma_1, \mu_1} \\ \dots \\ y_t X_{\gamma_t, \mu_t} \end{pmatrix}$$

$$\aleph_{u:w}^{0,\mathfrak{n}:v} \left(\begin{array}{c} \mathbf{z}_{1} X_{\alpha_{1},\beta_{1}} \\ \dots \\ \mathbf{z}_{r} X_{\alpha_{r},\beta_{r}} \end{array} \right) I_{U:W}^{0,N:V} \left(\begin{array}{c} \mathbf{Z}_{1} X_{\eta_{1},\epsilon_{1}} \\ \dots \\ \mathbf{Z}_{s} X_{\eta_{s},\epsilon_{s}} \end{array} \right) \mathrm{d}x = \frac{a^{s'+t'+\frac{1}{2}}}{3} \sqrt{\frac{2b^{3}}{\pi}} \sum_{n'=0}^{\infty} \sum_{k=0,or1}^{\infty*} \sum_{m=0}^{\infty} \sum_{k=0,or1}^{\infty} \sum_{m=0}^{\infty} \sum_{m=0}^{$$

$$\sum_{G_1, \dots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \dots \sum_{g_r = 0}^{m_r} \sum_{K_1 = 0}^{[N_1/M_1]} \dots \sum_{K_t = 0}^{[N_t/M_t]} a_1 \frac{(-)^{G_1 + \dots + G_r}}{\delta_{g_1} G_1! \dots \delta_{g_r} G_r!} G(\eta_{G_1, g_1}, \dots, \eta_{G_r, g_r})$$

$$\frac{(-)^m a_k(c^{\sigma}|\alpha n)}{m!\Gamma(m+k+\alpha+\frac{3}{2})} \frac{\left(\frac{3}{4}\right)_{n'}(-ab)^{2n'}}{16^{n'}\left(\frac{3}{2}\right)_{n'}\left(\frac{7}{4}\right)_{n'}n'!} x_1^{p_1} \cdots x_s^{p_s} z_1^{\eta_{G_1,g_1}} \cdots z_r^{\eta_{G_r,g_r}} y_1^{K_1} \cdots y_t^{K_t} c^{\sigma(2m+k)}$$

$$a^{(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i})}I_{U_{43}:W}^{0,N+4:V}\begin{pmatrix} Z_{1}a^{\eta_{1}+\epsilon_{1}} & & \\ & \ddots & & \\ & & \ddots & \\ & & Z_{s}a^{\eta_{s}+\epsilon_{s}} \end{pmatrix}$$

$$(\frac{1}{4}-n'-(s'+(2m+k)\alpha+\sum_{i=1}^{t}K_{i}\gamma_{i}+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}\alpha_{i});\eta_{1},\cdots,\eta_{s}),$$

$$\vdots$$

$$(-\frac{1}{2}-(s'+t'+(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}));\epsilon_{1}+\eta_{1},\cdots,\epsilon_{s}+\eta_{s}),$$

$$(\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(-\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$(-\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2}),$$

$$\frac{(\frac{1}{4}-n'-(t'+(2m+k)\beta+\sum_{i=1}^{t}K_{i}\mu_{i}+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}\beta_{i});\epsilon_{1},\cdots,\epsilon_{s}),A:C}{\vdots}$$
B: D

under the same notationa and conditions that (3.1) with $\iota_i, \iota_{i^{(1)}}, \cdots, \iota_{i^{(s)}} \to 1$

5. Aleph-function of two variables

If s=2, we obtain the Aleph-function of two variables defined by K.Sharma [6], and we have the following simple integrals.

Corollary 2

$$\int_0^a x^{s'-1} (a-x)^{t'-1} S(b\sqrt{x(a-x)}) \psi_{\alpha n}(c^{\sigma}, X_{\alpha,\beta}) S_{N_1, \dots, N_t}^{M_1, \dots, M_t} \begin{pmatrix} y_1 X_{\gamma_1, \mu_1} \\ \dots \\ y_t X_{\gamma_t, \mu_t} \end{pmatrix}$$

$$\aleph_{u:w}^{0,\mathfrak{n}:v} \left(\begin{array}{c} \mathbf{z}_1 X_{\alpha_1,\beta_1} \\ \dots \\ \mathbf{z}_r X_{\alpha_r,\beta_r} \end{array} \right) \aleph_{U:W}^{0,N:V} \left(\begin{array}{c} \mathbf{Z}_1 X_{\eta_1,\epsilon_1} \\ \dots \\ \mathbf{Z}_2 X_{\eta_2,\epsilon_2} \end{array} \right) \mathrm{d}x = \frac{a^{s'+t'+\frac{1}{2}}}{3} \sqrt{\frac{2b^3}{\pi}} \sum_{n'=0}^{\infty} \sum_{k=0,or1}^{\infty_*} \sum_{m=0}^{\infty} \left(\sum_{k=0,or1}^{\infty} \sum_{m=0}^{\infty} \sum_{m=0}^{\infty}$$

$$\sum_{G_1, \cdots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \cdots \sum_{g_r = 0}^{m_r} \sum_{K_1 = 0}^{[N_1/M_1]} \cdots \sum_{K_t = 0}^{[N_t/M_t]} a_1 \frac{(-)^{G_1 + \cdots + G_r}}{\delta_{g_1} G_1! \cdots \delta_{g_r} G_r!} G(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r})$$

$$\frac{(-)^m a_k(c^{\sigma}|\alpha n)}{m!\Gamma(m+k+\alpha+\frac{3}{2})} \frac{\left(\frac{3}{4}\right)_{n'}(-ab)^{2n'}}{16^{n'}\left(\frac{3}{2}\right)_{n'}\left(\frac{7}{4}\right)_{n'}n'!} x_1^{p_1} \cdots x_s^{p_s} z_1^{\eta_{G_1,g_1}} \cdots z_r^{\eta_{G_r,g_r}} y_1^{K_1} \cdots y_t^{K_t} c^{\sigma(2m+k)}$$

$$a^{(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i})} \aleph_{U_{43}:W}^{0,N+4:V} \begin{pmatrix} Z_{1}a^{\eta_{1}+\epsilon_{1}} \\ \cdot \cdot \cdot \\ ... \\ Z_{2}a^{\eta_{2}+\epsilon_{2}} \end{pmatrix}$$

$$(\frac{1}{4} - n' - (s' + (2m + k)\alpha + \sum_{i=1}^{t} K_i \gamma_i + \sum_{i=1}^{r} \eta_{G_i, g_i} \alpha_i); \eta_1, \eta_2),$$

$$(-\frac{1}{2} - (s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i)); \epsilon_1 + \eta_1, \epsilon_2 + \eta_2),$$

$$(\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$...$$

$$(\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$(-\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$(-\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$\begin{pmatrix} (\frac{1}{4}-n'-(t'+(2m+k)\beta + \sum_{i=1}^{t} K_{i}\mu_{i} + \sum_{i=1}^{r} \eta_{G_{i},g_{i}}\beta_{i}); \epsilon_{1}, \epsilon_{2}), A : C \\ \vdots \\ B : D \end{pmatrix}$$
(5.1)

under the same notation and conditions that (3.1) with s=2

6. I-function of two variables

If $\iota_i, \iota_i', \iota_i'' \to 1$, then the Aleph-function of two variables degenere in the I-function of two variables defined by sharma et al [5] and we obtain the same formula with the I-function of two variables.

Corollary 3

$$\int_0^a x^{s'-1} (a-x)^{t'-1} S(b\sqrt{x(a-x)}) \ \psi_{\alpha n}(c^{\sigma}, X_{\alpha,\beta}) \ S_{N_1, \cdots, N_t}^{M_1, \cdots, M_t} \begin{pmatrix} y_1 X_{\gamma_1, \mu_1} \\ \ddots \\ y_t X_{\gamma_t, \mu_t} \end{pmatrix}$$

$$\aleph_{u:w}^{0,\mathfrak{n}:v} \left(\begin{array}{c} \mathbf{z}_1 X_{\alpha_1,\beta_1} \\ \vdots \\ \mathbf{z}_r X_{\alpha_r,\beta_r} \end{array} \right) I_{U:W}^{0,N:V} \left(\begin{array}{c} \mathbf{Z}_1 X_{\eta_1,\epsilon_1} \\ \vdots \\ \mathbf{Z}_2 X_{\eta_2,\epsilon_2} \end{array} \right) \mathrm{d}x = \frac{a^{s'+t'+\frac{1}{2}}}{3} \sqrt{\frac{2b^3}{\pi}} \sum_{n'=0}^{\infty} \sum_{k=0,or1}^{\infty_*} \sum_{m=0}^{\infty} \sum_{k=0,or1}^{\infty} \sum_{m=0}^{\infty} \sum_{m=0}^{\infty$$

$$\sum_{G_1, \dots, G_r=0}^{\infty} \sum_{g_1=0}^{m_1} \dots \sum_{g_r=0}^{m_r} \sum_{K_1=0}^{[N_1/M_1]} \dots \sum_{K_t=0}^{[N_t/M_t]} a_1 \frac{(-)^{G_1+\dots+G_r}}{\delta_{g_1}G_1! \dots \delta_{g_r}G_r!} G(\eta_{G_1, g_1}, \dots, \eta_{G_r, g_r})$$

$$\frac{(-)^m a_k(c^{\sigma}|\alpha n)}{m!\Gamma(m+k+\alpha+\frac{3}{2})} \frac{\left(\frac{3}{4}\right)_{n'}(-ab)^{2n'}}{16^{n'}\left(\frac{3}{2}\right)_{n'}\left(\frac{7}{4}\right)_{n'}n'!} x_1^{p_1} \cdots x_s^{p_s} z_1^{\eta_{G_1,g_1}} \cdots z_r^{\eta_{G_r,g_r}} y_1^{K_1} \cdots y_t^{K_t} c^{\sigma(2m+k)}$$

$$a^{(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i})}I_{U_{43}:W}^{0,N+4:V}\begin{pmatrix} Z_{1}a^{\eta_{1}+\epsilon_{1}} & & \\ & \ddots & & \\ & & \ddots & \\ & & & Z_{2}a^{\eta_{2}+\epsilon_{2}} \end{pmatrix}$$

$$(\frac{1}{4}-n'-(s'+(2m+k)\alpha+\sum_{i=1}^{t}K_{i}\gamma_{i}+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}\alpha_{i});\eta_{1},\eta_{2}),$$

$$\cdot \cdot \cdot$$

$$(-\frac{1}{2}-(s'+t'+(2m+k)(\alpha+\beta)+\sum_{i=1}^{t}K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}));\epsilon_{1}+\eta_{1},\epsilon_{2}+\eta_{2}),$$

$$(\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$...$$

$$(\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$(-\frac{1}{4} - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$(-\frac{1}{4} - n' - \frac{1}{2}(s' + t' + (2m + k)(\alpha + \beta) + \sum_{i=1}^{t} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i,g_i}(\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \frac{\epsilon_2 + \eta_2}{2}),$$

$$\frac{(\frac{1}{4}-n'-(t'+(2m+k)\beta+\sum_{i=1}^{t}K_{i}\mu_{i}+\sum_{i=1}^{r}\eta_{G_{i},g_{i}}\beta_{i});\epsilon_{1},\epsilon_{2}),A:C}{\vdots}$$
B: D

under the same notation and conditions that (3.1) with s=2 and $\iota_i, \iota_i', \iota_i'' \to 1$

7. Conclusion

In this paper we have evaluated a generalized finite integral involving the multivariable Aleph-functions, the Fresnel integral function, a class of polynomials of several variables and the spheroidal function. The integral established in this paper is of very general nature as it contains Multivariable Aleph-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

- [1] Abramowitz M and Stegun I.A. Handbook of Mathematical Functions, 1964,
- [2] Brychkow Y.A. Handbook of Special Functions. Derivatives. Integrals, Series and Other Formulas. CRC. Press. Taykor and Francis Group. Boca. Raton. London. New York. 2008.
- [3] Rhodes D.R. On the spheroidal functions. J. Res. Nat. Bur. Standards. Sect. B 74(1970), page 187-209.
- [4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113-116.
- [5] C.K. Sharma and P.L. mishra: On the I-function of two variables and its properties. Acta Ciencia Indica Math, 1991 Vol 17 page 667-672.
- [6] Sharma K. On the integral representation and applications of the generalized function of two variables, International Journal of Mathematical Engineering and Sciences, Vol 3, issue1 (2014), page1-13.
- [7] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
- [8] Stratton J.A. And Chu L.J. Elliptic and spheroidal wave function J. Math. And Phys. 20 (1941), page 259-309.

Personal adress: 411 Avenue Joseph Raynaud

ISSN: 2231-5373

Le parc Fleuri , Bat B

83140 , Six-Fours les plages

Tel: 06-83-12-49-68
Department: VAR
Country: FRANCE