Some Separation Axioms in Soft Biminimal Spaces

R. GOWRI¹ and S. VEMBU²

 $^{\rm 1}$ Department of Mathematics, Government College for Women (Autonomous), Kumbakonam, India

² Research Scholar, Department of Mathematics, Government College for Women(Autonomous), Kumbakonam, India

Abstract

The aim of the present paper is to introduce and investigate some new separation axioms soft T_i -space (i=0,1,2) by using only pair of distinct soft points and we study some of their properties.

Mathematics Subject Classification: 54A05, 54B05, 54D10.

Keywords: Soft sets, Soft biminimal space, Pairwise soft T_0 -space, Pairwise soft T_1 -space, Pairwise soft T_2 -space, Pairwise soft semi Hausdroff space, Pairwise soft Pseudo Hausdroff space and Pairwise soft Uryshon space

1 Introduction

C. Boonpok [1] introduced the concept of biminimal structure space and studied $m_X^1 m_X^2$ -open sets and $m_X^1 m_X^2$ -closed sets in biminimal structure spaces. M. Tunapan [16] introduced some separation axiom in biminimal structure spaces such as CT_0 -space, CT_1 -space, C-Hausdorff space, C-regular space and C-normal space in a biminimal structure space. Russian researcher Molodtsov [9], initiated the concept of soft sets as a new mathematical tool to deal with problems in engineering physics, computer science, economics, social sciences and medical sciences. Later, he applied this theory to several directions [10] [11]. In this paper, we introduce and study some separation axioms in soft biminimal spaces.

2 Preliminaries

ISSN: 2231-5373

In this section, we recall the basic definitions and results of soft set. Throughout this paper U denotes initial universe, E denotes the set of all possible parameters, P(U) is the power set of U, and A is the non-empty subset of E. That is $A \subseteq E$

Definition 2.1 [2] A soft set F_A on the universe U is defined by the set of ordered pairs $F_A = \{(x, f_A(x)) : x \in E\}$, where $f_A : E \to P(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$. Here, f_A is called approximate function of the soft set F_A . The value of $f_A(x)$ may be arbitrary, some of them may be empty, some may have non empty intersection.

Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 [2] Let $F_A \in S(U)$. If $f_A(x) = \emptyset$ for all $x \in E$, then F_A is called an empty set, denoted by F_{\emptyset} . $f_A(x) = \emptyset$ means that there is no element in U related

to the parameter $x \in E$. Therefore we do not display such elements in the soft set as it is meaningless to consider such parameters

Definition 2.3 [2] Let $F_A \in S(U)$. If $f_A(x) = U$ for all $x \in E$, then F_A is called A-universal soft set, denoted by $F_{\tilde{A}}$. If A = E, then the A-universal soft set is called an universal soft set, denoted by $F_{\tilde{E}}$.

Definition 2.4 [2] Let $F_A, F_B \in S(U)$. Then F_B is a soft subset of F_A (or F_A is a soft superset of F_B), denoted by $F_A \subseteq F_B$, if $f_A(x) \subseteq f_B(x)$ for all $x \in E$.

Definition 2.5 [2] Let $F_A, F_B \in S(U)$. Then F_B and F_A are soft equal, denoted by $F_B = F_A, f_A(x) \subseteq f_B(x)$ for all $x \in E$.

[2]

Definition 2.6 [2] Let $F_A, F_B \in S(U)$. Then the soft union of F_A and F_B , denoted by $F_A \cup F_B$, is defined by the approximate functions $f_{A \cup B}(x) = f_A(x) \cup f_B(x)$.

Definition 2.7 [2] Let $F_A, F_B \in S(U)$. Then the soft intersection of F_A and F_B , denoted by $F_A \cap F_B$, is defined by the approximate functions $f_{A \cap B}(x) = f_A(x) \cap f_B(x).F_A$ and F_B are soft disjoint is said to be if $F_A \cap F_B = F_\emptyset$

Definition 2.8 [2] Let $F_A, F_B \in S(U)$. Then the soft difference of F_A and F_B , denoted by $F_A \setminus F_B$, is defined by the approximate functions $f_{(A \setminus B)}(x) = f_A(x) \setminus f_B(x)$.

Definition 2.9 [2] Let $F_A \in S(U)$. Then the soft complement of F_A , denoted by $F_A^{\tilde{c}}$ is defined by the approximate function $f_{A^{\tilde{c}}}(x) = f_A^c(x)$, where $f_A^c(x)$ is complement of the set $f_A(x)$.that is, $f_A^c(x) = U \setminus f_A(x)$ for all $x \in E$. It is easy to see that $(F_A^{\tilde{c}})^{\tilde{c}} = F_A$ and $F_\emptyset^{\tilde{c}} = F_{\tilde{E}}$

Definition 2.10 [3] Let $F_A \in S(U)$. Power soft set of F_A is defined by $\tilde{P}(F_A) = \{F_{A_i} \subseteq F_A : i \in I\}$ and its cardinality is defined by

$$|\tilde{P}(F_A)| = 2^{\sum_{x \in E} |f_A(x)|}$$

where $|f_A(x)|$ is cardinality of $f_A(x)$.

ISSN: 2231-5373

Definition 2.11 [17] Let (F, E) be a soft set over X and Y be a non-empty subset of X. Then the soft set (F, E) over Y denoted by $({}^{Y}F, E)$, is defined as follows ${}^{Y}F(\alpha) = Y \cap F(\alpha)$, for all $\alpha \in E$. In other words $({}^{Y}F, E) = Y \cap (F, E)$

Definition 2.12 [13] The soft set $F_A \in S(U)$ is called a soft point in U_A , denoted by e_F , if for the element $e \in A$, $F(e) \neq \emptyset$ and $F(e') = \emptyset$ for all $e' \in A - \{e\}$

Definition 2.13 [6] Let X be an initial universe set and E be the set of parameters. Let $(X, \tilde{m_1}, E)$ and $(X, \tilde{m_2}, E)$ be the two different soft minimals over X. Then $(X, \tilde{m_1}, \tilde{m_2}, E)$ or $(F_A, \tilde{m_1}, \tilde{m_2})$ is called a soft biminimal spaces.

```
Example 2.14 Let U = \{u_1, u_2\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E and F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}. Then F_{A_1} = \{(x_1, \{u_1\})\}, F_{A_2} = \{(x_1, \{u_2\})\}, F_{A_3} = \{(x_1, \{u_1, u_2\})\}, F_{A_4} = \{(x_2, \{u_1\})\}, F_{A_5} = \{(x_2, \{u_2\})\}, F_{A_6} = \{(x_2, \{u_1, u_2\})\}, F_{A_7} = \{(x_1, \{u_1\}), (x_2, \{u_1\})\}, F_{A_8} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}, F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_1, u_2\})\}, F_{A_{10}} = \{(x_1, \{u_2\}), (x_2, \{u_1\})\}, F_{A_{11}} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}, F_{A_{12}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, F_{A_{13}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1\})\}, F_{A_{14}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}, F_{A_{15}} = F_A, F_{A_{16}} = F_\emptyset are all soft subsets of F_A
```

soft minimal $\tilde{m} = \{F_{\emptyset}, F_{A_2}, F_{A_5}, F_{A_7}, F_{A_{11}}, F_A\}$

Definition 2.15 [6] Let (F_A, \tilde{m}) be a soft minimal space and F_Y be a soft subset of F_A . Define soft minimal set \tilde{m}_{F_Y} on F_Y as follows: $\tilde{m}_{F_Y} = \{F_B \tilde{\cap} F_Y | F_B \in \tilde{m}\}$. Then (F_Y, \tilde{m}_{F_Y}) is called a soft minimal subspace of (F_A, \tilde{m}) .

3 Separation Axioms in Soft Biminimal Spaces

Definition 3.1 A soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is called a pairwise soft T_0 space if for each pair of distinct soft points (x, u), (y, u) of F_A , there exist soft \tilde{m}_1 open set U_B and a soft \tilde{m}_2 -open set V_B such that either $(x, u) \notin V_B$ or $(y, u) \notin U_B$.

Definition 3.2 A soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is called a pairwise soft T_1 space if for each pair of distinct soft points (x, u), (y, u) of F_A , there exist soft \tilde{m}_1 open set U_B and a soft \tilde{m}_2 -open set V_B such that $(x, u) \in U_B$, $(y, u) \notin U_B$ and $(x, u) \notin V_B$, $(y, u) \in V_B$.

Definition 3.3 A soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is called a pairwise soft T_2 -space (pairwise soft Hausdroff space) if for each pair of distinct soft points (x, u), (y, u) of F_A , there exist soft \tilde{m}_1 -open set U_B and a soft \tilde{m}_2 -open set V_B such that $(x, u) \in U_B$, $(y, u) \in V_B$ and $U_B \cap V_B = F_{\emptyset}$.

Example 3.4 Let us consider the soft subsets of F_A that are given in Example 2.15. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, $\tilde{m}_1 = \{F_\emptyset, F_{A_1}, F_{A_3}, F_{A_5}, F_{A_7}, F_A\}$ and $\tilde{m}_2 = \{F_\emptyset, F_{A_2}, F_{A_6}, F_{A_{11}}, F_{A_{13}}, F_A\}$. Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_0 -space, pairwise soft T_1 -space and pairwise soft T_2 -space.

Proposition 3.5 Let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft biminimal subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_0 -space then $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is also a pairwise soft T_0 -space.

Proof: Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_0 -space and $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ a soft subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If $(x, u), (y, u) \in F_Y$ such that $(x, u) \neq (y, u)$, there exist soft \tilde{m}_1 -open set U_B and soft \tilde{m}_2 -open set V_B such that either $(x, u) \notin V_B$ or $(y, u) \notin U_B$. We defined an soft open set $M_B = U_B \cap F_Y \in \tilde{m}_{1_{F_Y}}$ and $N_B = V_B \cap F_Y \in \tilde{m}_{2_{F_Y}}$, hence $(x, u) \notin N_B$ or $(y, u) \notin M_B$. Thus $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is pairwise soft T_0 -space. \square

Proposition 3.6 Let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft biminimal subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_1 -space then $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is also a pairwise soft T_1 -space.

Proof: The proof is similar to the proof of Proposition 3.5.

Proposition 3.7 Let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft biminimal subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_2 -space then $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is also a pairwise soft T_2 -space.

Proof: Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_2 -space and $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ a soft subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If $(x, u), (y, u) \in F_Y$ such that $(x, u) \neq (y, u)$, there exist soft \tilde{m}_1 -open set U_B and soft \tilde{m}_2 -open set V_B such that $(x, u) \in U_B, (y, u) \in V_B$ and $U_B \cap V_B = F_\emptyset$. We defined an soft open set $M_B = U_B \cap F_Y \in \tilde{m}_{1_{F_Y}}$ and $N_B = V_B \cap F_Y \in \tilde{m}_{2_{F_Y}}$, hence $(x, u) \in M_B, (y, u) \in N_B$ and $M_B \cap N_B = F_\emptyset$. Thus $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is pairwise soft T_2 -space.

Theorem 3.8 Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space over X and $(x, u), (y, u) \in F_A$ be such that $(x, u) \neq (y, u)$. If there exist soft \tilde{m}_1 -open set U_B such that $(x, u) \in U_B$ and $(y, u) \in (U_B)^c$ or a soft \tilde{m}_2 -open set V_B such that $(y, u) \in V_B$ and $(x, u) \in (V_B)^c$. Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is pairwise soft T_0 -space.

Proof: Let $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$, there is an soft open set $U_B \in \tilde{m_1}$ such that $(x, u) \in U_B$ and $(y, u) \in (U_B)^c$ or a soft $\tilde{m_2}$ -open set V_B such that $(y, u) \in V_B$ and $(x, u) \in (V_B)^c$. If $(y, u) \in (U_B)^c$ then $(y, u) \notin (U_B^c)^c = U_B$. Similarly if $(x, u) \in (V_B)^c$, then $(x, u) \notin (V_B^c)^c = V_B$. Hence, there is an soft open set $U_B \in \tilde{m_1}$ and $V_B \in \tilde{m_2}$ such that $(x, u) \in U_B$ and $(y, u) \notin U_B$ or $(y, u) \in V_B$ and $(x, u) \notin V_B$. Hence $(F_A, \tilde{m_1}, \tilde{m_2})$ is pairwise soft T_0 -space.

Theorem 3.9 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is pairwise soft T_1 if and only if $(F_A, \tilde{m_1})$ and $(F_A, \tilde{m_2})$ are soft T_1 .

Proof: Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ is pairwise soft T_1 . Let $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$. Since the space is pairwise soft T_1 , there is a soft \tilde{m}_1 -open set U_B such that $(x, u) \in U_B$, $(y, u) \notin U_B$. Thus (F_A, \tilde{m}_1) is T_1 . Similarly, (F_A, \tilde{m}_2) is T_1 . Conversely, (F_A, \tilde{m}_1) and (F_A, \tilde{m}_2) be T_1 . Let $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$. Since (F_A, \tilde{m}_1) is T_1 , there is a soft \tilde{m}_1 -open set U_B such that $(x, u) \in U_B$, $(y, u) \notin U_B$. Since (F_A, \tilde{m}_2) is T_1 , there is a soft \tilde{m}_2 -open set V_B such that $(x, u) \notin V_B$, $(y, u) \in V_B$. Hence, there is a soft \tilde{m}_1 -open set U_B and a soft \tilde{m}_2 -open set V_B such that $(x, u) \notin V_B$ such that (x,

Theorem 3.10 Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space over X and $(x, u), (y, u) \in F_A$ be such that $(x, u) \neq (y, u)$. If there exist soft $\tilde{m_1}$ -open set U_B such that $(x, u) \in U_B$ and $(y, u) \in (U_B)^c$ and a soft $\tilde{m_2}$ -open set V_B such that $(y, u) \in V_B$ and $(x, u) \in (V_B)^c$, then $(F_A, \tilde{m_1}, \tilde{m_2})$ is pairwise soft T_1 -space.

Proof: The proof is similar to the proof of Proposition 3.8. \Box

Theorem 3.11 Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space over X. If $\{x, u\}$ is a soft closed set in $\tilde{m_2}$ for each $(x, u) \in F_A$ and $\{y, u\}$ is a soft closed set in $\tilde{m_1}$ for each $(y, u) \in F_A$, then $(F_A, \tilde{m_1}, \tilde{m_2})$ is a pairwise soft T_1 -space.

Proof: Suppose that for each $(x,u) \in F_A$, $\{x,u\}$ is a soft closed set in \tilde{m}_2 then $\{x,u\}^c$ is soft open set in \tilde{m}_2 . Let $(x,u),(y,u) \in F_A$ such that $(x,u) \neq (y,u)$. For each $(x,u) \in F_A$, $\{x,u\}^c$ is a soft open set in \tilde{m}_2 such that $(y,u) \in \{x,u\}^c$ and $(x,u) \notin \{x,u\}^c$. Similarly for each $(y,u) \in F_A$, $\{y,u\}$ is a soft closed set in \tilde{m}_1 then $\{y,u\}^c$ is soft open set in \tilde{m}_1 such that $(x,u) \in \{y,u\}^c$ and $(y,u) \notin \{y,u\}^c$. Thus $(F_A,\tilde{m}_1,\tilde{m}_2)$ is a pairwise soft T_1 -space.

Proposition 3.12 Every pairwise soft T_1 -space is pairwise soft T_0 -space.

Proof: Let $(F_A, \tilde{m_1}, \tilde{m_2})$ is a pairwise soft T_1 -space and $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$, there is a soft open set $U_B \in \tilde{m_1}$ and $V_B \in \tilde{m_2}$ such that $(x, u) \in U_B$, $(y, u) \notin U_B$ and $(y, u) \in V_B$, $(x, u) \notin V_B$. Obviously then we have $(x, u) \in U_B$ and $(y, u) \notin U_B$ or $(y, u) \in V_B$ and $(x, u) \notin V_B$. Hence $(F_A, \tilde{m_1}, \tilde{m_2})$ is a pairwise soft T_0 -space.

Remark 3.13 The converse of the above proposition 3.12. is not true in general. In other words,

pairwise soft $T_0 \Rightarrow pairwise soft T_1$

Example 3.14 Let us consider the soft subsets of F_A that are given in Example 2.15. Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, $\tilde{m_1} = \{F_{\emptyset}, F_{A_1}, F_{A_8}, F_{A_{12}}, F_A\}$ and $\tilde{m_2} = \{F_{\emptyset}, F_{A_2}, F_{A_7}, F_{A_{11}}, F_A\}$. Then $(F_A, \tilde{m_1}, \tilde{m_2})$ is a pairwise soft T_0 -space but not pairwise soft T_1 -space.

Proposition 3.15 Every pairwise soft T_2 -space is pairwise soft T_1 -space.

Proof: Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_2 -space and $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$, there is a soft open set $U_B \in \tilde{m}_1$ and $V_B \in \tilde{m}_2$ such that $(x, u) \in U_B$, $(y, u) \in V_B$ and $U_B \cap V_B = F_\emptyset$. Since $U_B \cap V_B = F_\emptyset$; $(x, u) \notin V_B$ and $(y, u) \notin U_B$. Thus $U_B \in \tilde{m}_1$ and $V_B \in \tilde{m}_2$ such that $(x, u) \in U_B$, $(y, u) \notin U_B$ and $(y, u) \in V_B$, $(x, u) \notin V_B$. Hence $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_1 -space.

Remark 3.16 The converse of the above proposition 3.15. is not true in general. In other words,

pairwise $T_1 \Rightarrow pairwise T_2$.

Example 3.17 Let us consider the soft subsets of F_A that are given in Example 2.15. Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space where $U = \{u_1, u_2\}$, $E = \{x_1, x_2, x_3\}$, $A = \{x_1, x_2\} \subseteq E$ and $F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_1, u_2\})\}$, $\tilde{m}_1 = \{F_{\emptyset}, F_{A_6}, F_{A_7}, F_{A_8}, F_A\}$ and $\tilde{m}_2 = \{F_{\emptyset}, F_{A_2}, F_{A_{10}}, F_{A_{11}}, F_A\}$. Then $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_1 -space but not pairwise soft T_2 -space.

Theorem 3.18 Let $(F_A, \tilde{m_1}, \tilde{m_2})$ be a soft biminimal space. If $(F_A, \tilde{m_1}, \tilde{m_2})$ is a pairwise soft T_1 -space and for any $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$, then there exist soft open set $U_B \in \tilde{m_1}$ and $V_B \in \tilde{m_2}$ such that $(x, u) \in U_B$, $(y, u) \notin U_B$ and $(y, u) \in V_B$, $(x, u) \notin V_B$ and $U_B \cup V_B = F_A$.

Proof: Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft T_2 -space and $(x, u), (y, u) \in F_A$ such that $(x, u) \neq (y, u)$, there exist soft open set $F_B \in \tilde{m}_1$, $G_B \in \tilde{m}_2$ such that $(x, u) \in F_B$ and $(y, u) \in G_B$ and $F_B \cap G_B = F_\emptyset$. Clearly, $F_B \subseteq (G_B)^c$ and $G_B \subseteq (F_B)^c$. Hence $(x, u) \in (G_B)^c$. Put $(G_B)^c = U_B$. This gives $(x, u) \in U_B$ and $(y, u) \notin U_B$. Also $(y, u) \in (F_B)^c$. Put $(F_B)^c = V_B$. This gives $(x, u) \notin V_B$ and $(y, u) \in V_B$. Therefore $(x, u) \in U_B$ and $(y, u) \in V_B$. Hence, $U_B \cup V_B = (G_B)^c \cup (F_B)^c = F_A$.

Lemma 3.19 Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ be a soft biminimal space and let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft closed subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. If U_B is soft open subset with respect to \tilde{m}_i , i = 1, 2 in $(F_A, \tilde{m}_1, \tilde{m}_2)$, then $U_B \cap F_Y$ is also a soft open subset with respect to \tilde{m}_{iF_Y} , i = 1, 2 in $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$.

Proof: Let U_B be a soft open subset with respect to \tilde{m}_i , i=1,2 in $(F_A,\tilde{m}_1,\tilde{m}_2)$. Since $(F_Y,\tilde{m}_{1_{F_Y}},\tilde{m}_{2_{F_Y}})$ be a soft closed subset of $(F_A,\tilde{m}_1,\tilde{m}_2)$, then $(U_B)^c \cap F_Y$ is a soft closed subset with respect to \tilde{m}_{iF_Y} , i=1,2 in $(F_Y,\tilde{m}_{1_{F_Y}},\tilde{m}_{2_{F_Y}})$. But $(U_B)^c \cap F_Y = F_Y - (U_B \cap F_Y)$. Therefore $F_Y - (U_B \cap F_Y)$ is a soft closed subset with respect to \tilde{m}_{iF_Y} , i=1,2, in $(F_Y,\tilde{m}_{1_{F_Y}},\tilde{m}_{2_{F_Y}})$. Hence $(U_B \cap F_Y)$ is a soft open subset with respect to \tilde{m}_{iF_Y} , i=1,2, in $(F_Y,\tilde{m}_{1_{F_Y}},\tilde{m}_{2_{F_Y}})$.

Definition 3.20 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise soft semi Hausdroff space if for every $(x, u) \neq (y, u)$ in F_A , either there exist soft $\tilde{m_1}$ -open set U_B such that $(x, u) \in U_B$ and $(y, u) \notin \tilde{m_2}Cl(U_B)$ or there exist an soft $\tilde{m_2}$ -open set V_B such that $(y, u) \in V_B$ and $(x, u) \notin \tilde{m_1}Cl(V_B)$.

Definition 3.21 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise soft Pseudo Hausdroff space if for every $(x, u) \neq (y, u)$ in F_A , there exist soft $\tilde{m_1}$ -open set U_B such that $(x, u) \in U_B$ and $(y, u) \notin \tilde{m_2}Cl(U_B)$ and there exist an soft $\tilde{m_2}$ -open set V_B such that $y \in V_B$ and $x \notin \tilde{m_1}Cl(V_B)$.

Theorem 3.22 Let soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is pairwise soft Pseudo Hausdroff, then every soft subspace $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ of $(F_A, \tilde{m}_1, \tilde{m}_2)$ is also pairwise soft pseudo Hausdroff.

Proof: Let soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft pseudo Hausdroff. Let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is a pairwise soft pseudo Hausdroff, then for every $(x, u) \neq (y, u)$, there exist soft \tilde{m}_1 -open set U_B and soft \tilde{m}_2 -open set V_B such that $(x, u) \in U_B$ and $(y, u) \notin \tilde{m}_2 Cl(U_B)$ and $(y, u) \in V_B$ and $(x, u) \notin \tilde{m}_1 Cl(V_B)$. Then $U_B \cap F_Y$ and $V_B \cap F_Y$ are $\tilde{m}_{1_{F_Y}}$ and $\tilde{m}_{2_{F_Y}}$ soft open sets respectively in F_Y such that $(x, u) \in U_B \cap F_Y$ and $(y, u) \notin \tilde{m}_{2_{F_Y}} Cl(U_B \cap F_Y)$ also $(y, u) \in V_B \cap F_Y$ and $(x, u) \notin \tilde{m}_{1_{F_Y}} Cl(V_B \cap F_Y)$. Therefore $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is pairwise soft pseudo Hausdroff.

Definition 3.23 A soft biminimal space $(F_A, \tilde{m_1}, \tilde{m_2})$ is said to be pairwise soft Uryshon space if given $(x, u) \neq (y, u)$ in F_A , there exist soft $\tilde{m_1}$ -open set U_B and soft $\tilde{m_2}$ -open set V_B such that $(x, u) \in U_B$, $(y, u) \in V_B$ and $\tilde{m_2}Cl(U_B) \cap \tilde{m_1}Cl(V_B) = F_{\emptyset}$

Theorem 3.24 In a soft biminimal space $(F_A, \tilde{m}_1, \tilde{m}_2)$, every soft subspace of a pairwise soft Uryshon space is pairwise soft Uryshon.

Proof: Let $(F_A, \tilde{m}_1, \tilde{m}_2)$ is pairwise soft Uryshon space and let $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ be a soft subspace of $(F_A, \tilde{m}_1, \tilde{m}_2)$. Let $(x, u) \neq (y, u)$ in $F_Y \subseteq F_A$. Since $(F_A, \tilde{m}_1, \tilde{m}_2)$ is pairwise soft uryshon, there is a soft \tilde{m}_1 -open set U_B and soft \tilde{m}_2 -open set V_B such that $(x, u) \in U_B, (y, u) \in V_B$ and $\tilde{m}_2Cl(U_B) \cap \tilde{m}_1Cl(V_B) = F_\emptyset$. Now $U_B \cap F_Y$ and $V_B \cap F_Y$ are $\tilde{m}_{1_{F_Y}}$ and $\tilde{m}_{2_{F_Y}}$ soft open sets respectively in F_Y such that $(x, u) \in U_B \cap F_Y$ and $(y, u) \in V_B \cap F_Y$. Consider,

$$\begin{split} \tilde{m}_{2F_Y}Cl(U_B \cap F_Y) \cap \tilde{m}_{1F_Y}Cl(V_B \cap F_Y) &= \left[\tilde{m}_{2F_Y}Cl(U_B \cap F_Y)\right] \cap \left[\tilde{m}_{1F_Y}Cl(V_B \cap F_Y)\right] \\ &= \left[\tilde{m}_{2F_Y}Cl(U_B) \cap \tilde{m}_{1F_Y}Cl(V_B)\right] \cap F_Y \\ &= \left[\tilde{m}_2Cl(U_B) \cap \tilde{m}_1Cl(V_B)\right] \cap F_Y \\ &= F_\emptyset \cap F_Y \\ &= F_\emptyset \end{split}$$

Hence $(F_Y, \tilde{m}_{1_{F_Y}}, \tilde{m}_{2_{F_Y}})$ is pairwise soft Uryshon space.

References

ISSN: 2231-5373

- [1] Boonpok, C. 2010. Biminimal Structure Spaces, International Mathematical Forum, 15(5), 703-707.
- [2] Cagman, N., Enginoglu, S. 2010. Soft set theory and uni-int decision making, European Journal of Operational Research 207(2), 848-855.
- [3] Cagman, N., Karatas, S., Enginoglu, S. 2011. Soft topology, Computers and Mathematics with Applications 62, 351-358.
- [4] Caldas, M., Jafari, S. 2003. On some low separation axioms in topological spaces, Houston Journal of Math., 29, 93-104.
- [5] Georgiou, D.N., Megaritis, A.C., Petropoulous, V.I. 2013. On Soft Topological Spaces, Appl. Math. Inf. Sci. 7, no. 5, 1889-1901.
- [6] Gowri, R., Vembu, S. 2015. Soft minimal and soft biminimal spaces, Int Jr. of Mathematical Sciences and Applications, Vol. 5, No. 2, 447-455.
- [7] Ittanagi, B.M. 2014. Soft Bitopological Spaces, International Journal of Computer Applications, Vol 107, No.7.
- [8] Maki, H., Rao, K.C., Nagoor Gani, A. 1999. On generalized semi-open and preopen sets, Pure Appl. Math. Sci., 49, 17-29.
- [9] Molodtsov, D.A. 1999. Soft Set Theory First Results. Comp. and Math. with App., Vol. 37, 19-31.

- [10] Molodtsov, D.A. 2001. The description of a dependence with the help of soft sets, Jr.Comput. Sys.Sc.Int., 40, 977-984.
- [11] Molodtsov, D.A. 2004. The theory of soft sets (in Russian), URSS publishers, Moscow.
- [12] Noiri, T., Popa, V. 2009. A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math. 2(4), 473-493.
- [13] Shabir, M., Naz, M. 2011. On soft topological spaces, Comput. Math. Appl., 61, 1786-1799.
- [14] Shanin, N.A. 1943. On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38, 110-113.
- [15] Popa, V., Noiri, T. 2000. On M-continuous Functions, Anal. Univ.Dunarea de JosGalati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18, No.23, 31-41.
- [16] Tunapan, M. 2010. Some Separation Axioms in Biminimal Structure Spaces, Int. Mathematical Forum, 5, no. 49, 2425-2428.
- [17] Zorlutuna, I., Akdag, M., Min, W.K., Atmaca, S. 2012. Remarks on Soft Topological Spaces, Annals of Fuzzy Mathematics and Informatics, 3, 171-185.