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1. Introduction and Preliminaries 

       In 2008, Suzuki [12] introduced a condition on 

mappings and named it condition (C).  

Definition 1.1 [12, 13]  Let T be a mapping on a 

subset K of a Banach space E. Then T is said to 

satisfy (C)-condition if 

1

2
x Tx x y implies that Tx Ty x y     

 

for all , .x y K  

Definition 1.2. Let K be nonempty subset of a 

Banach space X . Then T : K K  is called 

a) nonexpansive if ,Tx Ty x y       for all 

, .x y K  

b) quasi-nonexpansive[14] if ,Tx p x p  

 for all , ( ).x K p F T   

 where F(T) is the set of fixed points of  T.           

 This condition is weaker than nonexpansiveness and 

stronger than quasi- nonexpansiveness. For such 

mappings he proved some fixed point and 

convergence theorems. 

Theorem 1.3 [12] If K is a weakly compact convex 

subset of a uniformly convex in every direction 

Banach space and if  T : K K  is a mapping 

satisfying condition (C), then T has a fixed point. 

Then Karapinar and Tas [16] modified Suzuki (C) 

condition as: 

Definition 1.4 [16] Let T be a mapping on a subset K 

of a Banach space E. Then T is said to satisfy Suzuki-

Ciric (C)-condition (SCC) if

1
(x, y)

2
x Tx x y implies that Tx Ty M    

where 

 (x, y) max , , , ,M x y x Tx Ty y Tx y x Ty     

 
for all , .x y K  

Moreover, T is said to satisfy Suzuki- (KC)-condition 

[(SKC)- condition] if 

1
(x, y)

2
x Tx x y implies that Tx Ty N    

where 

1
, ,
2

N(x, y) max
1

2

x y x Tx Ty y

Tx y x Ty

 
        

  
        

 
for 

all , .x y K  

Preposition 1.5 [16] Let T be a mapping on a subset 

K of a Banach space E and  satisfy (SKC)- condition. 

Then 

 .5 ,x Ty Tx x x y hol for all x y Kds    
   

 

   Takahashi [38] introduced the concept of convexity 

in metric space ( , )X d  as follows: 

Definition 1.6 [11] A map 2: [0,1]W X X   is a 

convex structure in X  if

( , ( , , )) ( , ) (1 ) ( , )d u W x y d u x d u y       

for all , ,x y u X  and [0,1].  A metric space 

( , )X d  together with a convex structure W is known 

as convex metric space and is denoted by ( , , ).X d W  

A nonempty subset C  of a convex metric space is 
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convex if ( , , )W x y C   for all ,x y C  and 

[0,1] . 

All normed spaces and their subsets are the examples 

of convex metric spaces. But there are many 

examples of convex metric spaces which are not 

imbedded in any normed space, (see Takahashi 

[11]).After that several authors extended this concept 

in many ways. One such convex structure is 

hyperbolic space which was introduced by 

Kohlenbach [9]as follows: 

Definition 1.7 [9] A hyperbolic space ( , , )X d W  is a 

metric space ( , )X d  together with a convexity 

mapping 2: [0,1]W X X   satisfying 

(W1) ( , ( , , )) (1 ) ( , ) ( , )d z W x y d z x d z y      

(W2) 1 2 1 2( ( , , ), ( , , )) ( , )d W x y W x y d x y      

(W3) ( , , ) ( , ,1 )W x y W y x    

(W4) 
( ( , , ), ( , , )) (1 ) ( , )

( , )

d W x z W y w d x y

d z w

  



 


 

for all , , ,x y z w X  and 1 2, , [0,1].   
 

Clearly every hyperbolic space is convex metric 

space but converse need not true. For example, if 

X R (the set of reals), ( , , ) (1 )W x y x y      

and define ( , )
1

x y
d x y

x y




 
 for , ,x y R  then 

( , , )X d W  is a convex metric space but not a 

hyperbolic space.      

                                     A hyperbolic space ( , , )X d W

 is said to be uniformly convex [8] if for all                                      

                , , ,u x y X 0r  and (0,2] 

, there exists a (0,1]   such that    

           
1

( ( , , ), ) (1 )
2

d W x y u r  ,whenever            

         ( , ) , ( , )d x u r d y u r  and ( , )d x y r . 

 

                          A map : (0, ) (0,2] (0,1]    which 

provides such a ( , )r   for , , , 0u x y X r  and

(0,2]   is called modulus of uniform convexity 

 of  X. We call   to be monotone if it decreases with 

r (for a fixed  ). 

                                          A sequence { }nx

 in ( , )X d

 is Fejer monotone with respect to a subset K of X if 

1( , ) ( , )n nd x x d x x  for all x K . 

             Let { }nx  be a bounded sequence in a metric 

space X. We define a functional (.,{ }) :nr x X R  

by ( ,{ }) limsup ( , )n n nr x x d x x for all x K .The 

asymptotic radius of { }nx  with respect to K X is 

defined as, ({ }) inf{ ( ,{ }) : }n nr x r x x x K  . 

 A point y K  is called the asymptotic 

centre of{ }nx  with respect to K X  if  

( ,{ }) ( ,{ })n nr y x r x x for all x K .The set of all 

asymptotic centres of { }nx  is denoted by ({ })nA x . 

            A sequence { }nx in X is said to -converge to

x X  if x is the unique asymptotic centre of { }nu  

for every subsequence{ }nu  of  { }nx  [11]. In this 

case, we write x as  limit of{ }nx , i.e.,

limn nx x  . 

 Also  convergence coincides with weak 

convergence in Banach spaces with opial’s property 

[7]. 

Lemma 1.8 [6] Let (X, d,W) be a complete 

uniformly convex hyperbolic space with monotone 

modulus of uniform convexity η. Then every 

bounded sequence {xn} in X has a unique asymptotic 

centre with respect to any nonempty closed convex 

subset K of X. 

Lemma 1.9 ([1]) Let K be a nonempty closed convex 

subset of a uniformly convex hyperbolic space 

and { }nx be a bounded sequence in K such 

that ({ }) { }nA x y . If { }my  is another sequence in K 

such that lim ( ,{ })m m nr y x    (a real number), 

then limm my y  . 

Lemma 1.10 [1] Let ( , , )X d W

 be a uniformly convex hyperbolic space with monot

one modulus of uniform convexity . Let x X
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and { }na be a sequence in [b,c]  for some , [0,1].b c

 If { }nw  and { }nz

 are sequences in X such that 

limsup ( , ) ,n nd w x r  limsup ( , )n nd z x r   and 

lim ( ( , , ), )n n n nd W w z a x r   for some 0r  , then  

lim ( , ) 0n n nd w z   

      Now the iterative schemes in terms of convex 

structure are as follows: 

Let ( , , )X d W  be a hyperbolic space and :T X X  

be a selfmap of X. For 
0 ,x X  

(1.1.1)   Picard iterative scheme:  

1 ,n nx Tx  0,1,2....n   

(1.1.2)  Mann iterative scheme [18]: 

                         1 ( , , ),n n n nx W x Tx   0,1,2....n   

where
0{ }n n 


 is a real sequence in [0,1]. 

(1.1.3)       Ishikawa iterative scheme [19]: 

                      1 ( , , )n n n nx W x Ty    

                     ( , , ),n n n ny W x Tx  0,1,2....n    

where 
0{ }n n 


 and 

0{ }n n 


 are real sequences in 

[0,1]. 

 (1.1.4)   S-iterative scheme [5]: 

                     1 ( , , )n n n nx W Tx Ty    

                    ( , , ),n n n ny W x Tx  0,1,2....n   

where 
0{ }n n 


 and 

0{ }n n 


 are sequences of positive 

numbers in [0,1].  

Many authors have studied the strong and △-

convergence of various iterative schemes in 

hyperbolic spaces (see [1], [6], [20], [21], [22], [23], 

[24]). In the next section, we establish strong and △-

convergence of S-iterative scheme in hyperbolic 

spaces for SKC mappings. The obtained results 

extend and improve the results of Nanjaras  et.  al. 

[15], Karapinar and Tas [16] and Khan and Abbas 

[17]. 

 

2. CONVERGENCE RESULTS 

Lemma 2.1.  Let C  be a nonempty closed and 

convex subset of a complete uniformly convex 

hyperbolic space X with modulus of uniform 

convexity .  Let :T C C  be a SKC mapping with 

(T) .F   Then for the iterative procedure{x }n
 

defined by (1.1.4) with 0 , 1n na a b b     for all 

n N  and for same ,a b ,we have 

(i) lim (x ,q)n
n

d


 exists for all .q F   

(ii) lim (x ,Tx ) 0.n n
n

d


   

Proof.  Let .q F  Then 

    1(x ,q) d(W(Tx ,Ty ,a ),q)n n n nd     

                    (1 a )d(Tx ,q) a (Ty ,q)n n n nd     

                     (1 a )d(x ,q) a (y ,q).n n n nd                                   

                                                                  (2.1.1) 

But     (y ,q) d(W(x ,Tx ,b ),q)n n n nd   

                   (1 )d(x ,q) (Tx ,q)n n n nb b d       

 (1 )d(x ,q) (x ,q)n n n nb b d    

  (x ,q).nd                                                                   

                                                (2.1.2) 

Combining (2.1.1) and (2.1.2), we have 

      1(x ,q) d(x ,q).n nd                                  (2.1.3) 

Thus {d(x ,q)}n  is decreasing and hence lim (x ,q)n
n

d


 

exists for all .q F  This proves part (i). 

Let    lim (x ,q) c.n
n

d


                                   (2.1.4) 

By (2.1.1), we have  

       1(x ,q) (1 a )d(x ,q) a (y ,q).n n n n nd d     

Thus,  

        1(x ,q) d(x ,q) a (y ,q) d(x ,q).n n n n n na d d     

that is, 

         1

1
(x ,q) d(y ,q) [d(x ,q) d(x ,q)]n n n n

n

d
a

     

                       
1

1
d(y ,q) [d(x ,q) d(x ,q)].n n n

a
                

This gives 
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 1

lim inf (x ,q) lim inf (y ,q)

1
lim inf (x ,q) (x ,q)

n n
n n

n n
n

d d

d d
a

 






 
  

so that,       lim inf (y ,q).n
n

c d


                    (2.1.5) 

By (2.1.2) and (2.1.4), we get 

       lim sup (y ,q) c.n
n

d


                   (2.1.6) 

Combining it with (2.1.5), we have 

        lim (y ,q) c.n
n

d


                   (2.1.7) 

Also,  

(Tx ,q) (x ,q).n nd d  

Thus, 

     lim sup ( ,q) c.n
n

d Tx


                   (2.1.8)

 

 

Now,  

        lim (y ,q) lim (W(x ,Tx ,b ),q)n n n n
n n

c d d
 

  . 

With the help of (2.1.4), (2.1.8) and Lemma 1.3, we 

have 

          lim (x ,Tx ) 0.n n
n

d


                      (2.1.9) 

Theorem 2.2. Let , , , , {a },{b }n nX C T F  and {x }n  

be as in Lemma 2.1. Then {x }n    converges to a 

point of .F   

Proof: Let .q F  Then by Lemma 2.1, lim (x ,q)n
n

d


 

exists for all .q F  Thus {x }n  is bounded. As 

proved in Lemma 2.1, we have lim (x ,Tx ) 0.n n
n

d



 

Firstly, we show that (x ) F.n   Let (x ),nu   

then there exists a subsequence {u }n of {x }n , such 

that, ({u }) {u}.nA   Then using (2.1.9) , we have  

            lim (u ,Tu ) 0.n n
n

d


                    (2.2.1) 

We claim that (T).u F  Now, we define a sequence 

{z }m  in C  by ,m

mz T u  Then, 

(z ,u ) d(T u,u ) 5d(u ,Tu ) d(u,u ).m

m n n n n nd   

   

Taking lim sup on both sides of above inequality and 

using (2.2.1), we have 

        

(z ,{u }) lim sup (z ,u ) lim sup (u,u ) r(u,{u }).m n m n n n
n n

r d d
 

  

  

This implies that (z ,{u }) r(u,{u }) 0m n mr     as 

.m   

It follows from Lemma 1.2  that       lim .m

m
T u u


   

Using uniform continuity of T, we have 

            1limT u limT u u.m m

m m
Tu T 

 
     

which implies, (T).u F   

Moreover by Lemma 2.1, lim (x ,u)n
n

d


 exists. 

Suppose .x u  By the uniqueness of asymptotic 

centers, we have 

            

lim sup (u ,u) lim sup (u ,x) lim sup (x ,x)n n n
n n n

d d d
  

    

                                      

lim sup (x ,u) lim sup (u ,u),n n
n n

d d
 

   

a contradiction. Hence .x u  Since {u }n
 is an 

arbitrary sequence of {x },n
 therefore ({u }) {u}nA   

for all subsequences {u }n
 of  {x },n

 that is, {x }n
 

  converges to (T).x F   

Theorem 2.3 Let , ,X C T and {x }n
 be as in Lemma 

2.1. Then { }nx  converges strongly to a point of F

 if and only if lim inf ( , ) 0,n
n

d x F




 where ( , ) inf{ ( , ); }.d x F d x p p F   

Proof: Necessity is obvious. Conversely, suppose tha

t lim inf ( , )n
n

d x F


 exists. But by 

hypothesis, liminf ( , ) 0,n nd x F 

 therefore we have lim ( , ) 0.n nd x F 

 Next, we show that { }nx  is a Cauchy sequence in C. 

Let 0   be arbitrary chosen. Since 

lim ( , ) 0,n nd x F 

 there exists a positive integer 0n  such that 

( , ) ,
4

nd x F


 for all 0n n .                                       

In particular, 
0

inf{ ( , ) : } .
4

nd x p p F


   

Thus, there must exists *p F  such 

that 
0

*( , ) .
2

nd x p


  

Now, for all 0,m n n , we have 

* *( , ) ( , ) ( , )n m n n m nd x x d x p d x p    

                 0

*2 ( , )nd x p  
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2( ) .
2


   

Hence, { }nx  is a Cauchy sequence in C. Since, C is a 

closed subset of a complete Hyperbolic space X, so it 

is also complete. Thus,{ }nx  must converge to a point 

q in C. Also, lim ( , ) 0n nd x F   gives that 

( , ) 0.d q F  Since F  is closed, so we have .q F  

Theorem 2.4 Let , ,X C T and {x }n
 be as in Lemma 

2.1. Let T satisfy the condition (A), then { }nx  

converges strongly to a point of F. 

Proof: We have proved in Lemma 2.1 that  

lim ( , ) 0n n nd x Tx    (2.4.1) 

From the condition (A) and (2.4.1), we have 

lim ( ( , ( ))) lim ( , ) 0,n n n n nf d x F T d x Tx  

 

Hence lim ( ( , ( ))) 0.n nf d x F T 

 Since :[0, ) [0, )f   

 is a nondecreasing function  satisfying (0) 0,f 

 ( ) 0f r   for all (0, ),r   therefore we 

have lim ( , ( )) 0.n nd x F T   

Now all conditions of Theorem 2.3 are satisfied, 

therefore by its conclusion { }nx  converges strongly 

to a point of F . 
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