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ABSTRACT. In the present paper we have studied the Cartesian product of
hyperbolic (F, g, r,n, &) structure. Cartesian product of two manifolds has been defined and
studied by Pandey. In this paper we have taken Cartesian product of (F,g,r,#,&)structure
manifolds, where r is some finite integer and studied some properties of curvature and Ricci
tensor of such a product manifold. In section one; introductory part of hyperbolic
(F, g,r,n, &) structure is defined. In section two, we prove that the some theorems of product of
hyperbolic (F, g, r, 7, &) structure as well as others important structure. In section three, we have
studied some properties of Curvature and Ricci tensor and some theorems. In the end we have
discussed the Cartesian product of hyperbolic (F, g, r, n, &) structure.
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1. INTRODUCTION. Let M, M,,...., M, be (F,g,r,n,¢)-structure manifolds each of class

C”and of dimension n;,n,,........ ... , N, respectively. Suppose (M,)m,, (M,)m,........, (M,)m, be
their tangent spaces at m eM, m,eM, ... . ,m, € M,, then the product space
(M)m, x(M,)m, x.......... x(M,)m, contains vector fields of the form (X, X, .. , X.),
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where X; e (M, )m, X, € (M,)m,,......... .. , X, €(M,)m_. Vector addition and scalar

multiplication on above product space are defined as follows.

(11 (X, Xy G X ) (YL Y e Y ) = (X Y, Xy 4 Y . X +Y),
(1.2)  AXy, Xy o LX) = (X, AX e ,AX,), where X,,Y, € (M,)m,,
i=12,........ r and A is a scalar.

Under these conditions the product space (M;)m, x(M,)m, x.....x(M,)m_ forms a

vector space.
Define a linear transformation F on the product space

(1.3)  F(Xy, X g cosverss srie LX) = (FX L By X g s e oo JE.X.),

where F,F,..., F, are linear transformations on (M,)m,,(M,)m,....., (M,)m, respectively.

If | I PO , T, be C”  functions over the  spaces
(M;))m;,(M,)m,,......... +(M,)m,  respectively. We define the C*  function
(f fyrn , f,)on the product space as
(1.4) (O, ST S X fy s e , )

= (X X, fy s i , X, 1)
Let D,,D,,....... ,D, be the connection on the manifolds M,,M,,..... M,

respectively. We define the operator D on the product space as

(15)  Dyyo iy (iYoo) = (D, Y00, Yy, Y,

I,
Then D satisfies all four properties of a connection and thus it is a connection on the
product manifold.

2. SOME RESULTS
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THEOREM 2.1. The product manifold M, xM, X v, x M admits  a
(F,g,r,np,&)structure  if and only if the manifolds M, M,...... , M are
(F, g,r,n, &) structure manifolds.

PROOF. Suppose M, M,........ , M, are (F,qg,r,n,&)structure manifolds. Thus there exist

tensor fields F,F, . e , F. each of type (1, 1) on M, ,M,...., M, respectively
satisfying
(2.1) F2(X)=X,+&X)n, i=12,.....ccau.......,t and a is any complex number and

arbitrary vector field X , not equal to zero.

Def

@la X =FX

1b £ =-1 and 7 =&(X)=0.

In view of equation (1.3) it follows that there exists a linear transformation F on

M, XM, X s x M, satisfying
(2.2) F2(X{, X gorrmrmens worrrrrrns seveeees LX) = (FAXL B X s v e ,F%4 X))
= (X, + EX)1, Xy 4+ EX )i ceveeeeees v oo X +E(X )

Thus the product manifold admits a structure.

Let us define a Riemannian metric g on the product manifold M, x M, x...x M as

23) g(K.7) = - g(X.Y)~ E(X)E)
(2.3) 9((Xps Ko X)LV, )

=—0,(X., Y1) = E(X)n — 9,(X,,Y,) = E(X ). — 9, (X, Y, ) = E(X )
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If &.& , &, be vector fields and 7,,7,,..ccceuu. ... ,n, be 1-forms on the GF-

structure manifolds M,,M,......... ,M, respectively, then a vector field £ and a 1-form 7 on

r

the product manifold is defined as

(2.4)  n(X)E = (1 (X)E1, 17, (X)) & s v 217 (X))
We now prove the following results.

THEOREM 2.2. The product manifold M, xM, x....... x M, admits a generalized almost
contact structure if and only if the manifold M,,M,......... .. , M, possess the same structure.
PROOF. Let M, M, ... ... ,M,are generalized almost contact manifolds of
hyperbolic (F, g, r,n, &) structure. Thus there exists tensor fields F, of type (1,1), vector

fields &, and 1-forms. n, , i=12,....... r satisfying.

(2.5) F2(X)) = X, +7,(X))&,,
for product manifold M, x M, X...cccce. weeeee xM,.
S O O S L X)) = (FAX B X s e e L F2 X)),

which by the help of equations (2.4) and (2.5) takes the form
F2(Xpy Xy X,) = (X, X peree X))

+ (17, (X)) &1, (X)) &5 e 17 (X,)S,)

or F2(X) =X +n(X)&.
Hence the product manifold admits a generalized almost contact metric

hyperbolic (F, g, r, 7, &) structure.
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THEOREM 2.3. The product manifold M, x M, X.....cccc. weeueee. x M, admits a KH-structure if
and only if the manifolds M, M,......... ... , M, are KH-structure manifolds.

PROOF. Suppose M;,M,......, M are KH-structure manifolds. Thus

(2.6) (Dlx1 Fl)(Yl) = (DzX2 Fz)(Yz)

= (D, F)(Y,)

=0.

As D is a connection on the product manifold of hyperbolic (F, g, r, 7, &) structure. Hence

(2.7) (D, x,

(Do y FIYas Y s e Y2) = Doy (FY 1 B e EY,)
~F(D,, Y,.D, Yy eeeeiineD, V)
=—(D,, FY,;.D, FY,ccco...D,_FY,)
~(RD, Y, F,D, Y, oo D, Y,)

= ((Dlxl Fl)(Yl)’(DZXZ Fz)(Yz)y---------(DrXr Fr)(Yr)
=0.

Thus the product manifold is KH-structure manifold of hyperbolic (F, g, r, 7, &) structure.
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THEOREM 2.4 The product manifold M; xM, x......... c....... xM,of (F,g,r,n,<&)structure
manifolds M, M,......... .. ,M, is almost Tachibana if and only if the manifolds
M, M, , M are separately Tachibana manifolds.

PROOF. Let a GF-structure manifoldsM,,M,.......... ... , M, are almost Tachibana manifolds.

Then

(2.8) (D, F)(Y;)+ (D, F)(Y;)=0, i =12, ..ot

3. CURVATURE  AND RICCI TENSOR. Let X =(X, X,,.., X,)and
Y =(Y,Y, ,Y,)be C”vector fields on the product manifold M, xM, X.......... ....... x M
and F=(f, f, . .. , f.) be a C”function. Then
(B.1) [(Xyy Xy X ) (Y, Yoo YOI(F,, Ty, 1)
= (X, Xy ey X (Y, Y500 Y)
(f Fopy TF= (Y Y e, Y,)

LK1, X prooer X )y Ty 0}

= ([ X, Y L DX, Yo ] o e XY 5.
Suppose K, (XY, Z,),1 =12, ... ,rbe the curvature tensors of the
(F,g,r,n,&)structure of manifolds M, M,.......... ... , M respectively. If K(X,Y,Z)be the
Curvature tensor of the product manifold M; x M, X.....c.... c....... x M .Then we have
(3.2) K(X,Y,Z) =[K (X1,Y, Z,), Ky (X5, Yy, Z) )y o K (XYL, Z )]
IfW =W, W, overs . , W, ) be a vector field on the product manifold. Then
(3.3) K'(X,Y,Z,W)=g(K(X,Y,Z,W)),
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(3.4) K'(X,Y,ZW) = K/(X,, Y0 Zy W) + Ko (X5, Yy, Z, W, ) s e
+ K;(Xr’Yr'Zr'Wr)'

Thus we have

THEOREM 3.1. The product manifold M; x M, X......... c....... x M, is of constant curvature
if and only if (F, g,r,n, &)structure manifolds M, M, .......... .. , M are separately of constant
curvature.

THEOREM 3.2. The Ricci tensor of the product manifold M, x M, x......... x M, is the sum

of the Ricci tensor of the (F, g, r, 7, &) structure manifolds M, M,.......... .. M.

THEOREM 3.3 The product manifold M, x M, X.....cc. veueen. x M, is an Einstein space if and

if only if the (F,g,r,n,¢&)structure manifoldsM,, M, .......... .. ,M, are separ

r

spaces.

ately Einstein

PROOF. Let the product manifold M; x M, x.....ccc.. wuuuue x M, be an Einstein space. Thus

(3.5) Ric(X,Y)=Cg(X,Y)

Where - _ K o being the scalar curvature and n being the dimension of the product

xM, and of

n
manifold. Then
Ric(X,,Y,)=Cg;(X,,Y,) ,i=L2iiimrrierinl.
Therefore the manifolds M, M,,......... ... , M, are also Einstein spaces.
Also
R 4
Conversely if M ,M,....... ,M, be Einstein spaces so is the product manifold
M, XM, X s e xM, and the scalar curvatures of M; xM, x......... .......
ISSN: 2231-5373 http://www.ijmttjournal.org
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M, M, ,M_ are the ratio n:n:n,:.... ‘n, where n,n,n, ... .. n, are their
respective dimensions. It can be easily checked that
K=K, +K, +K; + s s + K, provided the product space is an Einstein space.

DISCUSSION. The Cartesian product of hyperbolic (F, g, r, 7, &) structure are important role

of dealing the extended the product of n-dimensional space of modeling heavenly body with
cover because it is construct the higher dimensional space and they allow more complicated
structures. We can easily calculate all structures and spaces of manifold of

hyperbolic (F, g, r, n, &) structure.
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