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1. Introduction

The subject of nonlinear integral equation considered as an important branch of
mathematics because it is used for solving of many problems such as physics, engineering
and economics [1,2].

In this paper, we will prove the existence and uniqueness theorem of a functional Volterra
integral equation in the space of Lebesgue integrable L; (R*) on unbounded interval of the
kind :

()= g(@®) f(t,x(®) +h(®) + [Jk(t,s) f (s, x(s))ds, (1.1)
where t > 0 inthe unbounded interval R* = [0, ).
2. Preliminaries

Let R be the field of real number, R* be the interval [0, o). If A is a Lebesgue measurable
subset of R , then the symbol meas(A) stands for the Lebesgue measure of A.

Further, denote by L, (A) the space of all real functions defined and Lebesgue mesurable on
the set A. The norm of a function x € L,(A)is defined in the standard way by the
formula,

lll = {2, ol = J, Ix(®)1dt (2.1)

Obviously L, (A) forms a Banach space under this norm. The space L, (A) will be called the
lebesgue space. In the case when A = R™ we will write L, instead of L,(R™).

One of the most important operator studied in nonlinear functional analysis is the so called
the superposition operator [3]. Now, let us assume that I c R is a given interval, bounded or
not.

Definition 2.1 [4] Assume that a function f(t,x) = f:1 X R —» R satisfies the so-called
Carathéodory condition, i. e. it is measurable in t for any x € R and continuous in x for
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almost all t € I. Then to every function x = x(t) which is measurable on I we may assign
the function (Fx)(t) = f(t,x(t)), t € I. The operator F defined in such a way is said to
be the superposition operator generated by the function f.

Theorem 2.1 [5] The superposition operator F generated by a function f maps continuously
the space L'(I) into itself if and only if |f(t,x)| < a(t) + b|x| forallt € I and x € R,
where a(t) is a function the from L1(I) and b is a nonnegative constant.

This theorem was proved by Krasnoselskii [2] in the case when [ is bounded interval. The
generalization to the case of an unbounded interval I was given by Appell and Zabrejko

[6].

Definition 2.2 [7] A function f: A — R™, A c R™, is said to be Lipschitz condition if
there exists a constant L, L > 0 (is called the Lipschitz constant of f on A ) such that

If(x)—fO|<L|x—y| forallx,y € A.

Definition 2.3 [8] Let (X,d) be a metric space and T :X — X is called contraction
mapping, if there exist a number y < 1, such that :
d(Tx,Ty) <yd(x,y), Vx,y €X.

Theorem 2.2 [9] (Banach fixed point theorem).

Let X be a closed subset of a Banach space E and T : X — X be a contraction, then T has a
unique fixed point.

3. Existence Theorem

Define the operator H associated with integral Equation (1.1) take the following form.
Hx = Ax + Bx. (3.1)

Where

(Ax)() = g(@) f (& x(1)),
(Bx)() = h(t) + [, k(t,s) f (s,x(s))ds
= h(t) + KFx(t),
where (Kx)(t) = [ k(t,s) x(s) ds,
Fx = f(t, x), are linear operator at superposition respectively.
We shall treat the equation (3.1) under the following assumptions listed below.

i) g: R* - R is bounded function such that

M = sup|g(t)l,

teRt

and h:R* - R ,suchthat h € L; (R").
ii) k:R* X R* - R suchthat:
[lk(ts)ldt <€
iii) f:R* X R — R satisfies Lipschitz condition with positive constant L such that :
Ift,x(@®) — ft,y@®)| < L|x(t) —y(t)|, forall t €R*.
iv) LM + LC < 1.
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Now, for the existence of a unique solution of our equation, we can see the following
theorem .

Theorem 3.1 If the assumptions (i)-(iv) are satisfied, then the equation (1.1) has a unique
solution, where x € L;(R").

Proof : first we will prove that H : L, (R*) -» L, (R"),
second will prove that H is contraction .

Consider the operator H as :

Hx(t) = g(8) f(t,x(D) + h(®) + [ k(t,s) f (5,x(s))ds
Then our equation (3.1) becomes
x(t) = Hx(t).
We notice that by assumption (iii), we have
If &) =1f(tx) = f(t0) + f(¢t,0)]
< If@6x) = (& 0O+ |f(t,0)]
<Llx=0[+ |f(t 0)
<L|x|+ a(t)
Where
lf (. 0)] = a(t)
To prove that H : L; (R*) - L; (RY)
Let x € L,(R"),

then we have
ICH) (@) 1| = [ I(Hx) (D) lde
= I3 |9 F(6.x(®) + h(©) + f, k(e ) £ (s,x(5))ds| dt
< [lg® f(tx(®)|at
+7|h®) + [ k() £ (5,x())ds| d
< J, lg®l[a®) + Lix(©)[1dt
+ I In@lde + [ |3kt ) £ (5,2())ds] e
< Mllall + LM [ |x(t)|dt + ||l
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+ [Tkt 9)lde [7|f (£, x()|ds
< Mllall + LM [”|x(t)|dt + |||
+C fooo[a(s) + L|x(s)|]ds
< Mllall + LM|lx|| + [|Al|
+C [fooo la(s)ds| + Lfooolx(s)l ds]
< Mllall + LM||x]l + llk]l + Cllall + LC||x|]
<[M+Clllall + [|k]| + [LM + LC]||x]|| < oo.
Then
H:L (R") » Ly (RY)
Now, to prove that H is contraction,

let x,y e L, (R"),

then

I 1) (@) — Hy) ©)lde =[] |g(Of (£ x(0) + h(2) +
+ fotk(t, s)f (s,x(s))ds —

—g®f(t,y@®) —h(®) -
- fotk(t, $)f (s,y(s))ds|dt

< [ 19@If(6x@®) = f (&, y(®)|dt
7] k@) (s,x(s))ds
- fotk(t, $)f (s,y(s))ds | dt
<M [ LIx(6) — y(0)ldt
+ [ Jy k(t,9) |f(5,2(5)) = £(5,(5))|ds dt

< LM [7|x(8) —y(@®)ldt +C [ Llx(s) — y(s)ldt
< LM|lx — y|l + LCllx — y||
< [LM + LC]lx — yl|

Hence, by using Banach fixed point theorem,

H has a unique point, which is the solution of the equation (1.1), where x e L, (R*). m
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