Existence and uniqueness for Volterra nonlinear integral equation

Faez N. Ghaffoori,
Department of Mathematics, College of Basic Education, University Mustansirya

Baghdad - Iraq

Abstract

We study the existence and uniqueness theorem of a functional Volterra integral equation in the space of Lebesgue integrable on unbounded interval by using the Banach fixed point theorem.

Keywords : Superposition operator-Nonlinear Volterra integral functional equation-Banach fixed point theorem- Lipschitz condition.

Mathematics Subject Classification : 46M28, 17A06.

1. Introduction

The subject of nonlinear integral equation considered as an important branch of mathematics because it is used for solving of many problems such as physics, engineering and economics [1,2].

In this paper, we will prove the existence and uniqueness theorem of a functional Volterra integral equation in the space of Lebesgue integrable $L_{1}\left(R^{+}\right)$on unbounded interval of the kind :

$$
\begin{equation*}
x(t)=g(t) f(t, x(t))+h(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s \tag{1.1}
\end{equation*}
$$

where $t>0$ in the unbounded interval $R^{+}=[0, \infty)$.

2. Preliminaries

Let R be the field of real number, R^{+}be the interval $[0, \infty)$. If A is a Lebesgue measurable subset of R, then the symbol meas (A) stands for the Lebesgue measure of A.

Further, denote by $L_{1}(A)$ the space of all real functions defined and Lebesgue mesurable on the set A. The norm of a function $x \in L_{1}(A)$ is defined in the standard way by the formula,

$$
\begin{equation*}
\|x\|=\left\|x_{L_{1}(A)}\right\|=\int_{A}|x(t)| d t \tag{2.1}
\end{equation*}
$$

Obviously $L_{1}(A)$ forms a Banach space under this norm. The space $L_{1}(A)$ will be called the lebesgue space. In the case when $A=R^{+}$we will write L_{1} instead of $L_{1}\left(R^{+}\right)$.

One of the most important operator studied in nonlinear functional analysis is the so called the superposition operator [3]. Now, let us assume that $I \subset R$ is a given interval, bounded or not.

Definition 2.1 [4] Assume that a function $f(t, x)=f: I \times R \rightarrow R$ satisfies the so-called Carathéodory condition, i. e. it is measurable in t for any $x \in R$ and continuous in x for
almost all $t \in I$. Then to every function $x=x(t)$ which is measurable on I we may assign the function $(F x)(t)=f(t, x(t)), t \in I$. The operator F defined in such a way is said to be the superposition operator generated by the function f.

Theorem 2.1 [5] The superposition operator F generated by a function f maps continuously the space $L^{1}(I)$ into itself if and only if $|f(t, x)| \leq a(t)+b|x|$ for all $t \in I$ and $x \in R$, where $a(t)$ is a function the from $L^{1}(I)$ and b is a nonnegative constant.

This theorem was proved by Krasnoselskii [2] in the case when I is bounded interval. The generalization to the case of an unbounded interval I was given by Appell and Zabrejko [6].

Definition 2.2 [7] A function $f: A \rightarrow R^{m}, A \subset R^{n}$, is said to be Lipschitz condition if there exists a constant $\mathrm{L}, \mathrm{L}>0$ (is called the Lipschitz constant of f on A) such that
$|f(x)-f(y)| \leq \mathrm{L}|x-y|$, for all $x, y \in A$.
Definition 2.3 [8] Let (X, d) be a metric space and $T: X \rightarrow X$ is called contraction mapping, if there exist a number $\gamma<1$, such that : $d(T x, T y) \leq \gamma d(x, y), \quad \forall x, y \in X$.
Theorem 2.2 [9] (Banach fixed point theorem).
Let X be a closed subset of a Banach space E and $T: X \rightarrow X$ be a contraction, then T has a unique fixed point.

3. Existence Theorem

Define the operator H associated with integral Equation (1.1) take the following form.

$$
\begin{equation*}
H x=A x+B x . \tag{3.1}
\end{equation*}
$$

Where

$$
\begin{aligned}
(A x)(\mathrm{t}) & =g(t) f(t, x(t)), \\
(B x)(\mathrm{t}) & =h(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s \\
& =h(t)+K F x(\mathrm{t}),
\end{aligned}
$$

w here $(K x)(\mathrm{t})=\int_{0}^{t} k(t, s) x(s) d s$,
$F x=f(t, x)$, are linear operator at superposition respectively.
We shall treat the equation (3.1) under the following assumptions listed below.
i) $\mathrm{g}: R^{+} \rightarrow R$ is bounded function such that

$$
M=\sup _{t \in R^{+}}|g(t)|,
$$

and $h: R^{+} \rightarrow R$, such that $h \in L_{1}\left(R^{+}\right)$.
ii) $k: R^{+} \times R^{+} \rightarrow R$ such that :

$$
\int_{0}^{t}|k(t, s)| d t \leq C
$$

iii) $f: R^{+} \times R \rightarrow R$ satisfies Lipschitz condition with positive constant L such that :

$$
|f(t, x(t))-f(t, y(t))| \leq L|x(t)-y(t)|, \text { for all } t \in R^{+}
$$

iv) $L M+L C<1$.

Now, for the existence of a unique solution of our equation, we can see the following theorem.

Theorem 3.1 If the assumptions (i)-(iv) are satisfied, then the equation (1.1) has a unique solution, where $x \in L_{1}\left(R^{+}\right)$.

Proof : first we will prove that $H: L_{1}\left(R^{+}\right) \rightarrow L_{1}\left(R^{+}\right)$,
second will prove that H is contraction .
Consider the operator H as :
$H x(t)=g(t) f(t, x(t))+h(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s$
Then our equation (3.1) becomes

$$
x(t)=H x(t) .
$$

We notice that by assumption (iii), we have

$$
\begin{aligned}
|f(t, x)| & =|f(t, x)-f(t, 0)+f(t, 0)| \\
& \leq|f(t, x)-f(t, 0)|+|f(t, 0)| \\
& \leq L|x-0|+|f(t, 0)| \\
& \leq L|x|+a(t)
\end{aligned}
$$

Where

$$
|f(t, 0)|=a(t)
$$

To prove that $H: L_{1}\left(R^{+}\right) \rightarrow L_{1}\left(R^{+}\right)$
Let $x \in L_{1}\left(R^{+}\right)$,
then we have

$$
\begin{aligned}
\|(H x)(t)\|= & \int_{0}^{\infty}|(H x)(\mathrm{t})| d t \\
= & \int_{0}^{\infty}\left|g(t) f(t, x(t))+h(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s\right| d t \\
\leq & \int_{0}^{\infty}|g(t) f(t, x(t))| d t \\
& +\int_{0}^{\infty}\left|h(t)+\int_{0}^{t} k(t, s) f(s, x(s)) d s\right| d t \\
\leq & \int_{0}^{\infty}|g(t)|[a(t)+L|x(t)|] d t \\
& +\int_{0}^{\infty}|h(t)| d t+\int_{0}^{\infty}\left|\int_{0}^{t} k(t, s) f(s, x(s)) d s\right| d t \\
\leq & M\|a\|+L M \int_{0}^{\infty}|x(t)| d t+\|h\|
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{0}^{t}|k(t, s)| d t \int_{0}^{\infty}|f(t, x(t))| d s \\
& \leq M\|a\|+L M \int_{0}^{\infty}|x(t)| d t+\|h\| \\
& \quad+C \int_{0}^{\infty}[a(s)+L|x(s)|] d s \\
& \leq M\|a\|+L M\|x\|+\|h\| \\
& \quad+C\left[\int_{0}^{\infty}|a(s) d s|+L \int_{0}^{\infty}|x(s)| d s\right] \\
& \leq M\|a\|+L M\|x\|+\|h\|+C\|a\|+L C\|x\| \\
& \leq
\end{aligned}
$$

Then

$$
H: L_{1}\left(R^{+}\right) \rightarrow L_{1}\left(R^{+}\right)
$$

Now, to prove that H is contraction, let $x, y \in L_{1}\left(R^{+}\right)$,
then

$$
\left.\begin{array}{rl}
\int_{0}^{\infty}|(H x)(t)-(H y)(t)| d t= & \int_{0}^{\infty} \mid g(t) f(t, x(t))+h(t)+ \\
& +\int_{0}^{t} k(t, s) f(s, x(s)) d s- \\
& \quad-g(t) f(t, y(t))-h(t)- \\
& \quad \int_{0}^{t} k(t, s) f(s, y(s)) d s \mid d t \\
\leq \int_{0}^{\infty}|g(t)||f(t, x(t))-f(t, y(t))| d t \\
& +\int_{0}^{\infty} \mid \int_{0}^{t} k(t, s) f(s, x(s)) d s \\
\quad-\int_{0}^{t} k(t, s) f(s, y(s)) d s \mid d t
\end{array}\right] \begin{array}{r}
\leq M \int_{0}^{\infty} L|x(t)-y(t)| d t \\
\quad+\int_{0}^{\infty} \int_{0}^{t} k(t, s)|f(s, x(s))-f(s, y(s))| d s d t \\
\leq L M \int_{0}^{\infty}|x(t)-y(t)| d t+C \int_{0}^{\infty} L|x(s)-y(s)| d t \\
\leq \mathrm{L} M\|x-y\|+L C\|x-y\| \\
\leq[\mathrm{L} M+L C]\|x-y\|
\end{array}
$$

Hence, by using Banach fixed point theorem,
H has a unique point, which is the solution of the equation (1.1), where $x \in L_{1}\left(R^{+}\right)$.

References

[1] M. M. El-Borai, Wagdy G. El-Sayed and Faez N. Ghaffoori, On The Solvability of Nonlinear Integral Functional Equation, (IJMTT) Vo 34, No. 1, June 2016.
[2] P. P. Zarejko, A.I. Koshlev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovshchik, V. J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.
[3] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986).
[4] M. M. A. Metwali, On solutions of quadratic integral equations, Adam Mickiewicz University (2013).
[5] J. Bana's and W. G. El-Sayed, Solvability of functional and Integral Equations in some classes of integrable functions, 1993.
[6] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986).
[7] R. R. Van Hassel, Functional Analysis, December 16, (2004).
[8] I. G. Petrovski and R. A .Silverman, Ordinary Differential Equations, 1973.
[9] Ravi P. Agarwal, Maria Meehan and Donal O'regan, Fixed Point Theory and Applications Cambridge University Press, 2004.

