Existence and uniqueness for Volterra nonlinear integral equation

Faez N. Ghaffoori,

Department of Mathematics, College of Basic Education, University Mustansirya

Baghdad – Iraq

Abstract : We study the existence and uniqueness theorem of a functional Volterra integral equation in the space of Lebesgue integrable on unbounded interval by using the Banach fixed point theorem.

Keywords : Superposition operator-Nonlinear Volterra integral functional equation-Banach fixed point theorem- Lipschitz condition.

Mathematics Subject Classification: 46M28, 17A06.

1. Introduction

The subject of nonlinear integral equation considered as an important branch of mathematics because it is used for solving of many problems such as physics, engineering and economics [1,2].

In this paper, we will prove the existence and uniqueness theorem of a functional Volterra integral equation in the space of Lebesgue integrable $L_1(R^+)$ on unbounded interval of the kind :

$$x(t) = g(t) f(t, x(t)) + h(t) + \int_0^t k(t, s) f(s, x(s)) ds,$$
(1.1)

where t > 0 in the unbounded interval $R^+ = [0, \infty)$.

2. Preliminaries

Let *R* be the field of real number, R^+ be the interval $[0, \infty)$. If *A* is a Lebesgue measurable subset of *R*, then the symbol meas(*A*) stands for the Lebesgue measure of *A*.

Further, denote by $L_1(A)$ the space of all real functions defined and Lebesgue mesurable on the set A. The norm of a function $x \in L_1(A)$ is defined in the standard way by the formula,

$$\|x\| = \|x_{L_1(A)}\| = \int_A |x(t)| dt$$
(2.1)

Obviously $L_1(A)$ forms a Banach space under this norm. The space $L_1(A)$ will be called the lebesgue space. In the case when $A = R^+$ we will write L_1 instead of $L_1(R^+)$.

One of the most important operator studied in nonlinear functional analysis is the so called the superposition operator [3]. Now, let us assume that $I \subset R$ is a given interval, bounded or not.

Definition 2.1 [4] Assume that a function $f(t, x) = f: I \times R \to R$ satisfies the so-called Carathéodory condition, i. e. it is measurable in t for any $x \in R$ and continuous in x for

almost all $t \in I$. Then to every function x = x(t) which is measurable on I we may assign the function (Fx)(t) = f(t, x(t)), $t \in I$. The operator F defined in such a way is said to be the **superposition operator** generated by the function f.

Theorem 2.1 [5] The superposition operator *F* generated by a function *f* maps continuously the space $L^1(I)$ into itself if and only if $|f(t,x)| \le a(t) + b|x|$ for all $t \in I$ and $x \in R$, where a(t) is a function the from $L^1(I)$ and *b* is a nonnegative constant.

This theorem was proved by Krasnoselskii [2] in the case when I is bounded interval. The generalization to the case of an unbounded interval I was given by Appell and Zabrejko [6].

Definition 2.2 [7] A function $f : A \to R^m$, $A \subset R^n$, is said to be Lipschitz condition if there exists a constant L, L > 0 (is called the Lipschitz constant of f on A) such that

 $|f(x) - f(y)| \le L |x - y|$, for all $x, y \in A$.

Definition 2.3 [8] Let (X, d) be a metric space and $T: X \to X$ is called contraction mapping, if there exist a number $\gamma < 1$, such that : $d(Tx, Ty) \le \gamma d(x, y), \quad \forall x, y \in X.$

Theorem 2.2 [9] (Banach fixed point theorem).

Let X be a closed subset of a Banach space E and $T : X \to X$ be a contraction, then T has a unique fixed point.

3. Existence Theorem

Define the operator H associated with integral Equation (1.1) take the following form.

Hx = Ax + Bx.

Where

$$(Ax)(t) = g(t) f(t, x(t)), (Bx)(t) = h(t) + \int_0^t k(t, s) f(s, x(s)) ds = h(t) + KFx(t),$$

where $(Kx)(t) = \int_0^t k(t,s) x(s) ds$,

Fx = f(t, x), are linear operator at superposition respectively.

We shall treat the equation (3.1) under the following assumptions listed below.

i) $g: R^+ \to R$ is bounded function such that

$$M = \sup_{t \in R^+} |g(t)|,$$

and $h: \mathbb{R}^+ \to \mathbb{R}$, such that $h \in L_1(\mathbb{R}^+)$.

ii) $k: R^+ \times R^+ \to R$ such that :

$$\int_0^t |k(t,s)| dt \le C$$

iii) $f: R^+ \times R \to R$ satisfies Lipschitz condition with positive constant L such that :

$$|f(t, x(t)) - f(t, y(t))| \le L|x(t) - y(t)|$$
, for all $t \in R^+$.

iv) LM + LC < 1.

ISSN: 2231-5373

Now, for the existence of a unique solution of our equation, we can see the following theorem .

Theorem 3.1 If the assumptions (i)-(iv) are satisfied, then the equation (1.1) has a unique solution, where $x \in L_1(R^+)$.

Proof : first we will prove that $H: L_1(R^+) \to L_1(R^+)$,

second will prove that H is contraction.

Consider the operator *H* as :

$$Hx(t) = g(t) f(t, x(t)) + h(t) + \int_0^t k(t, s) f(s, x(s)) ds$$

Then our equation (3.1) becomes

x(t) = Hx(t).

We notice that by assumption (iii), we have

$$|f(t,x)| = |f(t,x) - f(t,0) + f(t,0)|$$

$$\leq |f(t,x) - f(t,0)| + |f(t,0)|$$

$$\leq L |x - 0| + |f(t,0)|$$

$$\leq L |x| + a(t)$$

Where

$$|f(t,0)| = a(t)$$

To prove that $H: L_1(R^+) \to L_1(R^+)$

Let
$$x \in L_1(\mathbb{R}^+)$$
,

then we have

$$\begin{split} \|(Hx)(t)\| &= \int_{0}^{\infty} |(Hx)(t)| dt \\ &= \int_{0}^{\infty} \left| g(t) f(t, x(t)) + h(t) + \int_{0}^{t} k(t, s) f(s, x(s)) ds \right| dt \\ &\leq \int_{0}^{\infty} |g(t) f(t, x(t))| dt \\ &+ \int_{0}^{\infty} |h(t) + \int_{0}^{t} k(t, s) f(s, x(s)) ds \right| dt \\ &\leq \int_{0}^{\infty} |g(t)| [a(t) + L|x(t)|] dt \\ &+ \int_{0}^{\infty} |h(t)| dt + \int_{0}^{\infty} \left| \int_{0}^{t} k(t, s) f(s, x(s)) ds \right| dt \\ &\leq M \|a\| + LM \int_{0}^{\infty} |x(t)| dt + \|h\| \end{split}$$

ISSN: 2231-5373

http://www.ijmttjournal.org

$$\begin{aligned} &+ \int_{0}^{t} |k(t,s)| dt \int_{0}^{\infty} |f(t,x(t))| ds \\ &\leq M ||a|| + LM \int_{0}^{\infty} |x(t)| dt + ||h|| \\ &+ C \int_{0}^{\infty} [a(s) + L|x(s)|] ds \\ &\leq M ||a|| + LM ||x|| + ||h|| \\ &+ C [\int_{0}^{\infty} |a(s)ds| + L \int_{0}^{\infty} |x(s)| ds] \\ &\leq M ||a|| + LM ||x|| + ||h|| + C ||a|| + LC ||x|| \\ &\leq [M + C] ||a|| + ||h|| + [LM + LC] ||x|| < \infty. \end{aligned}$$

Then

 $H: L_1\left(R^+\right) \ \rightarrow \ L_1\left(R^+\right)$

Now, to prove that *H* is contraction,

let
$$x, y \in L_1(\mathbb{R}^+)$$
,

then

$$\begin{split} \int_{0}^{\infty} |(Hx)(t) - (Hy)(t)| dt &= \int_{0}^{\infty} |g(t)f(t,x(t)) + h(t) + \\ &+ \int_{0}^{t} k(t,s)f(s,x(s)) ds - \\ &- g(t)f(t,y(t)) - h(t) - \\ &- \int_{0}^{t} k(t,s)f(s,y(s)) ds | dt \\ &\leq \int_{0}^{\infty} |g(t)| |f(t,x(t)) - f(t,y(t))| dt \\ &+ \int_{0}^{\infty} |\int_{0}^{t} k(t,s)f(s,x(s)) ds \\ &- \int_{0}^{t} k(t,s)f(s,y(s)) ds | dt \\ &\leq M \int_{0}^{\infty} L |x(t) - y(t)| dt \\ &+ \int_{0}^{\infty} \int_{0}^{t} k(t,s) |f(s,x(s)) - f(s,y(s))| ds dt \\ &\leq LM \int_{0}^{\infty} |x(t) - y(t)| dt + C \int_{0}^{\infty} L |x(s) - y(s)| dt \\ &\leq LM ||x - y|| + LC ||x - y|| \\ &\leq [LM + LC] ||x - y|| \end{split}$$

Hence, by using Banach fixed point theorem,

H has a unique point, which is the solution of the equation (1.1), where $x \in L_1(R^+)$.

ISSN: 2231-5373

References

- [1] M. M. El-Borai, Wagdy G. El-Sayed and Faez N. Ghaffoori, On The Solvability of Nonlinear Integral Functional Equation, (IJMTT) Vo 34, No. 1, June 2016.
- [2] P. P. Zarejko, A.I. Koshlev, M. A. Krasnoselskii, S. G. Mikhlin, L. S. Rakovshchik, V. J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.
- [3] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986).
- [4] M. M. A. Metwali, On solutions of quadratic integral equations, Adam Mickiewicz University (2013).
- [5] J. Bana's and W. G. El-Sayed, Solvability of functional and Integral Equations in some classes of integrable functions, 1993.
- [6] J. Appell and P. P. Zabroejko, Continuity properties of the superposition operator, No. 131, Univ. Augsburg, (1986).
- [7] R. R. Van Hassel, Functional Analysis, December 16, (2004).
- [8] I. G. Petrovski and R. A. Silverman, Ordinary Differential Equations, 1973.
- [9] Ravi P. Agarwal, Maria Meehan and Donal O'regan, Fixed Point Theory and Applications Cambridge University Press, 2004.