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Abstract: 

   If f is an arithmetical function and [f(i,j)] is the  matrix then we evaluated  

det [f(i,j)]  as product of  f,  has Dirichlet convolution of f and  Other theorem and corollary are evaluated. 
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Introduction: 

The determinant of the 𝑛𝑥𝑛 matrix   𝑖, 𝑗   which has greatest common divisor ( i,j) of I and j as its i,j –entry is the 

product  ∅∗ 1   ∅∗ 2 ∅∗ 3  ------∅∗ 𝑛  , where  ∅∗ is unitary Euler’s totient function. In this paper we also proved 

that if  f  is an arithmetical function and [f(i,j)] is the 𝑛𝑥𝑛  matrix having f evaluated at the greatest common divisor 

of  I and j as its  I,j entry, then 

 det [f(i,j)]    =  𝑓. 𝜇  1 =  𝑓. 𝜇  1   𝑓. 𝜇  2   𝑓. 𝜇  3 ----  𝑓. 𝜇  𝑛 ,where 𝜇 is the Mobius function and  f. 𝜇 is the 

Dirichlet convolution of f and 𝜇. 

 Tom Apostol [1] extended smith’s result by showing that if f  and g  are arithmetical functions and  𝛽∗ is defiend for 

positive integers m and r by  

                      𝛽∗ 𝑚, 𝑟 =  𝑓∗ 𝑑 𝑔∗ 𝑟 𝑑  𝑑// 𝑚 ,𝑟 ∗ , 

Then 𝑑𝑒𝑡 𝛽∗ 𝑖, 𝑗  =  𝑔∗ 1  𝑛𝑓∗ 1 𝑓∗ 1 𝑓∗ 2 ------𝑓∗ 𝑛 . He noted that , as a consequence of this , 

𝑑𝑒𝑡 𝑐∗ 𝑖, 𝑗  = 𝑛!, where 𝑐∗ 𝑚, 𝑟  is Unitary Ramanujan sum.  It is defined as 

             𝐶∗ 𝑚, 𝑟 =  𝑒𝑥𝑝  
2𝜋𝑖𝑚

𝑘
 𝑘(𝑚𝑜𝑑  𝑟) =  𝑑𝜇∗  

𝑟

𝑑
 𝑑// 𝑚 ,𝑟 ∗  

                                  𝑘, 𝑟 ∗ = 1 

Where the first sum is over a unitary reduced residue system (mod r). Since 𝐶∗ 𝑟, 𝑟 =  ∅∗ 𝑟 , this function is a 

unitary generalization of Euler’s totient function. 

Paul McCarthy generalized smith’s and Apostol’s results to the class of even functions 

(mod r).he evaluated the determents of   𝑛𝑥𝑛 matrices of the form 𝛽∗ 𝑖, 𝑗    . Where  𝛽∗ 𝑚, 𝑟  is a even function of  

m (mod r). Acomplex-valued function 𝛽∗ 𝑚, 𝑟  of the positive integral variables m and r is said  to be a even 

function of m (mod r) ,if  𝛽∗ 𝑚, 𝑟 = 𝛽∗( 𝑚, 𝑟 , 𝑟)for all values of  m . the functions considered by Smith and 

Apostol are even functions of m (mod r) for every r. 

Ecford Cohen showed that if 𝛽∗ 𝑚, 𝑟  is an even function of m (mod r), then 𝛽∗ can expressed in the form  

                           𝛽∗ 𝑚, 𝑟 =  𝐶∗ 𝑚, 𝑑 𝑑//𝑟 𝛼∗ 𝑑, 𝑟 ,    (1) 

where  the coefficients    𝛼∗ 𝑑, 𝑟   are uniquely determined by      

                        𝛼∗ 𝑑, 𝑟  = 
1

𝑟
  𝐶∗ 𝑟 𝑑 , 𝑒 𝑒//𝑟 𝛽∗ 𝑟 𝑒 , 𝑟  
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Another characterization, also obtained in this paper is that   𝛽∗ 𝑚, 𝑟  is an even function of m(mod r) if and only if 

there is a function 𝐹∗ of two positive integral variables such that 

                         𝛽∗ 𝑚, 𝑟 =  𝐹∗ 𝑑, 𝑟 𝑑  𝑑// 𝑚 ,𝑟       (2) 

 If for each r, 𝛽∗ 𝑚, 𝑟  is an even function of  m(mod r) given  (1) &(2),then Mc carthy showed that det  𝛽∗ 𝑖, 𝑗  =

𝑛!  𝛼∗ 1,1  𝛼∗ 2,2  𝛼∗ 3,3 ----- 𝛼∗ 𝑛, 𝑛 = 𝐹∗ 1,1 𝐹∗ 2,1 𝐹∗ 3,1 --𝐹∗ 𝑛, 1 .for the functions considered by 

Apostol, 𝐹∗ 𝑚, 𝑟 = 𝑓∗ 𝑚 𝑔∗ 𝑟 . 

 A set S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛  of distinct positive integers is factor-closed if it contains every divisor of  𝑥   for any 

𝑥 ∈ 𝑆.let 𝑓∗ be an arithmetical function and  𝑓∗(𝑥𝑖 , 𝑥𝑗 )  denote n x n matrix having 𝑓∗  evaluated at the greatest 

common divisor of 𝑥𝑖 ,and 𝑥𝑗  as its i,j entry .Smith also stated that the following result is true. If S is factor –closed 

,then the determent of the matrix  𝑓∗(𝑥𝑖 , 𝑥𝑗 )  is the product  𝑓∗. 𝜇∗  𝑥1  𝑓
∗. 𝜇∗  𝑥2 … . .  𝑓∗. 𝜇∗  𝑥𝑛  .The purpose 

of this paper is to extend the results of Smith ,Apostol, and Mc Carthy to matrixes of the form  𝛽∗(𝑥𝑖 , 𝑥𝑗 ) ,where 

𝛽∗ 𝑚, 𝑟  is an even function of m (mod r) and to obtain some new results concerning the structure and inverses of 

the matrices. We use some of the results to study matrices of the form𝑓∗[𝑥𝑖, 𝑥𝑗  ] which have 𝑓∗ evaluated at the 

product of  𝑥𝑖 ,and 𝑥𝑗  as their i,j-entry ,where is quadratic. 

 

         1.   MATRICES ASSOCIATED WITH EVEN FUNCTION (mod r) 

 Throughout this paper ,let f(m),g(m),and h(m) be arithmetical functions ( i,e complex-valued functions of a real 

variable that vanish when the argument is not positive integer).we assume that f,g,h have Dirichlet invers, which are 

denoted by 𝑓′𝑔′′, respectively. 

   Our fist results are on n x n matrices of the form 𝛹∗ 𝑚, 𝑟  is defined for all positive integers m and r as 

                                 𝛹∗ 𝑚, 𝑟 =  𝑓∗ 𝑑 𝑔∗ 𝑚 𝑑  ∗ 𝑟 𝑑  𝑑// 𝑚 ,𝑟 ∗ ,  (3) 

 And S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛  is a set of distinct positive integers. 

 Let 𝜁(𝑑) be the function defined by  𝜁(𝑑) = 1 for all d. if g =  𝜁, 𝛹is called a generalized Ramanujan’s sum. These  

sums generalize Dirichlet convolution 𝛹∗ 𝑚, 𝑚 = ( 𝑓∗. ∗ (𝑚))  and were studied by Apostol .A well-known 

example is Ramanujan’s sum 𝐶∗ 𝑚, 𝑟 ,which is obtained from (3) by setting 𝑓∗ 𝑑 = 𝑑 for all d, g= 𝜁 ,and ∗ = 𝜇∗. 

We use our result on matrix [𝛹∗(𝑥𝑖 , 𝑥𝑗 )] to study the matrix [𝛽∗(𝑥𝑖 , 𝑥𝑗 )] when 𝛽∗ is even function of m(mod r). 

 

LEMMA 1: 

           

     If  T =  𝑦1𝑦2𝑦3 … . 𝑦𝑚   is a factor –closed set containing S, then [𝛹∗(𝑥𝑖, 𝑥𝑗 )] = GA𝐻𝑇 where A = diag 

(𝑓∗ 𝑦1 ,𝑓∗ 𝑦2 … . . 𝑓∗ 𝑦𝑚   and the  n x m  matrices G and H are defined  by  

𝐺 =   𝑔∗  
𝑥𝑖

𝑥𝑗
    and  𝐻 =   ∗  

𝑥𝑖
𝑥𝑗

   . 

 

Proof: Calculating the i-j entry  of the product GA𝐻𝑇 gives  

   𝑓∗𝑚
𝑘=1  𝑦𝑘 𝑔

∗ 
𝑥𝑖

𝑦𝑘
  ∗  

𝑥𝑗
𝑦𝑘

  =   𝑓∗ 𝑑 𝑔∗ 
𝑥𝑖

𝑑  ∗  
𝑥𝑗

𝑑  𝑑//𝑥𝑗

𝑑// 𝑥𝑗

= [𝛹∗(𝑥𝑖 , 𝑥𝑗 )] 

 

LEMMA 2 : 

 

      If S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   is factor –closed , then  𝑓∗  
𝑥𝑖

𝑥𝑗
   

−1

=  𝑓∗ ′ 
𝑥𝑖

𝑥𝑗
   . 

  

Proof.  Calculating the i-j entry of the product [𝑓∗  
𝑥𝑖

𝑥𝑗
  ] [𝑓∗′ 

𝑥𝑖
𝑥𝑗

  ] gives  

              𝑓∗ 
𝑥𝑖

𝑥𝑘
  𝑚

𝑘=1 𝑓∗ ′ 
𝑥𝑘

𝑥𝑗  
=  [𝑓∗′ 𝑑 

𝑑//
𝑥𝑖

𝑥𝑗 
[𝑓∗  

𝑥𝑖
𝑥𝑗 𝑑

  =  
1  𝑖𝑓 𝑥𝑗 = 𝑥𝑖  

0      𝑜𝑡𝑒𝑟 𝑤𝑖𝑠𝑒               
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THEOREM 1 : 

                     

    If S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   is factor – closed, then each of the following is true. 

         (i)   det[𝛹∗(𝑥𝑖 , 𝑥𝑗 )] =    𝑔∗ 1 ∗ 1  𝑛𝑓∗ 𝑥1 𝑓
∗ 𝑥2 𝑓

∗ 𝑥3 … . 𝑓∗ 𝑥𝑛    ; 

         (ii)  if  det[𝛹∗(𝑥𝑖, 𝑥𝑗 )] ≠ 0,   𝛹∗(𝑥𝑖 , 𝑥𝑗 ) 
−1

  = (𝑎𝑖𝑗 ), where  

                               𝑎𝑖𝑗 =   
1

 𝑓∗ 𝑥𝑘  
 𝑥𝑖 ,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

′ 𝑥𝑘 ,/𝑥𝑖 𝑔
′ 𝑥𝑘,/𝑥𝑗                  

Proof: By lemma 1,     [𝛹∗(𝑥𝑖, 𝑥𝑗 )] = GA𝐻𝑇 , A = diag (𝑓∗ 𝑥1 , 𝑓∗ 𝑥2 … . . 𝑓∗ 𝑥𝑛   )  and n x n matrices G and H 

are defined by      𝐺 =   𝑔∗  
𝑥𝑖

𝑥𝑗
    and  𝐻 =   ∗  

𝑥𝑖
𝑥𝑗

   . Since any permutation of the elements in S yields a 

similar matrix we may assume that 𝑥1 < 𝑥2 < 𝑥3 … . 𝑥𝑛  

Thus G and H are triangular with diagonal elements𝑔∗ 1 ∗ 1 , respectively. this proves (i). if det[𝛹∗(𝑥𝑖 , 𝑥𝑗 )] ≠ 0, 

 𝛹∗(𝑥𝑖 , 𝑥𝑗 ) 
−1

=  𝐺𝐴𝐻𝑇 −1 . Therefore using lemma (2), we obtain (ii). 

 

COROLLARY 1. 

  

 Let S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be factor – closed. if  𝛽∗ is defined for positive integers  m and r by                       

𝛽∗ 𝑚, 𝑟 =  𝑓∗ 𝑑 𝑔∗ 𝑟 𝑑  𝑑// 𝑚 ,𝑟 ∗  then each of the following is true: 

(i)     det[𝛽∗(𝑥𝑖 , 𝑥𝑗 )] =    𝑔∗ 1  𝑛𝑓∗ 𝑥1 𝑓
∗ 𝑥2 𝑓

∗ 𝑥3 … . 𝑓∗ 𝑥𝑛     

(ii)   if det[𝛽∗(𝑥𝑖 , 𝑥𝑗 )] ≠ 0,   𝛽∗(𝑥𝑖 , 𝑥𝑗 ) 
−1

  = (𝑎𝑖𝑗 ), where  

                               𝑎𝑖𝑗 =   
1

𝑓∗ 𝑥𝑘  
 𝑥𝑖 ,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

∗′ 𝑥𝑘 ,/𝑥𝑖 𝑔
∗′ 𝑥𝑘,/𝑥𝑗    

 

COROLLARY 2. 

 

 If  𝛽∗ is defined for positive integers m and r by 𝛽∗ 𝑚, 𝑟 =  𝑓∗ 𝑑 𝑔∗ 𝑟 𝑑  𝑑// 𝑚 ,𝑟 ∗  then 

det[𝛽∗(𝑖, 𝑗)] =    𝑔∗ 1  𝑛𝑓∗ 1 𝑓∗ 2 𝑓∗ 3 … . 𝑓∗ 𝑛 . 

 

COROLLARY 3. 

 

 Let S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be factor – closed, then each of the following is true: 

(i) det[𝐶∗(𝑥𝑖 , 𝑥𝑗 )] = 𝑥1𝑥2𝑥3 … . 𝑥𝑛 , 

        (ii)  𝐶∗(𝑥𝑖, 𝑥𝑗 ) 
−1

  = (𝑎𝑖𝑗 ), where  

                               𝑎𝑖𝑗 =   
1

 𝑥𝑘 
 𝑥𝑖 ,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

 𝜇∗(𝑥𝑘 ,/𝑥𝑗 ). 

Proof:   if we set 𝑓∗ 𝑑 = 𝑑 for all d, 𝑔∗ = 𝜁 ,then  𝛹∗ = 𝐶∗. Hence applying  thermo 2,obtain (i)&(ii). 

 

THEOREM 2. 

   Let S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be factor – closed. if  𝛽∗ is defined for positive integers  m and r by                       

𝛽∗ 𝑚, 𝑟 =  𝐶∗ 𝑚, 𝑑 𝛼∗ 𝑑, 𝑟 𝑑//𝑟  then  det[𝛽∗(𝑥𝑖 , 𝑥𝑗 ) =  𝑥𝑖𝛼
∗𝑛

𝑖=1  𝑥𝑖 , 𝑥𝑗  . 

 

Proof : we have  [𝛽∗(𝑥𝑖 , 𝑥𝑗 )] = [𝐶∗(𝑥𝑖 , 𝑥𝑗 )] [𝛼∗ 𝑥𝑖 , 𝑥𝑗  𝑒𝑖𝑗 ], where 𝑒𝑖𝑗 = 1. if  
𝑥𝑖

𝑥𝑗
  and 0 otherwise . Since we may 

assume that 𝑥1 < 𝑥2 < 𝑥3 … . 𝑥𝑛 , det[𝛽∗(𝑥𝑖 , 𝑥𝑗 ) =  𝑥𝑖𝛼
∗𝑛

𝑖=1  𝑥𝑖 , 𝑥𝑗   
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COROLLARY 4. 

 

      if  𝛽∗ is defined for positive integers  m and r by  𝛽∗ 𝑚, 𝑟 =  𝐶∗ 𝑚, 𝑑 𝛼∗ 𝑑, 𝑟 𝑑//𝑟  then  det[𝛽∗(𝑖, 𝑗) = 

n!  𝛼∗ 1,1  𝛼∗ 2,2  𝛼∗ 3,3 ----- 𝛼∗ 𝑛, 𝑛 . 

 

       2. MATRICES ASSOCIATED WITH COMLETELY EVEN FUNCTIONS (mod r)  

 

Given any unitary arithmetical function 𝑓∗ 𝑚 ,we denote by the 𝑓∗ 𝑚, 𝑟  the function 𝑓∗ evaluated at the greatest 

common divisor of m and r, Cohen called the function  𝑓∗ 𝑚, 𝑟  a  completely even function (mod r). 

Let S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be a set of distinct positive integers . if I(M) = m is the identity function , the n x n matrix 

(S) = [𝐼∗(𝑥𝑖 , 𝑥𝑗 )] having the greatest common divisor (𝑥𝑖 , 𝑥𝑗 ) of  𝑥𝑖  and 𝑥𝑗  as i,j entry is called the greatest common 

divisor (GCD) matrix on S.In this section we extend some of the results to matrices of the form [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] 

 

COROLLARY  5. 

  

If  S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛  be factor – closed, then each of the following is true: 

(i) (Smith)  det [𝑓∗(𝑥𝑖 , 𝑥𝑗 )]  =  𝑓∗. 𝜇∗  𝑥1  𝑓
∗. 𝜇∗  𝑥2 … . .  𝑓∗. 𝜇∗  𝑥𝑛  , 

     (ii)     (Bourque and Ligh ) if det[𝑓∗(𝑥𝑖 , 𝑥𝑗 )] ≠ 0,   𝑓∗(𝑥𝑖 , 𝑥𝑗 ) 
−1

  = (𝑎𝑖𝑗 ), where  

𝑎𝑖𝑗 =   
1

 𝑓∗. 𝜇∗  𝑥𝑘 
 

𝑥𝑖 ,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

𝜇∗ 𝑥𝑘 ,/𝑥𝑖 𝜇
∗ 𝑥𝑘 ,/𝑥𝑗   

Proof: Set  𝑔∗ = ∗ = 𝜁 and substitute   𝑓∗ . 𝜇∗  for 𝑓∗ in theorem 1. 

 

Example 1. 

  

For any real number 𝜀, let the functions 𝜁 𝜀  and 𝜑𝜀
∗ be defined by  𝜁 𝜀 𝑚 = 𝑚𝜀 and 

 𝜑𝜀
∗(𝑚) =  𝜁 𝜀  . 𝜇∗  𝑚 =  𝑑𝜀

𝑑//𝑚 𝜇∗  
𝑚

𝑑
 . Since  𝜑𝜀

∗ is the Dirichlet convolution of two multiplicative functions, 

it is multiplicative and for prime power 𝑃𝑟   𝑟 ≥ 1 ,                  

𝜑𝜀
∗ 𝑃𝑟 = 𝑃𝜀𝑟 − 𝑃𝜀(𝑟−1). thus 𝜀 > 0  we see that 𝜑𝜀

∗ 𝑚 > 0 for all m.  If  S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be factor – 

closed and 𝜀 > 0  ,by Corollary 5 each of the following is true. 

 

(i)     𝑥𝑖 , 𝑥𝑗  
ε
 
−1

 =   (𝑎𝑖𝑗 ) where   

𝑎𝑖𝑗 =   
1

𝜑𝜀
∗ 𝑥𝑘 

 
𝑥𝑖 ,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

𝜇∗ 𝑥𝑘 ,/𝑥𝑖 𝜇
∗ 𝑥𝑘 ,/𝑥𝑗  

      (ii)   det [ 𝑥𝑖, 𝑥𝑗  
ε
] = 𝜑𝜀

∗ 𝑥1 𝜑𝜀
∗ 𝑥2 … . . 𝜑𝜀

∗ 𝑥𝑛  , 

 

Example 2. 

Foe a real number 𝜀, let 𝜎𝜀   be defined by  𝜎𝜀 𝑚 =  𝜁 𝜀  . 𝜁 0    𝑚 =  𝑑𝜀
𝑑//𝑚 . The functions 𝜏 𝑚 = 𝜎0(𝑚) and  

𝜎(m) = 𝜎1(𝑚) give the number of divisors of m and the sum of the divisors of m , respectively. we have  𝜎𝜀 . 𝜇∗ = 

𝜁 𝜀 .𝜁. 𝜇∗ = 𝜁 𝜀 . thus (𝜎𝜀 . 𝜇∗)(𝑚) > 0 for all m. .  If  S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be factor – closed and 𝜀 > 0 ,by Corollary 5 

each of the following is true. 

        

(i)     𝜎𝜀 𝑥𝑖, 𝑥𝑗   
−1

 =   (𝑎𝑖𝑗 ) where   
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𝑎𝑖𝑗 =   
1

 𝑥𝑘 
 
𝜀

𝑥𝑖,//𝑥𝑘

𝑥𝑗 ,//𝑥𝑘

𝜇∗ 𝑥𝑘 ,/𝑥𝑖 𝜇
∗ 𝑥𝑘 ,/𝑥𝑗  

(ii) Det [𝜎𝜀 𝑥𝑖, 𝑥𝑗  ] =  𝑥1𝑥2𝑥3 … . 𝑥𝑛  𝜀 . 

If A is n x m matrix with 𝑚 ≥ 𝑛, we denote by 𝐴 𝑑1𝑑2𝑑3 … . 𝑑𝑛   the n x n submatrix of A which contains the 

columns 1≤ 𝑑1 < 𝑑2 < 𝑑3 … . < 𝑑𝑛 ≤ 𝑚. 

 

THEOREM 3 

 

Let S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be a set of distinct positive integers. If ∗ 𝑑 = 𝑔∗(𝑑) ∈R and f(d) > 0 whenever d//x 

for any  x ∈ S, then each of the following is true . 

 

     (i) [𝛹∗(𝑥𝑖 , 𝑥𝑗 )] is positive definite: 

    (ii) det[𝛹∗(𝑥𝑖 , 𝑥𝑗 )] =  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛   if and only if S is factor closed : 

(iii)  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  ≤ det[𝛹∗(𝑥𝑖 , 𝑥𝑗 )]≤ 𝛹∗(𝑥1, 𝑥1) 𝛹∗(𝑥2, 𝑥2)….. 𝛹∗(𝑥𝑛 , 𝑥𝑛 ). 

 

Proof:  Let 𝑚 ≥ 𝑥 for all x ∈ S. by lemma 1,  [𝛹∗(𝑥𝑖, 𝑥𝑗 )] = GA𝐻𝑇, where 𝐴 = 𝑑𝑖𝑎𝑔 𝑓∗ 1 𝑓∗ 2 …… . 𝑓∗ 𝑚   

and n x m  matrix  G is defind by 𝐺 =  𝑔∗  
𝑥𝑖

𝑗   .Thus [𝛹∗(𝑥𝑖 , 𝑥𝑗 )] = A𝐴𝑇 , where A = G𝐴1/2. Hence by the 

Binet –Cauchy formula , 

 

Det A𝐴𝑇 =   𝑑𝑒𝑡𝐴 𝑘1𝑘2𝑘3 … . 𝑘𝑛   2
1≤𝑘1<𝑘2<⋯….𝑘𝑛≤𝑚  

 

               =   𝑓∗ 𝑘1 𝑓
∗ 𝑘2 …… . 𝑓∗ 𝑘𝑛   𝑑𝑒𝑡  𝑔∗  

𝑥𝑖
𝑗    

2

1≤𝑘1<𝑘2<⋯….𝑘𝑛≤𝑚 .           (4) 

One term in 𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛   𝑑𝑒𝑡  𝑔∗  

𝑥𝑖
𝑗    

2

=  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  .Snice each 

term is nonnegative, det[(𝑥𝑖 , 𝑥𝑗 )] ≥  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  > 0. This proves (i)and (ii) . by the 

theorem 1, if S is factored-closed , det[𝛹∗(𝑥𝑖, 𝑥𝑗 )] =  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  . to prove converse we 

may assume 𝑥1 < 𝑥2 < 𝑥3 … . 𝑥𝑛 . if S is not factor –closed ,let r be the smallest integer such that d//𝑥𝑟  for some 

d ɇ 𝑆 . Define 𝑘𝑖for 1 ≤ 𝑖 ≤ 𝑛 by  𝑘𝑖 = 𝑥𝑖 , if 𝑖 ≠ 𝑟 and 𝑘𝑖 = 𝑑 if  i= r 

Since 𝑑⍀𝑥𝑖 𝑓𝑜𝑟 𝑖 < 𝑟, [𝑔∗  
𝑥𝑖

𝑗  ] is upper triangular with 𝑔∗ 1  as the diagonal elements. Consequently , from 

(4), we have det[𝛹∗(𝑥𝑖, 𝑥𝑗 )] ≥  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  +  𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓

∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛  >

 𝑔∗ 1  2𝑛  𝑓∗ 𝑥1 𝑓
∗ 𝑥2 …… . 𝑓∗ 𝑥𝑛 . 

 

     3.MATRICES ASSOCIATED WITH QUADRATIC FUNCTIONS 

In this section we use the following theorem of Vaidyanathaswamy, concerning quadratic functions and our results 

on matrix [𝛹∗(𝑥𝑖 , 𝑥𝑗 )] is to investigate matrices of the form [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] 

Where 𝑓∗(𝑚)a quadratic function .An arithmetical function is  𝑓∗(𝑚) is said to be quadratic if it is the Dirichlet 

product of two completely multiplicative functions . 

 

THEOREM  4 

 

If 𝑓∗ = 𝑔∗.∗, where 𝑔∗and ∗ are completely multiplicative functions, then 𝑓∗ satisfies the identity 

                 𝑓∗ 𝑚𝑟 =  𝑓∗(𝑚/𝑑)𝑓∗(𝑟/𝑑)𝑔∗(𝑑)∗(𝑑)𝜇∗(𝑑)     𝑑// 𝑚 ,𝑟 ∗  
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COROLLARY. 6  

 

Let  𝑓∗ = 𝑔∗.∗, where 𝑔∗and ∗ are completely multiplicative. If S is factor –closed ,then each of the following is 

true: 

 

                    i)  det [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] =  𝑔∗(𝑥𝑖,)
∗(𝑥𝑖 ,)𝜇

∗(𝑥𝑖 ,)
𝑛
𝑖=1 ; 

                   ii)  if  det [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] ≠ 0, [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] −1 =  𝑎𝑖𝑗  ,  where 𝑎𝑖𝑗  defined as  

𝑎𝑖𝑗 =   
𝜇 ∗(xk )

𝑔∗(xk )∗(xk )
 f ′∗ 

xk
xi

  f ′∗  
xk

xj
  xi /xk

xj /xk  

. 

Proof : this corollary follows from theorems 1 & 4 . 

COROLLARY. 7 

Let  𝑓∗ = 𝑔∗.∗, where 𝑔∗and ∗ are completely multiplicative. If 𝑓∗ 𝑑 ∈ 𝑅 and 𝑔∗(𝑑)∗(𝑑)𝜇∗(𝑑)  > 0   whenever 

d//x for any x ∈ 𝑠, then each of the following is true : i)[𝑓∗(𝑥𝑖 , 𝑥𝑗 )] is positive definite 

ii)det [𝑓∗(𝑥𝑖 , 𝑥𝑗 )] =  𝑔∗(𝑥𝑖)
∗(𝑥𝑖)𝜇

∗(𝑥𝑖)
𝑛
𝑖=1  if and only if S factor-closed  

(iii)  𝑔∗(𝑥𝑖,)
∗(𝑥𝑖 ,)𝜇

∗(𝑥𝑖 ,)
𝑛
𝑖=1 ≤ det [𝑓∗(𝑥𝑖 , 𝑥𝑗 )]  ≤ f ∗ x1

2 f ∗ x2
2 … f ∗ xn

2 . 

Proof. This corollary follows from theorem 3 & 4. 

EXAMPLE .3 

For  S=  𝑥1𝑥2𝑥3 … . 𝑥𝑛   be a set of distinct positive integers each of the following is true : 

i).det [𝜎𝜀 𝑥𝑖 , 𝑥𝑗  ] =  𝑥𝑖
𝜀𝑛

𝑖=1 𝜇∗ 𝑥𝑖  

ii).det [𝜎𝜀 𝑥𝑖, 𝑥𝑗  ] ≠ 0, [𝜎𝜀(𝑥𝑖 , 𝑥𝑗 )] −1 =  𝑎𝑖𝑗  ,  where  

𝑎𝑖𝑗 =   𝑥𝑘 
−ε𝜇∗(𝑥𝑘 )𝜎𝜀

′∗
 

xk
xi

  𝜎𝜀
′∗  

xk
xj

  
xi /xk
x j /xk  

 

EXAMPLE.4 

Let 𝛽∗(𝑚) be the number of integers d such that 1 ≤ 𝑑 ≤ 𝑚 and (d, m) = 𝑟2 for some r.This function is called 

Square –totient. if 𝜇∗(x) ≠ 0 for all x ∈ 𝑠 =  𝑥1𝑥2𝑥3 … . 𝑥𝑛 ,then each of the following is true: 

    (i) [𝛽∗(𝑥𝑖 , 𝑥𝑗 ) is positive definite, 

    (ii) det [𝛽∗ 𝑥𝑖 , 𝑥𝑗  ] = 𝑥1𝑥2𝑥3 … . 𝑥𝑛  if and only if S is factor-closed,                  

(𝑖𝑖𝑖)    𝑥1𝑥2𝑥3 … . 𝑥𝑛 ≤ det [𝛽∗ 𝑥𝑖, 𝑥𝑗  ] ≤ β
∗ x1

2 β
∗ x2

2 … β
∗ xn

2 .  

We have 𝛽∗ = 𝜁 1.𝜆, where Lioville’s function 𝜆 is defined by 𝜆 1 = 1 and  if   

m = 𝑝1
𝑎1 . 𝑝2

𝑎2 …𝑝𝑟
𝑎𝑟  as a product of distinct primes 𝑝𝑖 , then 𝜆 𝑚 =  −1 𝑘  , where  
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k = 𝑎1 + 𝑎2. … . 𝑎𝑟 . this applying  Corollary 7, we obtain (i) – (iii) . if S is factor closed , then  

det [𝛽∗ 𝑥𝑖, 𝑥𝑗  ] =  𝑥𝑖 𝜇
∗(𝑥𝑖) 

𝑛
𝑖=1 . Moreover, if   det [𝛽∗ 𝑥𝑖 , 𝑥𝑗  ] ≠ 0 ,then 

 [𝛽∗ 𝑥𝑖, 𝑥𝑗  ] −1 =  𝑎𝑖𝑗  , where  𝑎𝑖𝑗  is defined by   

𝑎𝑖𝑗 =   𝑥𝑘 
−1𝛽′∗  

xk
xj

  𝛽′∗ 
xk

xi
  

xi /xk
xj /xk  
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