# Matrices Associated with Class of Unitary Arithmetical Functions 

E.Kiran Babu ${ }^{1}$, , Dr.V.Raghavendra Prasad ${ }^{2}$,Dr.Y.Rajasekhara Goud ${ }^{3}$, Research scholar, pp mat 0146, Rayalaseema University, Kurnool. Assistant Professor of Mathematics, G.Pulla Reddy Engineering College, (Autonomous) Kurnool, A.P. 518007 (INDIA)<br>Associate Professor of Mathematics, G.Pulla Reddy Engineering College, (Autonomous) Kurnool, A.P. 518007 (INDIA)

Abstract:
If f is an arithmetical function and $[\mathrm{f}(\mathrm{i}, \mathrm{j})]$ is the matrix then we evaluated
$\operatorname{det}[f(i, j)]$ as product of $f$, has Dirichlet convolution of $f$ and Other theorem and corollary are evaluated.

## KEY WORDS:

Arithmetical function, determinants, Ramanujan fraction, even functions

## Introduction:

The determinant of the $n x n$ matrix $[(i, j)]$ which has greatest common divisor $(i, j)$ of $I$ and $j$ as its $i, j$-entry is the product $\emptyset^{*}(1) \emptyset^{*}(2) \emptyset^{*}(3)----\emptyset^{*}(n)$, where $\emptyset^{*}$ is unitary Euler's totient function. In this paper we also proved that if f is an arithmetical function and $[\mathrm{f}(\mathrm{i}, \mathrm{j})]$ is the $n x n$ matrix having f evaluated at the greatest common divisor of $I$ and $j$ as its $I, j$ entry, then
$\operatorname{det}[\mathrm{f}(\mathrm{i}, \mathrm{j})]=(f \cdot \mu)(1)=(f \cdot \mu)(1)(f \cdot \mu)(2)(f \cdot \mu)(3)---(f \cdot \mu)(n)$, where $\mu$ is the Mobius function and $\mathrm{f} . \mu$ is the Dirichlet convolution of f and $\mu$.

Tom Apostol [1] extended smith's result by showing that if f and g are arithmetical functions and $\beta^{*}$ is defiend for positive integers $m$ and $r$ by

$$
\beta^{*}(m, r)=\sum_{d / /(m, r)^{*}} f^{*}(d) g^{*}(r / d)
$$

Then $\operatorname{det}\left[\beta^{*}(i, j)\right]=\left[g^{*}(1)\right]^{n} f^{*}(1) f^{*}(1) f^{*}(2)-----f^{*}(n)$. He noted that, as a consequence of this , $\operatorname{det}\left[c^{*}(i, j)\right]=n!$, where $c^{*}(m, r)$ is Unitary Ramanujan sum. It is defined as

$$
\begin{aligned}
C^{*}(m, r)= & \sum_{k(\bmod r)} \exp \left(\frac{2 \pi i m}{k}\right)=\sum_{d / /(m, r)^{*}} d \mu^{*}\left(\frac{r}{d}\right) \\
& (k, r)^{*}=1
\end{aligned}
$$

Where the first sum is over a unitary reduced residue system $(\bmod r)$. Since $C^{*}(r, r)=\emptyset^{*}(r)$, this function is a unitary generalization of Euler's totient function.

Paul McCarthy generalized smith's and Apostol's results to the class of even functions
(mod $r$ ).he evaluated the determents of $n x n$ matrices of the form $\left[\beta^{*}(i, j)\right]$. Where $\beta^{*}(m, r)$ is a even function of $\mathrm{m}(\bmod \mathrm{r})$. Acomplex-valued function $\beta^{*}(m, r)$ of the positive integral variables m and r is said to be a even function of $\mathrm{m}(\bmod \mathrm{r})$, if $\beta^{*}(m, r)=\beta^{*}((m, r), r)$ for all values of m. the functions considered by Smith and Apostol are even functions of $m(\bmod r)$ for every $r$.

Ecford Cohen showed that if $\beta^{*}(m, r)$ is an even function of $m(\bmod r)$, then $\beta^{*}$ can expressed in the form

$$
\begin{equation*}
\beta^{*}(m, r)=\sum_{d / / r} C^{*}(m, d) \alpha^{*}(d, r) \tag{1}
\end{equation*}
$$

where the coefficients $\alpha^{*}(d, r)$ are uniquely determined by

$$
\alpha^{*}(d, r)=\frac{1}{r} \sum_{e / / r} C^{*}(r / d, e) \beta^{*}(r / e, r)
$$

Another characterization, also obtained in this paper is that $\beta^{*}(m, r)$ is an even function of $m(\bmod r)$ if and only if there is a function $F^{*}$ of two positive integral variables such that

$$
\begin{equation*}
\beta^{*}(m, r)=\sum_{d / /(m, r)} F^{*}(d, r / d) \tag{2}
\end{equation*}
$$

If for each $\mathrm{r}, \beta^{*}(m, r)$ is an even function of $\mathrm{m}(\bmod \mathrm{r})$ given $(1) \&(2)$, then Mc carthy showed that $\operatorname{det}\left[\beta^{*}(i, j)\right]=$ $n!\alpha^{*}(1,1) \alpha^{*}(2,2) \alpha^{*}(3,3)----\alpha^{*}(n, n)=F^{*}(1,1) F^{*}(2,1) F^{*}(3,1)--F^{*}(n, 1)$.for the functions considered by Apostol, $F^{*}(m, r)=f^{*}(m) g^{*}(r)$.
A set $S=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ of distinct positive integers is factor-closed if it contains every divisor of $x$ for any $x \in S$.let $f^{*}$ be an arithmetical function and $\left[f^{*}\left(x_{i}, x_{j}\right)\right]$ denote n x n matrix having $f^{*}$ evaluated at the greatest common divisor of $x_{i}$ and $x_{j}$ as its i,j entry .Smith also stated that the following result is true. If $S$ is factor-closed ,then the determent of the matrix $\left[f^{*}\left(x_{i}, x_{j}\right)\right]$ is the product $\left(f^{*} \cdot \mu^{*}\right)\left(x_{1}\right)\left(f^{*} \cdot \mu^{*}\right)\left(x_{2}\right) \ldots .\left(f^{*} \cdot \mu^{*}\right)\left(x_{n}\right)$.The purpose of this paper is to extend the results of Smith ,Apostol, and Mc Carthy to matrixes of the form $\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]$, where $\beta^{*}(m, r)$ is an even function of $m(\bmod r)$ and to obtain some new results concerning the structure and inverses of the matrices. We use some of the results to study matrices of the form $f^{*}\left[x_{i}, x_{j}\right]$ which have $f^{*}$ evaluated at the product of $x_{i}$, and $x_{j}$ as their i,j-entry, where is quadratic.

## 1. MATRICES ASSOCIATED WITH EVEN FUNCTION $(\bmod r)$

Throughout this paper , let $f(m), g(m)$, and $h(m)$ be arithmetical functions (i,e complex-valued functions of a real variable that vanish when the argument is not positive integer).we assume that $\mathrm{f}, \mathrm{g}, \mathrm{h}$ have Dirichlet invers, which are denoted by $f^{\prime} g^{\prime} h^{\prime}$, respectively.

Our fist results are on $\mathrm{n} \times \mathrm{n}$ matrices of the form $\Psi^{*}(m, r)$ is defined for all positive integers m and r as

$$
\begin{equation*}
\Psi^{*}(m, r)=\sum_{d / /(m, r)^{*}} f^{*}(d) g^{*}(m / d) h^{*}(r / d) \tag{3}
\end{equation*}
$$

And $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ is a set of distinct positive integers.
Let $\zeta(d)$ be the function defined by $\zeta(d)=1$ for all d. if $\mathrm{g}=\zeta, \Psi$ is called a generalized Ramanujan's sum. These sums generalize Dirichlet convolution $\Psi^{*}(m, m)=\left(\left(f^{*} . h^{*}\right)(m)\right)$ and were studied by Apostol .A well-known example is Ramanujan's sum $C^{*}(m, r)$, which is obtained from (3) by setting $f^{*}(d)=d$ for all d , $\mathrm{g}=\zeta$, and $h^{*}=\mu^{*}$. We use our result on matrix $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]$ to study the matrix $\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]$ when $\beta^{*}$ is even function of $\mathrm{m}(\bmod \mathrm{r})$.

## LEMMA 1:

If $\mathrm{T}=\left\{y_{1} y_{2} y_{3} \ldots y_{m}\right\}$ is a factor -closed set containing S , then $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\mathrm{GA} H^{T}$ where $\mathrm{A}=$ diag $\left(f^{*}\left(y_{1}\right), f^{*}\left(y_{2}\right) \ldots . . f^{*}\left(y_{m}\right)\right.$ and the n x m matrices G and H are defined by $G=\left[g^{*}\left(x_{i} / x_{j}\right)\right]$ and $H=\left[h^{*}\left(x_{i} / x_{j}\right)\right]$.

Proof: Calculating the i-j entry of the product GAH ${ }^{T}$ gives

$$
\sum_{k=1}^{m} f^{*}\left(y_{k}\right) g^{*}\left(x_{i} / y_{k}\right) h^{*}\left(x_{j} / y_{k}\right)=\sum_{\substack{d / x_{j} \\ d / / x_{j}}} f^{*}(d) g^{*}\left(x_{i} / d\right) h^{*}\left(x_{j} / d\right)=\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]
$$

## LEMMA 2 :

$$
\text { If } \mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\} \text { is factor -closed , then }\left[f^{*}\left(x_{i} / x_{j}\right)\right]^{-1}=\left[f^{* \prime}\left(x_{i} / x_{j}\right)\right]
$$

Proof. Calculating the i-j entry of the product $\left[f^{*}\left(x_{i} / x_{j}\right)\right]\left[f^{* \prime}\left(x_{i} / x_{j}\right)\right]$ gives

$$
\sum_{k=1}^{m} f^{*}\left(x_{i} / x_{k}\right) f^{*^{\prime}\left(x_{k} / x_{j}\right)}=\sum_{d / / /_{i} / x_{j}}\left[f ^ { * ^ { \prime } } ( d ) \left[f^{*}\left(x_{i} / x_{j} d\right)=\left\{\begin{array}{c}
1 \text { if } x_{j}=x_{i} \\
0 \quad \text { other wise }
\end{array}\right.\right.\right.
$$

## THEOREM 1 :

If $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ is factor - closed, then each of the following is true.
(i) $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\left[g^{*}(1) h^{*}(1)\right]^{n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) f^{*}\left(x_{3}\right) \ldots . f^{*}\left(x_{n}\right)$;
(ii) if $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right] \neq 0,\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where

$$
a_{i j}=\sum_{\substack{x_{i, /} / / x_{k} \\ x_{j} / / x_{k}}}\left[\frac{1}{\left(f^{*}\left(x_{k}\right)\right)}\right] h^{\prime}\left(x_{k} / x_{i}\right) g^{\prime}\left(x_{k} / x_{j}\right)
$$

Proof: By lemma 1, $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\mathrm{GA} H^{T}, \mathrm{~A}=\operatorname{diag}\left(f^{*}\left(x_{1}\right), f^{*}\left(x_{2}\right) \ldots . . f^{*}\left(x_{n}\right)\right)$ and n x n matrices G and H are defined by $G=\left[g^{*}\left(x_{i} / x_{j}\right)\right]$ and $H=\left[h^{*}\left(x_{i} / x_{j}\right)\right]$. Since any permutation of the elements in $S$ yields a similar matrix we may assume that $x_{1}<x_{2}<x_{3} \ldots x_{n}$
Thus G and H are triangular with diagonal elements $g^{*}(1) h^{*}(1)$, respectively. this proves (i). if $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right] \neq 0$, $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(G A H^{T}\right)^{-1}$. Therefore using lemma (2), we obtain (ii).

## COROLLARY 1.

Let $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor - closed. if $\beta^{*}$ is defined for positive integers m and r by $\beta^{*}(m, r)=\sum_{d / /(m, r)^{*}} f^{*}(d) g^{*}(r / d)$ then each of the following is true:
(i) $\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]=\left[g^{*}(1)\right]^{n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) f^{*}\left(x_{3}\right) \ldots . f^{*}\left(x_{n}\right)$
(ii) if $\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right] \neq 0,\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where

$$
a_{i j}=\sum_{\substack{x_{i, /} / / x_{k} \\ x_{j}, / / x_{k}}}\left[\frac{1}{f^{*}\left(x_{k}\right)}\right] h^{*^{\prime}}\left(x_{k} / x_{i}\right) g^{*^{\prime}}\left(x_{k,} / x_{j}\right)
$$

## COROLLARY 2.

If $\beta^{*}$ is defined for positive integers $m$ and $r$ by $\beta^{*}(m, r)=\sum_{d / /(m, r)^{*}} f^{*}(d) g^{*}(r / d)$ then $\operatorname{det}\left[\beta^{*}(i, j)\right]=\left[g^{*}(1)\right]^{n} f^{*}(1) f^{*}(2) f^{*}(3) \ldots f^{*}(n)$.

## COROLLARY 3.

Let $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor - closed, then each of the following is true:
(i) $\operatorname{det}\left[C^{*}\left(x_{i}, x_{j}\right)\right]=x_{1} x_{2} x_{3} \ldots x_{n}$,
(ii) $\left[C^{*}\left(x_{i} x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where

$$
a_{i j}=\sum_{\substack{x_{i, /} / x_{k} \\ x_{j}, / / x_{k}}}\left[\frac{1}{\left(x_{k}\right)}\right] \mu^{*}\left(x_{k} / x_{j}\right)
$$

Proof: if we set $f^{*}(d)=d$ for all $\mathrm{d}, g^{*}=\zeta$, then $\Psi^{*}=C^{*}$. Hence applying thermo 2 , obtain (i) $\&(i i)$.

## THEOREM 2.

Let $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor - closed. if $\beta^{*}$ is defined for positive integers m and r by $\beta^{*}(m, r)=\sum_{d / / r} C^{*}(m, d) \alpha^{*}(d, r)$ then $\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)=\prod_{i=1}^{n} x_{i} \alpha^{*}\left(x_{i}, x_{j}\right)\right.$.

Proof : we have $\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]=\left[C^{*}\left(x_{i}, x_{j}\right)\right]\left[\alpha^{*}\left(x_{i}, x_{j}\right) e_{i j}\right]$, where $e_{i j}=1$. if $x_{i} / x_{j}$ and 0 otherwise. Since we may assume that $x_{1}<x_{2}<x_{3} \ldots x_{n}, \operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)=\prod_{i=1}^{n} x_{i} \alpha^{*}\left(x_{i}, x_{j}\right)\right.$

## COROLLARY 4.

if $\beta^{*}$ is defined for positive integers m and r by $\beta^{*}(m, r)=\sum_{d / / r} C^{*}(m, d) \alpha^{*}(d, r)$ then $\operatorname{det}\left[\beta^{*}(i, j)=\right.$ $\mathrm{n}!\alpha^{*}(1,1) \alpha^{*}(2,2) \alpha^{*}(3,3) \cdots---\alpha^{*}(n, n)$.

## 2. MATRICES ASSOCIATED WITH COMLETELY EVEN FUNCTIONS (mod r)

Given any unitary arithmetical function $f^{*}(m)$, we denote by the $f^{*}(m, r)$ the function $f^{*}$ evaluated at the greatest common divisor of m and r , Cohen called the function $f^{*}(m, r)$ a completely even function (mod r ).
Let $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be a set of distinct positive integers. if $\mathrm{I}(\mathrm{M})=\mathrm{m}$ is the identity function, the n x n matrix $(\mathrm{S})=\left[I^{*}\left(x_{i}, x_{j}\right)\right]$ having the greatest common divisor $\left(x_{i}, x_{j}\right)$ of $x_{i}$ and $x_{j}$ as i,j entry is called the greatest common divisor (GCD) matrix on S.In this section we extend some of the results to matrices of the form $\left[f^{*}\left(x_{i}, x_{j}\right)\right]$

## COROLLARY 5.

If $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor - closed, then each of the following is true:
(i) (Smith) $\operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right]=\left(f^{*} \cdot \mu^{*}\right)\left(x_{1}\right)\left(f^{*} \cdot \mu^{*}\right)\left(x_{2}\right) \ldots .\left(f^{*} \cdot \mu^{*}\right)\left(x_{n}\right)$,
(ii) (Bourque and Ligh ) if $\operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right] \neq 0,\left[f^{*}\left(x_{i} x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where

$$
a_{i j}=\sum_{\substack{x_{i} / / x_{k} \\ x_{j}, / / x_{k}}}\left[\frac{1}{\left(f^{*} \cdot \mu^{*}\right)\left(x_{k}\right)}\right] \mu^{*}\left(x_{k,} / x_{i}\right) \mu^{*}\left(x_{k,} / x_{j}\right)
$$

Proof: Set $g^{*}=h^{*}=\zeta$ and substitute $\left(f^{*} \cdot \mu^{*}\right)$ for $f^{*}$ in theorem 1.

## Example 1.

For any real number $\varepsilon$, let the functions $\zeta_{\varepsilon}$ and $\varphi_{\varepsilon}{ }^{*}$ be defined by $\zeta_{\varepsilon}(m)=m^{\varepsilon}$ and $\varphi_{\varepsilon}{ }^{*}(m)=\left(\zeta_{\varepsilon} \cdot \mu^{*}\right)(m)=\sum_{d / / m} d^{\varepsilon} \mu^{*}\left(\frac{m}{d}\right)$. Since $\varphi_{\varepsilon}{ }^{*}$ is the Dirichlet convolution of two multiplicative functions, it is multiplicative and for prime power $P^{r}(r \geq 1)$,
$\varphi_{\varepsilon}{ }^{*}\left(P^{r}\right)=P^{\varepsilon r}-P^{\varepsilon(r-1)}$. thus $\varepsilon>0 \quad$ we see that $\varphi_{\varepsilon}{ }^{*}(m)>0$ for all m. If $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor closed and $\varepsilon>0$,by Corollary 5 each of the following is true.
(i) $\left[\left(x_{i} x_{j}\right)^{\varepsilon}\right]^{-1}=\left(a_{i j}\right)$ where

$$
a_{i j}=\sum_{\substack{x_{i, /} / x_{k} \\ x_{j}, / / x_{k}}}\left[\frac{1}{\varphi_{\varepsilon}^{*}\left(x_{k}\right)}\right] \mu^{*}\left(x_{k,} / x_{i}\right) \mu^{*}\left(x_{k,} / x_{j}\right)
$$

(ii) $\operatorname{det}\left[\left(x_{i}, x_{j}\right)^{\varepsilon}\right]=\varphi_{\varepsilon}{ }^{*}\left(x_{1}\right) \varphi_{\varepsilon}{ }^{*}\left(x_{2}\right) \ldots . . \varphi_{\varepsilon}{ }^{*}\left(x_{n}\right)$,

## Example 2.

Foe a real number $\varepsilon$, let $\sigma_{\varepsilon}$ be defined by $\sigma_{\varepsilon}(m)=\left(\zeta_{\varepsilon} \cdot \zeta_{0}\right)(m)=\sum_{d / / m} d^{\varepsilon}$. The functions $\tau(m)=\sigma_{0}(m)$ and $\sigma(\mathrm{m})=\sigma_{1}(m)$ give the number of divisors of $m$ and the sum of the divisors of $m$, respectively. we have $\sigma_{\varepsilon} \cdot \mu^{*}=$ $\zeta_{\varepsilon} \cdot \zeta . \mu^{*}=\zeta_{\varepsilon}$. thus $\left(\sigma_{\varepsilon} \cdot \mu^{*}\right)(m)>0$ for all m . . If $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be factor - closed and $\varepsilon>0$, by Corollary 5 each of the following is true.
(i) $\quad\left[\sigma_{\varepsilon}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$ where

$$
a_{i j}=\sum_{\substack{x_{i} / / x_{k} \\ x_{j}, / / x_{k}}}\left[\frac{1}{\left(x_{k}\right)}\right]^{\varepsilon} \mu^{*}\left(x_{k}, / x_{i}\right) \mu^{*}\left(x_{k} / x_{j}\right)
$$

(ii) $\operatorname{Det}\left[\sigma_{\varepsilon}\left(x_{i}, x_{j}\right)\right]=\left(x_{1} x_{2} x_{3} \ldots x_{n}\right)^{\varepsilon}$.

If A is nx m matrix with $m \geq n$, we denote by $A\left(d_{1} d_{2} d_{3} \ldots . d_{n}\right)$ the n n submatrix of A which contains the columns $1 \leq d_{1}<d_{2}<d_{3} \ldots .<d_{n} \leq m$.

## THEOREM 3

Let $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots . x_{n}\right\}$ be a set of distinct positive integers. If $h^{*}(d)=g^{*}(d) \in \mathrm{R}$ and $\mathrm{f}(\mathrm{d})>0$ whenever $\mathrm{d} / / \mathrm{x}$ for any $\mathrm{x} \in \mathrm{S}$, then each of the following is true.
(i) $\left[\Psi^{*}\left(x_{i,}, x_{j}\right)\right]$ is positive definite:
(ii) $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots f^{*}\left(x_{n}\right)$ if and only if S is factor closed :
(iii) $\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right) \leq \operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right] \leq \Psi^{*}\left(x_{1}, x_{1}\right) \Psi^{*}\left(x_{2}, x_{2}\right) \ldots . . \Psi^{*}\left(x_{n}, x_{n}\right)$.

Proof: Let $m \geq x$ for all $\mathrm{x} \in \mathrm{S}$. by lemma $1,\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\operatorname{GA} H^{T}$, where $A=\operatorname{diag}\left(f^{*}(1) f^{*}(2) \ldots \ldots f^{*}(m)\right)$ and nxm matrix G is defind by $G=\left[g^{*}\left(x_{i} / j\right)\right]$. Thus $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\mathrm{A} A^{T}$, where $\mathrm{A}=\mathrm{G} A^{1 / 2}$. Hence by the Binet-Cauchy formula,

Det $\mathrm{A} A^{T}=\sum_{1 \leq k_{1}<k_{2}<\cdots \ldots k_{n} \leq m}\left[\operatorname{det} A\left(k_{1} k_{2} k_{3} \ldots . k_{n}\right)\right]^{2}$

$$
\begin{equation*}
=\sum_{1 \leqslant k_{1}<k_{2}<\ldots \ldots k_{n} \leqslant m} f^{*}\left(k_{1}\right) f^{*}\left(k_{2}\right) \ldots \ldots f^{*}\left(k_{n}\right)\left(\operatorname{det}\left[g^{*}\left(x_{i} / j\right)\right]\right)^{2} . \tag{4}
\end{equation*}
$$

One term in $f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)\left(\operatorname{det}\left[g^{*}\left(x_{i} / j\right)\right]\right)^{2}=\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)$.Snice each term is nonnegative, $\operatorname{det}\left[\left(x_{i}, x_{j}\right)\right] \geq\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)>0$. This proves (i)and (ii). by the theorem 1, if S is factored-closed, $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]=\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)$. to prove converse we may assume $x_{1}<x_{2}<x_{3} \ldots x_{n}$. if S is not factor -closed ,let r be the smallest integer such that $\mathrm{d} / / x_{r}$ for some $\mathrm{d} \phi S$. Define $k_{i}$ for $1 \leq i \leq n$ by $k_{i}=x_{i}$, if $i \neq r$ and $k_{i}=d$ if $\mathrm{i}=\mathrm{r}$
Since $d \nmid x_{i}$ for $i<r,\left[g^{*}\left(x_{i} / j\right)\right]$ is upper triangular with $g^{*}(1)$ as the diagonal elements. Consequently, from (4), we have $\operatorname{det}\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right] \geq\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)+\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)>$ $\left[g^{*}(1)\right]^{2 n} f^{*}\left(x_{1}\right) f^{*}\left(x_{2}\right) \ldots \ldots . f^{*}\left(x_{n}\right)$.

## 3.MATRICES ASSOCIATED WITH QUADRATIC FUNCTIONS

In this section we use the following theorem of Vaidyanathaswamy, concerning quadratic functions and our results on matrix $\left[\Psi^{*}\left(x_{i}, x_{j}\right)\right]$ is to investigate matrices of the form $\left[f^{*}\left(x_{i}, x_{j}\right)\right]$
Where $f^{*}(m)$ a quadratic function .An arithmetical function is $f^{*}(m)$ is said to be quadratic if it is the Dirichlet product of two completely multiplicative functions.

## THEOREM 4

If $f^{*}=g^{*} . h^{*}$, where $g^{*}$ and $h^{*}$ are completely multiplicative functions, then $f^{*}$ satisfies the identity

$$
f^{*}(m r)=\sum_{d / /(m, r)^{*}} f^{*}(m / d) f^{*}(r / d) g^{*}(d) h^{*}(d) \mu^{*}(d)
$$

## COROLLARY. 6

Let $f^{*}=g^{*} . h^{*}$, where $g^{*}$ and $h^{*}$ are completely multiplicative. If S is factor -closed ,then each of the following is true:
i) $\operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right]=\prod_{i=1}^{n} g^{*}\left(x_{i,}\right) h^{*}\left(x_{i,}\right) \mu^{*}\left(x_{i,}\right)$;
ii) if $\operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right] \neq 0,\left[f^{*}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where $a_{i j}$ defined as
$a_{i j}=\sum_{\substack{\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{k}} \\ \mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{k}}}}\left(\frac{\mu^{*}\left(\mathrm{x}_{\mathrm{k}}\right)}{g^{*}\left(\mathrm{x}_{\mathrm{k}}\right) h^{*}\left(\mathrm{x}_{\mathrm{k}}\right)}\right) \mathrm{f}^{\prime *}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{i}}\right) \mathrm{f}^{\prime *}\left(\mathrm{X}_{\mathrm{k}} / \mathrm{x}_{\mathrm{j}}\right)$.
Proof : this corollary follows from theorems $1 \& 4$.

## COROLLARY. 7

Let $f^{*}=g^{*}$. $h^{*}$, where $g^{*}$ and $h^{*}$ are completely multiplicative. If $f^{*}(d) \in R$ and $g^{*}(d) h^{*}(d) \mu^{*}(d)>0$ whenever $\mathrm{d} / / \mathrm{x}$ for any $\mathrm{x} \in s$, then each of the following is true : i) $\left[f^{*}\left(x_{i}, x_{j}\right)\right]$ is positive definite
ii) $\operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right]=\prod_{i=1}^{n} g^{*}\left(x_{i}\right) h^{*}\left(x_{i}\right) \mu^{*}\left(x_{i}\right)$ if and only if S factor-closed
(iii) $\prod_{i=1}^{n} g^{*}\left(x_{i}\right) h^{*}\left(x_{i}\right) \mu^{*}\left(x_{i}\right) \leq \operatorname{det}\left[f^{*}\left(x_{i}, x_{j}\right)\right] \leq \mathrm{f}^{*}\left(\mathrm{x}_{1}{ }^{2}\right) \mathrm{f}^{*}\left(\mathrm{x}_{2}{ }^{2}\right) \ldots \mathrm{f}^{*}\left(\mathrm{x}_{\mathrm{n}}{ }^{2}\right)$.

Proof. This corollary follows from theorem $3 \& 4$.

## EXAMPLE . 3

For $\mathrm{S}=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$ be a set of distinct positive integers each of the following is true :
i). $\operatorname{det}\left[\sigma_{\varepsilon}\left(x_{i}, x_{j}\right)\right]=\prod_{i=1}^{n} x_{i}{ }^{\varepsilon} \mu^{*}\left(x_{i}\right)$
ii). $\operatorname{det}\left[\sigma_{\varepsilon}\left(x_{i}, x_{j}\right)\right] \neq 0,\left[\sigma_{\varepsilon}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where
$a_{i j}=\sum_{\substack{\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{k}} \\ \mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{k}}}}\left(x_{k}\right)^{-\varepsilon} \mu^{*}\left(x_{k}\right) \sigma_{\varepsilon}{ }^{\prime *}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{i}}\right) \sigma_{\varepsilon}{ }^{\prime *}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{j}}\right)$

## EXAMPLE. 4

Let $\beta^{*}(m)$ be the number of integers d such that $1 \leq d \leq m$ and $(\mathrm{d}, \mathrm{m})=r^{2}$ for some r . This function is called Square -totient. if $\mu^{*}(\mathrm{x}) \neq 0$ for all $\mathrm{x} \in s=\left\{x_{1} x_{2} x_{3} \ldots x_{n}\right\}$, then each of the following is true:
(i) $\left[\beta^{*}\left(x_{i}, x_{j}\right)\right.$ is positive definite,
(ii) $\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]=x_{1} x_{2} x_{3} \ldots x_{n}$ if and only if $S$ is factor-closed,
(iii) $\quad x_{1} x_{2} x_{3} \ldots x_{n} \leq \operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right] \leq \beta^{*}\left(\mathrm{x}_{1}{ }^{2}\right) \beta^{*}\left(\mathrm{x}_{2}{ }^{2}\right) \ldots \beta^{*}\left(\mathrm{x}_{\mathrm{n}}{ }^{2}\right)$.

We have $\beta^{*}=\zeta_{1} \cdot \lambda$, where Lioville's function $\lambda$ is defined by $\lambda(1)=1$ and if $\mathrm{m}=p_{1}{ }^{a_{1}} \cdot p_{2}{ }^{a_{2}} \ldots p_{r}{ }^{a_{r}}$ as a product of distinct primes $p_{i}$, then $\lambda(m)=(-1)^{k}$, where
$\mathrm{k}=a_{1}+a_{2 .} \ldots a_{r}$. this applying Corollary 7, we obtain (i) - (iii) . if S is factor closed, then
$\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]=\prod_{i=1}^{n} x_{i}\left|\mu^{*}\left(x_{i}\right)\right|$. Moreover, if $\operatorname{det}\left[\beta^{*}\left(x_{i}, x_{j}\right)\right] \neq 0$,then
$\left[\beta^{*}\left(x_{i}, x_{j}\right)\right]^{-1}=\left(a_{i j}\right)$, where $a_{i j}$ is defined by

$$
a_{i j}=\sum_{\substack{\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{k}} \\ \mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{k}}}}\left(x_{k}\right)^{-1} \beta^{\prime *}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{j}}\right) \beta^{\prime *}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{i}}\right)
$$

## References:

1. T.Apostol,Arithmetical properties of generalized Ramanujan sums,pacific j.math.41(1972),281-293.
2. S.Beslin, Reciprocal GCD matrices and LCM matrices, Fibonacci Quart. 29 (1991),271-274.
3. S.Beslin and S. ligh, Gretest common divisor matrices, Linear Algebra Appl. 118 (1989) 69-76.
4. Keith Bourque and Steve ligh Matrices associated with class of arithmetical functions journal of number theory 45 367-376(1993).
