Common Fixed Point Theorem in G-Metric Spaces

Antima Sindersiya ${ }^{1^{*}}$, Aklesh Pariya ${ }^{2}$ Nirmala Gupta ${ }^{3}$ and V. H. Badshah ${ }^{1}$
1 School of Studies in Mathematics, Vikram University, Ujjain (M. P.), India
2 Department of Mathematics, Medi - Caps University, Indore (M. P.), India
3 Department of Mathematics, Govt. Girls P. G. College, Ujjain (M. P.), India

Abstract

In this paper, we prove some common fixed point theorems for pair of compatible mappings in G-metric spaces.

Keywords - Common fixed point, compatible mapping, G-metric spaces.

AMS 2010 MSC: 54H25, 47H10.

1. Introduction.

Mustafa and Sims [5] generalized the concept of a metric space. Based on the notion of generalized metric spaces, Mustafa and $\operatorname{Sims}[4,5,6]$ and Mustafa et al. [7, 8] obtained some fixed point theorems for mappings satisfying different contractive conditions. Abbas and Rhoades [1] initiated the study of a common fixed point theory in generalized metric spaces. Saadati et al. [9] proved some fixed point results for contractive mappings in partially ordered G-metric spaces.

2. Basic definitions and preliminaries.

Definition 2.1[5]. Let X be a non empty set and let $G: X \times X \times X \rightarrow R^{+}$be a function satisfying the following conditions:
(i) $G(x, y, z)=0$ if $x=y=z$,
(ii) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
(iii) $\quad G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in$ X with $z \neq y$,
(iv) $\quad G(x, y, z)=G(x, z, y)=G(y, z, x)=$ \cdots (symmetry in all three variables),
(v) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$, (rectangle inequality).

The function G is called a generalized metric or, more spacifically, a G-metric on X, and the pair (X, G) is called a G-metric space.

Definition 1.2[5]. Let (X, G) be a G-metric space, $\left\{x_{n}\right\}$ a sequence of points in G - convergent to x if $\lim _{n \rightarrow \infty} G\left(x, x_{n}, x_{m}\right)=0$; that is for each $\varepsilon>0$ there exists an N such that
$G\left(x, x_{n}, x_{m}\right)<\varepsilon$ for all $m, n \geq N$.
We say that x the limit of the sequence and write $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$.

Proposition 1.1[5]. Let (X, G) be a G-metric space. Then the following are equivalent:
(i) $\left\{x_{n}\right\}$ is G - convergent to x,
(ii) $\quad G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iii) $\quad G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iv) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $m, n \rightarrow \infty$,

Definition 1.3[5]. Let (X, G) be a G-metric space, then a sequence $\left\{x_{n}\right\}$ is called G-Cauchy if for each $\varepsilon>0$, there exists an N such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$ for all $n, m, l \geq N$.

Proposition 1.2[5]. In a G-metric $\operatorname{space}(X, G)$, the following are equivalent:
(i) The sequence $\left\{x_{n}\right\}$ is G-Cauchy,
(ii) for each $\varepsilon>0$ there exists an N such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$ for all $n, m, l \geq$ N,
(iii) $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X, d_{G}\right)$.

Proposition 1.3[5]. Let (X, G) be a G-metric space.Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 1.4[5]. A G-metric space (X, G) is called a symmetric G-metric space if
$G(x, y, y)=G(y, x, x)$ for all $x, y \in X$.
Proposition 1.4[5]. Every G-metric space (X, G) defines a metric space $\left(X, d_{G}\right)$

$$
\begin{align*}
& d_{G}(x, y)=G(x, y, y)+G(y, x, x) \text { for } \tag{i}\\
& \text { all } x, y \in X .
\end{align*}
$$

If (X, G) is a symmetric G-metric space, then
(ii) $d_{G}(x, y)=2 G(x, y, y)$ for all $x, y \in X$.

However, if (X, G) is not symmetric, then it follows from the G-metric properties that
(iii) $\frac{3}{2} G(x, y, y) \leq d_{G}(x, y) \leq 3 G(x, y, y)$ for all $x, y \in X$.

Definition 1.5[5]. A G-metric space (X, G) is said to be G-complete if every G-Cauchy sequence in (X, G) is G-convergent $\operatorname{in}(X, G)$.

Proposition 1.5[5]. A G-metric space (X, G) is G complete if and only if $\left(X, d_{G}\right)$ is a complete metric space.

Proposition 1.6[5]. Let (X, G) be a G-metric space, then for any $x, y, z, a \in X$ it follows that:
(i) If $G(x, y, z)=0$, then $x=y=z$,
(ii) $\quad G(x, y, z) \leq G(x, x, y)+G(x, x, z)$,
(iii) $\quad G(x, y, y) \leq 2 G(y, x, x)$,
(iv) $\quad G(x, y, z) \leq G(x, a, z)+G(a, y, z)$
(vi) $+G(a, y, z)]$,
(vii) $\quad G(x, y, z) \leq G(x, a, a)+G(y, a, a)$
(viii) $\quad+G(z, a, a)$,
(ix) $|G(x, y, z)-G(x, y, a)|$ $\leq \max G G(a, z, z), G(z, a, a)\}$,
(x) $\quad|G(x, y, z)-G(x, y, a)| \leq G(x, a, z)$,
(xi) $|G(x, y, z)-G(y, z, z)|$
(xii) $\leq \max G(x, z, z), G(z, x, x)\}$,
(xiii) $|G(x, y, y)-G(y, x, x)|$
(xiv)

$$
\leq \max G(y, x, x), G(x, y, y)\}
$$

Jungck[2] introduced the concept of compatible mappings. Afterwards many researchers used this
concept in fixed point theory. Manro et al.[3] introduced the concept of compatible maps in G metric space.

Definition 1.5[3]. Let f and g are mappings from a G-metric space (X, G) into itself. The maps f and g are said to be compatible map if there exists a sequence $\left\{x_{n}\right\}$ such that
$\lim _{n \rightarrow \infty} G\left(f g x_{n}, g f x_{n}, g f x_{n}\right)=0$ or $\lim _{n \rightarrow \infty} G\left(g f x_{n}, f g x_{n}, f g x_{n}\right)=0$
whenever $\left\{x_{n}\right\}$ is sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

3. Main Theorem.

Theorem 3.1. Let (X, G) be a complete G-metric spaces and let A and S be two self maps of a G-metric space (X, G) satisfying
(3.1.1) $A \subset S$
(3.1.2) $G(A x, A y, A z) \leq a_{1} G(S x, S y, S z)$

$$
\begin{aligned}
& +a_{2} G(S x, A x, S x)+a_{3} G(S x, A y, S z) \\
& \quad+a_{4} G(S y, A x, S z),
\end{aligned}
$$

where $a_{i} \geq 0($ for $\mathrm{i}=1,2,3,4)$ and
$a_{1}+a_{2}+a_{3}+a_{4}<1$,
(3.1.3) one of A or S is continuous and pair (A, S) is compatible maps.

Then A and S have a unique common fixed point in X.

Proof. Let x_{0} be an arbitrary point in X and we can choose a sequence $\left\{y_{n}\right\}$ in X such that

$$
y_{n}=A x_{n}=S x_{n+1}, \quad \mathrm{n}=0,1,2 \ldots
$$

From (3.1.2), we have

$$
\begin{aligned}
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right) \leq & a_{1} G\left(S x_{n}, S x_{n+1}, S x_{n+1}\right) \\
& +a_{2} G\left(S x_{n}, A x_{n}, S x_{n}\right) \\
& +a_{3} G\left(S x_{n}, A x_{n+1}, S x_{n+1}\right) \\
& +a_{4} G\left(S x_{n+1}, A x_{n}, S x_{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq a_{1} G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
& \quad+a_{2} G\left(A x_{n-1}, A x_{n}, A x_{n-1}\right) \\
& \quad+a_{3} G\left(A x_{n-1}, A x_{n+1}, A x_{n}\right) \\
& \quad+a_{4} G\left(A x_{n}, A x_{n}, A x_{n}\right)
\end{aligned}
$$

$$
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right)
$$

$$
\leq\left(a_{1}+2 a_{2}\right) G\left(A x_{n-1}, A x_{n}, A x_{n}\right)
$$

$$
\begin{equation*}
+a_{3} G\left(A x_{n-1}, A x_{n}, A x_{n+1}\right) \tag{3.1.4}
\end{equation*}
$$

By rectangular inequality of G-metric space

$$
\begin{aligned}
G\left(A x_{n-1}, A x_{n}, A x_{n+1}\right) \leq & G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
& +G\left(A x_{n}, A x_{n}, A x_{n+1}\right) \\
\leq & G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
+ & 2 G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right)
\end{aligned}
$$

[by proposition(1.6)].
From inequality (3.1.4), we have

$$
\begin{aligned}
& \begin{array}{l}
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right) \\
\\
\leq\left(a_{1}+2 a_{2}\right) G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
\\
+a_{3}\left[\begin{array}{c}
G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
+2 G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right)
\end{array}\right] \\
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right) \\
\leq\left(\frac{a_{1}+2 a_{2}+a_{3}}{1-2 a_{3}}\right) G\left(A x_{n-1}, A x_{n}, A x_{n}\right) \\
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right) \leq \delta G\left(A x_{n-1}, A x_{n}, A x_{n}\right), \\
\text { where } \delta=\frac{a_{1}+2 a_{2}+a_{3}}{1-2 a_{3}}<1 .
\end{array}
\end{aligned}
$$

Similarly,

$$
G\left(A x_{n}, A x_{n+1}, A x_{n+1}\right) \leq \delta^{n} G\left(A x_{n-1}, A x_{n}, A x_{n}\right)
$$

So that for any $m>n, m, n \in N$,

$$
\begin{aligned}
& G\left(y_{n}, y_{m}, y_{m}\right) \leq G\left(y_{n}, y_{n+1}, y_{n+1}\right) \\
&+G\left(y_{n+1}, y_{n+2}, y_{n+2}\right)+\cdots \\
&+G\left(y_{m-1}, y_{m}, y_{m}\right) \\
& \leq\left(\delta^{n}+\delta^{n+1}+\cdots+\right. \\
&\left.\delta^{m-1}\right) G\left(y_{0}, y_{1}, y_{1}\right) \\
& \leq \frac{\delta^{n}}{1-\delta} G\left(y_{0}, y_{1}, y_{1}\right) \rightarrow 0 \\
& \text { as } m, n \rightarrow \infty .
\end{aligned}
$$

Thus sequence $\left\{y_{n}\right\}$ is a G-Cauchy sequence in X and since X is complete G-metric space, therefore sequence $\left\{y_{n}\right\}$ converges to point u in X such that

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n+1}=u
$$

Since the mapping A or S is continuous, one can assume that A is continuous, therefore $\lim _{n \rightarrow \infty} A S x_{n+1}=\lim _{n \rightarrow \infty} A A x_{n}=A u$. Further, A and S are compatible, therefore
$\lim _{n \rightarrow \infty} G\left(S A x_{n}, A S x_{n}, A S x_{n}\right)=0$
implies that $\lim _{n \rightarrow \infty} S A x_{n}=A u$.
Consider

$$
\begin{aligned}
G\left(A A x_{n}, A x_{n}, A x_{n}\right) \leq & a_{1} G\left(S A x_{n}, S x_{n}, S x_{n}\right) \\
& +a_{2} G\left(S A x_{n}, A A x_{n}, S A x_{n}\right) \\
& +a_{3} G\left(S A x_{n}, A x_{n}, S x_{n}\right) \\
& +a_{4} G\left(S x_{n}, A A x_{n}, S x_{n}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
G(A u, u, u) \leq & a_{1} G(A u, u, u)+a_{2} G(A u, A u, A u) \\
& +a_{3} G(A u, u, u)+a_{4} G(u, A u, u) \\
\leq & \left(a_{1}+a_{3}+a_{4}\right) G(A u, u, u)
\end{aligned}
$$

Implies that $G(A u, u, u) \leq 0$ so that $A u=u$.
Again consider

$$
\begin{aligned}
G\left(S A x_{n}, A u, A u\right) \leq & G\left(A S x_{n}, A u, A u\right) \\
\leq & a_{1} G\left(S S x_{n}, S u, S u\right) \\
& +a_{2} G\left(S S x_{n}, A S x_{n}, S S x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +a_{3} G\left(S S x_{n}, A u, S u\right) \\
& +a_{4} G\left(S u, A S x_{n}, S u\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
G(S u, u, u) \leq & a_{1} G(S u, S u, S u)+a_{2} G(S u, u, S u) \\
& +a_{3} G(S u, u, S u)+a_{4} G(u, u, S u) \\
G(S u, u, u) \leq & 2 a_{2} G(S u, u, u)+2 a_{3} G(S u, u, u) \\
& +a_{4} G(S u, u, u) \\
G(S u, u, u) \leq & \left(2 a_{2}+2 a_{3}+a_{4}\right) G(S u, u, u)
\end{aligned}
$$

Implies that $G(S u, u, u) \leq 0$ so that $S u=u$.
Hence $A u=S u=u$. Therefore u is a common fixed point of A and S.

Suppose that $v(\neq u)$ be another common fixed point of A and S. Then $G(u, v, v)>0$.

Consider

$$
\begin{aligned}
G(u, v, v)= & G(A u, A v, A v) \\
\leq & a_{1} G(S u, S v, S v)+a_{2} G(S u, A u, S u) \\
& +a_{3} G(S u, A v, S v)+a_{4} G(S v, A u, S v) \\
\leq & a_{1} G(u, v, v)+a_{2} G(u, u, u) \\
& +a_{3} G(u, v, v)+a_{4} G(v, u, v) \\
\leq & \left(a_{1}+a_{3}+a_{4}\right) G(u, v, v)<G(u, v, v),
\end{aligned}
$$

which is a contradiction,
so that $u=v$.

Hence u is a unique common fixed point of A and S.
Remark 3.1. All the conditions of theorem 3.1 remain true, if we replace the contraction condition (3.1.2) by one of the following conditions.
(3.1.5) $G(A x, A y, A z)$
$\leq k \max \left\{\begin{array}{c}G(S x, S y, A z), G(S x, A x, S x), G(S y, A y, S y), \\ \frac{1}{2}[G(S x, A y, S z)+G(S y, A x, S z)]\end{array}\right\}$
(3.1.6) $G(A x, A y, A z)$

$$
\leq k \max \left\{\begin{array}{c}
G(S x, S y, A z), \frac{1}{2}[G(S x, A x, S x)+G(S y, A y, S y)] \\
\frac{1}{2}[G(S x, A y, S z)+G(S y, A x, S z)]
\end{array}\right\}
$$

References

[1] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. And Math Sci., 9(1986), 771-779.
[2] M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation 215, (2009), 262-269.
[3] R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Mathematical and Computer Modelling 52 (5-6), (2010), 797-801.
[4] S. Manro, S. Kumar and S. S. Bhatiya, Weakly compatible maps of type (A) in G-metric spaces, Demonstr. Math 45(4) (2012), 901-908.
[5] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proc. Int. Conf. on Fixed Point Theory Appl., Valencia (Spain), July (2004), 189-198.
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. of Nonlinear and Convex Analysis 7 (2), (2006), 289-297.
[7] Z. Mustafa and B. Sims, Fixed point theorems for contractive mapping in complete G-metric spaces, Fixed Point Theory Appl. 2009, Article ID 917175, 10 pages.
[8] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008, Article ID 189870, 12 pages.
[9] Z. Mustafa, W. Shatanawi and M. Bataineh, Existance of fixed point results in G-metric spaces, Inter. J. Mathematics and Math. Sciences, 2009, Article ID 283028, 10 pages.

