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Abstract: A convexity on a nonempty set X is a 

collection  𝐶 of subsets of X which is closed under 

intersection and union of sets totally ordered under 

inclusion. The norm on a Normed linear space X  
defines a convexity on X. In this paper we discuss 

the geometrical properties of convexities defined by 

different norms on R2 
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1. INTRODUCTION 

The Concept of Convexity is a very old 

topic which can be traced back to the period of 

Plato.  Motivated by the properties of convex 
bodies such as the five platonic Solids and other 

Polyhedra, study of Convex sets in Rn was 

systematically studied by Newton Minkowski, 

Helly, Radon and Others [3,7]. It is well known 

that, a subset C of a real vector space is convex if 

and only if it contains with any pair of points in C 

the entire line segment joining them. It can be 

easily observed that intersection of any family of 

convex sets is convex, even though the intersection 

may be empty. This lead to the development of 

Abstract convexity spaces in which a convexity 

𝐶on a set X is a family of subsets of X which  
contains the null set and X, and which is closed 

under intersection and union of sets totally ordered 

under inclusion. Given a set 𝐴  𝑋, By convex hull 

of 𝐴 denoted by 𝐶𝑜( 𝐴), we mean the smallest 

convex set containing 𝐴. Convexity in Graphs was 

studied by the author [7], M changat [6] John [1] 

and others. An out standing survey of 

developments in the area of convexity is given by 
Van de Vel [8]. We use the following basic 

definitions and results 

Definition 1.  

  Let 𝑋 be a Linear space over a field K. A 

set 𝐸 𝑋  is convex if, 𝑡𝑥 +   1 − 𝑡 𝑦  𝐸  
whenever 𝑥, 𝑦  𝐸 and 𝑡   0, 1 . 

Definition 2  1, 4 .  

Let X be a Linear space. A norm on X is a 

function  .    :   → R, satisfying the following 

properties. 

For all x, y, z in X and k in the field K. 

1.  𝑥  ≥ 0 and  𝑥  = 0 if and only if x = 0. 

(Positive definiteness) 

2.  𝑥 + 𝑦  ≤  𝑥 +  𝑦 .(Triangle 

inequality) 

3.  𝑘𝑥    =  𝑘   𝑥       

Definition 3.  

 Let X be any set. An interval 

function on X is a function 𝐼 ∶ 𝑋 × 𝑋 → 𝑃 𝑋  

Such   that  

1. 𝐼 (𝑎, 𝑏)  =  𝐼(𝑏, 𝑎) 
2. 𝑎, 𝑏 ∈  𝐼(𝑎, 𝑏)   

A Convexity is called interval convexity if its 

convexity is induced by an interval function. That 

is,  𝐴  𝑋  is convex if 𝐼 (𝑎, 𝑏)  𝐴  whenever 

𝑎, 𝑏 ∈ 𝐴. 
 

Minkowsky inequality [4] : If a1, a2. ……...an and 

If b1, b2. ……...bn are complex numbers and 1≤
𝑝  ∞, Then,   
 

    𝑎𝑗 + 𝑏𝑗  
𝑝𝑛

1  
1

𝑝         𝑎𝑗  
𝑝𝑛

1  
1

𝑝   +    𝑏𝑗  
𝑝𝑛

1  
1

𝑝   

 

2. INTERVAL CONVEXITY ON NORMED 

SPACES 

Let X be a normed linear space. Define 

𝐼: 𝑋 × 𝑋 → 𝑃(𝑋) as, 

 𝐼(𝑥, 𝑦) =  𝑆𝑒𝑔 (𝑥, 𝑦) =   { 𝑧  𝐸 ∶
 𝑑(𝑥, 𝑦)  =  𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦). } 

Then, I defines an interval function on X and hence 

a convexity. This is different from the usual 

definition of convex sets in linear spaces. 

 

Remark:  

 In 𝑅𝑛 , we usually define a set to be 

convex, if 𝑡𝑥 +  (1 − 𝑡)𝑦  𝐸 whenever x, y  E 

and t  (0, 1).When Rn is given the Euclidean 

norm,  E  Rn , x, y  E and t  (0, 1). Then,  

 𝑥 − (𝑡𝑥 +  1 − 𝑡 𝑦)  =  (1 − 𝑡)𝑥 −  1 − 𝑡 𝑦  

= (1-t)  𝑥 − 𝑦)  

Similarly,   𝑡𝑥 +  1 − 𝑡 𝑦 − 𝑦  = t  𝑥 − 𝑦  

Hence,  𝑥 − 𝑦 =  𝑥 − (𝑡𝑥 +  1 − 𝑡 𝑦)  + 

  𝑡𝑥 +  1 − 𝑡 𝑦 − 𝑦  

Conversely if  𝑥 − 𝑦 =  𝑥 − 𝑧  +  𝑧 − 𝑦  

Then, x − z =   k(z − y)  for some k  ≥  0   

That is, 𝑧 =  
1

1+𝑘
𝑥 +

𝑘

1+𝑘
y . Put t =  

1

1+𝑘
 . Then 

𝑡 (0,1) and z = tx + (1-t)y 
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Example:  

Let 𝑅𝑛  be given the norms  .  1 ,  .   and 

the Euclidean norm,  .  2 are  defined by,  

For 𝑥 = (𝑥(1), x(2),……x(n)),  

       𝑥 1  =    𝑥(𝑖) 𝑛
1  , 

       𝑥   = 𝑀𝑎𝑥{  𝑥 1  ,  𝑥 12  , …  𝑥 𝑛  }   and 

      𝑥 2    =    𝑥(𝑖) 2𝑛
1  

   Let n =  2, x =  (1,1), 𝑦 =  ((−1, −1) 

Then the segment 𝑠𝑒𝑔(𝑥, 𝑦) with respect to    𝑥 2 

is the line segment joining x and y. But when we 

consider  𝑥 1 

𝑠𝑒𝑔 𝑥, 𝑦 = { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 − 𝑦 1 =
 𝑥 − 𝑧 1 +  𝑧 − 𝑦 1} 

          = { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 1 − 𝑦 1  +

  𝑥 2 − 𝑦 2  =  𝑥 1 − 𝑧 1  +     𝑥 2 − 𝑧 2   
+  𝑧 1 − 𝑦 1  +   𝑧 2 − 𝑦 2  }.   

          = { 𝑧 =  𝑧 1 , 𝑧 2  : 4 =  1 − 𝑧 1  +

  1 − 𝑧 2   +  𝑧 1 + 1 +  𝑧 2 +  1 }.   

           =  { 𝑧 =  𝑧 1 , 𝑧 2  : −1 ≤ 𝑧 1 ≤ 1, 

                          −1 ≤ 𝑧 1 ≤ 1} 

Remark 1: 

 If x = (x(1), x(2)) and  y  =  ( y(1), y(2) ),  

Seg ( x, y) =    { z = (z(1), z(2) ) : z(1) is between 

x(1) and y(1), z(2) is between x(2) and y(2) } 

Remark 2:  

When we consider  𝑥  ,  

x = (0,0) , y = (1,1). Then , 

𝑠𝑒𝑔 𝑥, 𝑦 = { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 − 𝑦  =
 𝑥 − 𝑧  +  𝑧 − 𝑦  } 

 𝑥 − 𝑦  = 1 

Now, For any   𝑧 =  𝑧 1 , 𝑧 2   , 

                         1  =  𝑥 1 − 𝑦 1   

                                ≤  𝑥 1 − 𝑧 1  +  𝑧 1 − 𝑦 1    

                                𝑧 1  +   1 − 𝑧 1   

                           ≤  Max {  𝑧 1  ,  𝑧 2   } +  

                               Max {  1 −  𝑧 1  ,  1 − 𝑧 2   }.  

  Now let, z  𝑠𝑒𝑔 𝑥, 𝑦                                          

             Then, z(i) , 1 – z(i)   0 ,  for  i = 1,2 and . 

Max{z(1), z(2)} + Max { 1- z(1), 1- z(2) } = 1 

 
If  z(1)    z(2) , Then,  1 – z(2)   1- z(1). 

Hence 

 1-z(1) + z(2)  = 1. That is, z(1) = z(2) 

Thus, 

   𝑆𝑒𝑔 𝑥, 𝑦 = { 𝑧 =  𝑧 1 , 𝑧 2  :   𝑥 − 𝑦  =
 𝑥 − 𝑧  +  𝑧 − 𝑦 1     

                            =  { 𝑧 =  𝑧 1 , 𝑧 2  :    𝑧 1 =
𝑧 2 , 0   𝑧 𝑖  1, 𝑖 = 1, 2. }, is the line segment 

joining x and y.  

Now we prove the following Theorem. 

Theorem 2.1:   

Let 1  p   and a function f be  defined 

as, 

  𝑓(𝑥, 𝑦)  =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝 ,  

 0  x, y ≤ 1. 

Then,  f has a minimum at ( x, y)  if and   only if  

      x = y,  

Proof : 

 First suppose that x = y. 

 Then, f(x, y) = 2
1

𝑝 𝑥 + 1 − 𝑥  =2
1

𝑝 ,  

But by Minkowski inequality, f (x, y)  2
1

𝑝   ( a1 = x, 
b1 = 1-x and a2 = y, b2 = 1-y). Hence f has a 

minimum at ( x, y)  if x = y. 

Conversely suppose that f has a minimum at (x, y). 

Then 
𝜕𝑓

𝜕𝑥
= 0 and 

𝛿𝑓

𝛿𝑦
 =0 

               
  𝜕𝑓

𝜕𝑥
= 0    

               
1

𝑝
 𝑥𝑝 + 𝑦𝑝 

1−𝑝

𝑝  p.𝑥𝑝−1  -  
1

𝑝
(  1 − 𝑥)𝑝 +

                                    (1 − 𝑦)𝑝 
1−𝑝

𝑝  p.(1 − 𝑥)𝑝−1 = 0. 

That is, 

 𝑥𝑝 + 𝑦𝑝 
1−𝑝

𝑝 𝑥𝑝−1  

=
 

(  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1−𝑝

𝑝 (1 − 𝑥)𝑝−1 .        

Then, 

   𝑥𝑝 + 𝑦𝑝 
1

𝑝  (1-x)  =
 

   (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  𝑥 . 

That is,  
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 𝑥𝑝 + 𝑦𝑝 
1

𝑝  -  x  𝑥𝑝 + 𝑦𝑝 
1

𝑝     
 

                              =  𝑥 (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  

That is,  

 
  (  1 − 𝑥)𝑝 +  1 − 𝑦 𝑝 )

1

𝑝   =  (1-x) 1 + (
𝑦

𝑥
)𝑝 

1

𝑝
 

          =   1 + (
𝑦

𝑥
)𝑝 

1

𝑝
-  𝑥𝑝 + 𝑦𝑝 

1

𝑝 , if x  ( 0, 1) 

Hence, 

  𝑓(𝑥, 𝑦) =   𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝  

                =  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
 if x  ( 0, 1). If x = 0, 

𝑓(𝑥, 𝑦)  =  2
1

𝑝    if and only if y = 0 

Now, 

           𝑓(1,1)  =  2
1

𝑝   = 𝑓(0,0)          

  2
1

𝑝  =   1 + (
𝑦

𝑥
)𝑝 

1

𝑝
  , x  ( 0, 1),   

   1 + (
𝑦

𝑥
)𝑝      =  2                          

    
𝑦

𝑥
  = 1.                                         

     y = x. 

▄ 

The following generalizes Theorem 2.1 

Theorem 2.2:  

 Let   1  p   , a,b  R, b    0 and 

 f: R2 → R be defined as, 

                 𝑓(𝑥, 𝑦) =   𝑥𝑝  +  𝑦𝑝  
1

𝑝+ 

                                  (𝑎 − 𝑥)𝑝 +    (𝑏 − 𝑦)𝑝   
1

𝑝  ,  

Then,  f has a minimum at ( x, y) 

if and only if x =  
𝑎

𝑏  
 y,  x between 0 and a, 

y between 0 and b. 

Proof :  

But by Minkowski inequality,  

𝑓 (𝑥, 𝑦)     𝑎𝑝  +  𝑏𝑝  
1
𝑝  

First suppose that x = 
𝑎

𝑏 
y,  x between 0 

and a, y between 0 and b. 

 Then,  

𝑓(𝑥, 𝑦)   =    
𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑦 +    

𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑏 − 𝑦    

            =     
𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑏 . ( since, 0  y  b or 

                b y  0 , we have,    𝑦  + 𝑏 − 𝑦   =   𝑏 ) 

           =    𝑎𝑝  +  𝑏𝑝  
1

𝑝    . 

Thus f has a minimum at (x, y) if x =  
𝑎

𝑏 
 y 

Note that if , 0  y  b, then 0  x  a if a > 0 and  

a  x  0 if a < 0.Similarly the other case. If a = 0 

the case is trivial. 

Conversely suppose that f has a minimum 

at (x, y)  

Case 1: 0  x  a, 0  y  b 

Then f(x,y) =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (𝑎 − 𝑥)𝑝 +

(𝑏 − 𝑦)𝑝 
1

𝑝  

Then 
𝜕𝑓

𝜕𝑥
= 0 and 

𝛿𝑓

𝛿𝑦
 =0   

𝜕𝑓

𝜕𝑥
=  0  imply that, 

1

𝑝
 𝑥𝑝 + 𝑦𝑝 

1−𝑝

𝑝  p.𝑥𝑝−1  -  

               
1

𝑝
 𝑎 − 𝑥)𝑝 + 

1−𝑝

𝑝  p.(𝑎 − 𝑥)𝑝−1  = 0. 

That is, 

 𝑥𝑝 + 𝑦𝑝 
1−𝑝

𝑝 𝑥𝑝−1      

            =   
 

(  𝑎 − 𝑥)𝑝 +   (𝑏 − 𝑦)𝑝 )
1−𝑝

𝑝 (𝑎 − 𝑥)𝑝−1 

That is, 

     𝑥𝑝 + 𝑦𝑝 
1

𝑝  (a-x) 
 

=   (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  𝑥  

That is,  

𝑎  𝑥𝑝 + 𝑦𝑝 
1

𝑝  -  x  𝑥𝑝 + 𝑦𝑝 
1

𝑝     

                               
 

= 𝑥 (  𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 )
1

𝑝  

That is,  

 
 (  𝑎 − 𝑥)𝑝 +  𝑏 − 𝑦 𝑝 )

1

𝑝    = (𝑎 − 𝑥)  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
 

                                     =  𝑎  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
-  𝑥𝑝 + 𝑦𝑝 

1

𝑝 ,  

Hence ,  

𝑓 𝑥, 𝑦 =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝                 

               =  𝑎  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
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Now, 

  𝑓 0,0       =  𝑎𝑝 + 𝑏𝑝 
1

𝑝  =   𝑎𝑝 +  𝑏𝑝   
1

𝑝   

                   =  𝑓(𝑎, 𝑏) 

Hence,  

  𝑎𝑝 + 𝑏𝑝 
1

𝑝    =   𝑎  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
  

That is                 x   =   
𝑎

𝑏 
y 

The other cases can be proved in similar way. 

▄ 

Corollary:  

Let   1  p   , a, b, c, d  R , b d and  

f: R2 → R be defined as,  

f(𝑥, 𝑦)  =       (𝑎 − 𝑥)𝑝 +  (𝑏 − 𝑦)𝑝  
1

𝑝    + 

                       (𝑥 − 𝑐)𝑝  +  (𝑦 − 𝑑)𝑝  
1

𝑝  ,  

Then,  f has a minimum at ( x, y) if and only if 

  x - a  =  
𝑐−𝑎

𝑑−𝑏 
 y, x between a and c, y between b 

and d 

The minimum value of  𝑓(𝑥, 𝑦) is 

𝑓(𝑎, 𝑏)  =  𝑓(𝑐, 𝑑)  =   (𝑎 − 𝑐)𝑝 +  (𝑏 − 𝑑)𝑝   
1
𝑝  

▄ 

`The above results prove that on R2 

induced by the norm  .  𝑝  ,1 p  , for x, y in R2 , 

Seg (x,y)  =   { x + (1-t)(y-x) : t (0,1)}. Hence we 

have proved the following Theorem. 

Theorem 2.3: 

  Let 𝐶 be the interval convexity on R2 

induced by the norm  ,  .  𝑝1 p  . 

Then 𝐶   coincides with the Euclidean convexity.  
 

Theorem 2.4.  

Let C be the interval convexity on R2 

induced by the norm ,  .  ∞ .  Then C  does not 

coincide with the Euclidean convexity. 

 

Proof :  

Let x = (0, 0), y = (1, 0) Then, 

   𝑥 − 𝑦 ∞ = 1 

Let z =  (
1

2
,

1

2
 ). Then z is not on the line 

joining x and y. But  

              𝑥 − 𝑧 ∞+   𝑧 − 𝑦 ∞   =  
1

2
+

1

2
    = 1 Hence 

z belong to the convex hull of  {x,y}. Thus the line 

segment joining x and y is not a member of  C. 

▄ 

Theorem 2.5. :  

Let 𝐶 be the interval convexity on R2 

induced by the norm  ,  .  ∞ . Let x = (0, 0) and  y = 

(a, b). and let α = max{│a│,│b│} Then, The 

convex hull of { x, y} is the area bounded by the 

straight lines y =   x, y = x + b – a and y+x = b-a 

Proof: 

 Case1 : (a, b) is in the first quadrant. 

Then a, b ≥ 0. 

 Let a  ≥ b. 

 Then  𝑥 − 𝑦 ∞   = a 

 A point z = (s, t) is in the convex hull of x 

and y if and only if 

            Max { │s│, │t│} + Max { │a-s│, │b-t│} 

= a ,that is if and only if  

 │t│ ≤ │s│, and │b-t│ ≤ │a-s│ that is if 

and only if –s  ≤ t ≤  s and  s-a   ≤ b-t ≤  a-s, that is 

if and only if –s  ≤ t ≤  s and    b-a +s ≤  t  ≤ a+ b-s.  

 Now let b ≥ a. Then,  𝑥 − 𝑦 ∞   = b and a 

point z = (s, t) is in the convex hull of x and y if 

and only if 

            Max { │s│, │t│} + Max { │a-s│, │b-t│} 

= b ,that is if and only if  

 │s│ ≤ │t│, and │a-s│ ≤ │b-t│ that is if 

and only if –t ≤ s ≤  t  and  t-b   ≤ a-s ≤  b-t‟ 

That is–t ≤ s ≤  t  and a-b +t ≤  s   ≤ a+ b-t 

 Case2 : (a, b) is in the II quadrant. Then a 

≤ 0, b ≥ 0. Then, 

 Let │a│ ≥ b. 

Then  𝑥 − 𝑦 ∞   = -a 

A point z = (s, t) is in the convex hull of x and y if 

and only if 

            Max { │s│, │t│} + Max { │a-s│,│b-t│} 

= Max { -s,│t│} + Max {s-a ,│b-t│}=  - a, that is 

if and only if  

 │t│ ≤  -s  , and │b-t│ ≤ │a-s│ that is if 

and only if s  ≤ t ≤  -s and  a-s ≤ b-t ≤  s-a, that is if 

and only if –s  ≤ t ≤  s and   a+b –s  ≤  t   ≤ b-a +s. 

Similarly, the other cases can be proved. 

▄ 
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Corollary: 

 The convex hull of any two points (a, b) 

and (c,d) is the rectangle  bounded  by the straight 

lines │a-x│ = │b-y│and │c-x│ = │d-y│ 

Theorem2.6:  

  The area bounded by a circle C in R2 is 
convex with respect the convexities induced 

by .  𝑝 , 1  p  . But not convex with respect to 

the convexity induced by  .   or  .  1 

Proof :  

With respect to convexities induced by 

 .  𝑝 , 1  p  ., it is clear. Now let R2 be given 

the norm   .  1. 

 Consider the set,  S = { (x, y ):   x2 + y2  1 }.  

Then  z1 = (1, 0), and z2 = (0, 1) are in S. Also we 

can see that (1, 1)  Co ({ z1, z2}), but  (1, 1)is not 
appoint in S. Hence S is not convex with respect 

to   .  1.  

 

Fig. 1 

Similarly if R2 is given the norm   .  , and Let S 

= { (x, y ):   x2 + y2  2 }.  

 Then take  z1 = (1, -1) and z2 = (1, 1) . Then z1  

and z2  are in S ,  

(2, 0) is in the convex hull of z1  and z2 , but (2, 0) is 

not in S. 

▄ 

Note : If the points A and B are on the line y = x or 

y = -x , Then the convex hull is the line segment 

joining them.   
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