pgrw-Locally Closed Sets in Bitopological Spaces

R. S. Wali¹, Vijayakumari T. Chilakwad²

¹Associate Professor, ¹Department of Mathematics, Bhandari andRathi College, Guledagud-587 203, Karnataka State, India ²Department of Mathematics, Government First Grade College, Dharwad, Karnataka State, India

Abstract - The aim of this paper is to introduce a new class of closed sets called pgrw-locally closed sets, pgrw-lc^{*-} sets, pgrw-lc^{**-} sets in bitopological spaces. A subset A of a bitopological space (X, τ_1, τ_2) is called (τ_i, τ_j) -pgrw-locally closed if $A=U \cap V$ where U is a τ_i -pgrw-open set and V is a τ_j -pgrw-closed set. Examples are provided to illustrate the behaviour of these new classes of sets and maps.

Keywords- pgrw-locally closed set, pgrw-lc*-set, pgrw-lc**-set, pairwise pgrw-lc-continuous maps , pairwise pgrw-lc-irresolute maps

I. INTRODUCTION

According to Bourkbaki[1], a subset of a topological space X is called locally closed in X if it is the intersection of an open set and a closed set in X. In 1963, Kelly [2] defined a bitopologicalspace (X, τ_1, τ_2) to be a set X equipped with two topologies τ_1, τ_2 on X and initiated a systematic study of bitopological spaces. ω -Locally closed set in a bitopological spaces. ω -Locally closed set in a bitopological space is introduced by S. S. Benchalliand et. al. [3].In the present paper we define pgrw-locally closed sets, pgrw-lc*-sets, pgrw-lc**-sets and investigate some of their properties.

II. PRELIMINARIES

Throughout this paper,X, Y and Z represent bitopological spaces (X, τ_1 , τ_2), (Y, σ_1 , σ_2) and (Z, η_1, η_2), i, j $\in \{1, 2\}$ and i $\neq j$.

Definition: A subset A of a topological space (X, τ) is called a pregeneralised regular weakly (pgrw)closedset[5] if pcl(A) \subseteq U whenever A \subseteq U and U is a rw-open set.

Definition: A subset A of a topological space (X, τ) is called a rw-closed [4] if $cl(A)\subseteq U$ whenever A $\subseteq U$ and U is regular semi-open in X.

Definition: A subset A of a bitopological space (X, τ_1, τ_2) is called $a(\tau_i, \tau_j)$ -pgrw closed set if τ_j -pcl(A) \subseteq G whenever A \subseteq G and G is a τ_i -rw open set where $i, j \in \{1, 2\}$ $i \neq j$.

III.(τ_i,τ_j)-pgrw-LOCALLY CLOSED SETS

3.1Definition: A subset A of a bitopological space (X,τ_1,τ_2) is called (τ_i,τ_j) -pgrw-locally closed if $A=U \cap V$ where U is a τ_i -pgrw-open set and V is a τ_i -pgrw-closed set.

3.2Notation: (τ_i, τ_j) -pgrw-LC(X) represents the collection of all (τ_i, τ_j) -pgrw-lc subsets of (X, τ_1, τ_2) . **3.3Example:**X={a,b,c,d},

$$\begin{split} \tau_1 &= \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \\ \tau_2 &= \{X, \Phi, \{a\}, \{c, d\}, \\ \{a, c, d\}\} \end{split}$$

 τ_1 -pgrw-open sets are X, Φ ,{a,b,d}, {a,b,c},{a,d},{a,b},{b,c},{a,c},{a},{b},{c}.

τ₂-pgrw-closedsets

X, Φ ,{b},{c},{d},{a,b},{b,c},{b,d},{a,b,c},{b,c,d}, {a,c,d}, {a,b,d}. The set {a,b,c} is τ_1 -pgrw-open and {b,c,d} is τ_2 -pgrw-closed.

are

3.4 Example: In

example 3.3{d}={a,b,d} \cap {d}where {a,b,d} is a τ_1 pgrw-open set and {d} is a τ_2 -pgrw-closed set. \therefore {d} is a (τ_1 , τ_2)-pgrw-locally-closed set.

Also $\{d\}=\{a,d\}\cap\{b,d\}$ where $\{a,d\}$ is a τ_1 -pgrwopen set and $\{b,d\}$ is a τ_2 -pgrw-closed set. \therefore U and V of definition 3.1are not unique.

3.5 Theorem: A subset A of a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-locally closed iff X-A is the union of a τ_i -pgrw- closed set and a τ_j -pgrw-open set.

Proof: A is a (τ_i, τ_j) - pgrw- locally closed subset of X.

 \Rightarrow A = U \cap V where U is τ_i -pgrw-open and V is τ_j -pgrw-closed.

 $\Rightarrow X-A = (X-U) \cup (X-V) \text{ where } X-U \text{ is } \tau_i\text{-pgrw-closed and } X-V \text{ is } \tau_j\text{-pgrw-open.}$

Conversely

X-A = G \cup F where G is τ_i -pgrw-closed and F is τ_j -pgrw-open.

 $\Rightarrow A = (X-G) \cap (X-F) \text{ where } X-G \text{ is } \tau_i\text{-pgrw-open and } X-F \text{ is } \tau_j\text{-pgrw-closed.}$

 \Rightarrow A is a (τ_i, τ_j)- pgrw- locally closed set.

3.6 Theorem:

- Every τ_i-pgrw-open subset of (X,τ₁,τ₂) is a
 (τ_i, τ_j)- pgrw-locally closed set.
- 2) Every τ_j -pgrw-closed subset of (X, τ_1, τ_2) is a (τ_i, τ_j) -pgrw-locally closed set.

Proof:

1) A is a τ_i -pgrw-open subset of a bitopological space (X, τ_1, τ_2) .

 $\Rightarrow A = A \cap X$ where A is τ_i -pgrw-open and X is τ_i pgrw-closed.

 \Rightarrow A is (τ_i, τ_i) -pgrw-locally closed.

 $\Rightarrow A = X \cap A$ where X is τ_i -pgrw-open and A is τ_j -pgrw-closed. \Rightarrow A is a (τ_i , τ_j)-pgrw-locally closed set.

The converses are not true.

3.7 Example: In example 3.3 {d} = {a,b,d} \cap {d} is a (τ_1 , τ_2)-pgrw-locally-closed set, but not τ_1 pgrw-open. The set {a} = {a,b} \cap {a,c,d} is (τ_1 , τ_2)-pgrw-locally-closed set, but not τ_2 -pgrw-closed.

3.8 Corollary:

- 1) Every τ_i -open subset of (X, τ_1, τ_2) is a (τ_i, τ_i) pgrw- locally closed set.
- 2) Every τ_j -closed subset of (X, τ_1, τ_2) is a (τ_i, τ_j) -pgrw-locally closed set.

Proof :

- 1) A is a τ_i -open subset of (X, τ_1, τ_2) .
 - \Rightarrow A is τ_i -pgrw-open.
 - \Rightarrow A is a (τ_i, τ_j) pgrw-locally closed set.

2) A is a τ_j -closed subset of (X, τ_1, τ_2) .

- \Rightarrow A is τ_j -pgrw-closed.
- \Rightarrow A is a (τ_i, τ_j) pgrw-locally closed set.

3.9 Theorem: Every (τ_i, τ_j) -lc-set of a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) - pgrw-lc-set.

Proof: A is a (τ_i, τ_j) - locally closed set in X.

 $\Rightarrow A = G \cap F \text{ where } G \text{ is } \tau_i\text{- open and } F \text{ is } \tau_j\text{- closed.}$

 \Rightarrow A = G \cap F where G is τ_i - pgrw-open and F is τ_j pgrw- closed.

 \Rightarrow A is a (τ_i, τ_j)-pgrw- locally closed set in X.

Converse is not true.

3.10 Example: In example 3.3 {d} is (τ_1, τ_2) -pgrw-lc, but not (τ_1, τ_2) -lc.

3.11 Definition : A subset A of a bitopological space (X, τ_1, τ_2) is called (τ_i, τ_j) - pgrw- lc* if there exist a

 $\tau_{i^{-}}$ pgrw-open set S and a $\tau_{j^{-}}$ closed set F in (X,τ_1,τ_2) such that A=S \cap F.

3.12 Example: Consider 3.3.{b,c} = $\{a,b,c\} \cap \{b,c,d\}$ where $\{a,b,c\}$ is τ_1 -pgrw-open and $\{b,c,d\}$ is τ_2 -closed.

So {b,c} is (τ_1, τ_2) -pgrw-lc*.

3.13Definition: A subset A of a bitopological space (X, τ_1, τ_2) is called (τ_i, τ_j) - pgrw- lc** if there exist a τ_i - open set S and a τ_j -pgrw- closed set F in (X, τ_1, τ_2) such that $A = S \cap F$.

3.14 Example: In 3.3 $\{a,b\} = \{a,b\} \cap \{a,b,d\}$ where $\{a,b\}$ is τ_1 -open and $\{a,b,d\}$ is τ_2 -pgrwclosed. So $\{a,b\}$ is (τ_1, τ_2) -pgrw-lc**.

3.15 Notation:

- i. (τ_i, τ_j) -pgrw-LC*(X) = The collection of all (τ_i, τ_j) -pgrw-lc* subsets of (X, τ_1, τ_2) .
- ii. (τ_i, τ_j) -pgrw-LC** (X) = The collection of all

 (τ_i, τ_j) -pgrw-lc** subsets of (X, τ_1, τ_2) .

3.16 Theorem: Every τ_i -pgrw-open subset of X is a

 (τ_i, τ_j) -pgrw-lc* set.

Proof: A is τ_i -pgrw-open in a bitopological space X.

 $\Rightarrow A = A \cap X \text{ where } A \text{ is } \tau_i \text{-pgrw-open and } X \text{ is } \tau_j \text{ -closed.}$

 \Rightarrow A is (τ_i, τ_j) -pgrw-lc*.

3.17 Corollary: Every τ_i -open subset of X is a (τ_i , τ_i)- pgrw- lc* set.

Proof: A is τ_i -open. \Rightarrow A is τ_i - pgrw-open. \Rightarrow A is (τ_i, τ_i) - pgrw-lc*.

3.18 Theorem: Every τ_j -pgrw-closed subset of X is a (τ_i, τ_i) - pgrw-lc** set.

Proof: A is a τ_j -pgrw-closed subset of a bitopological space X.

 $\Rightarrow A=X \cap A$ where X is τ_i -open and A is τ_j -pgrw-closed.

 \Rightarrow A is (τ_i, τ_j)-pgrw-lc**.

3.19 Corollary: Every τ_j -closed subset of X is a (τ_i, τ_j) -pgrw-lc** set.

Proof: A is τ_i -closed.

 \Rightarrow A is τ_j -pgrw-closed. \Rightarrow A is (τ_i, τ_j) - pgrw-lc**.

3.20 Theorem: (τ_i, τ_j) -pgrw-LC*(X) \subseteq (τ_i, τ_j)-pgrw-LC(X).

Proof: $A \in (\tau_i, \tau_j)$ -pgrw-LC*(X). \Rightarrow A is a (τ_i, τ_j) -pgrw-lc* set in X.

 $\Rightarrow A=S \cap F \text{ where } S \text{ is } \tau_i\text{-pgrw-open and } F \text{ is } \tau_j\text{-} \text{ closed.}$

 \Rightarrow A=S \cap F where S is τ_i -pgrw-open and F is τ_j -pgrw-closed.

 \Rightarrow A is a (τ_i, τ_j)-pgrw-lc set.

 $\Rightarrow A \in (\tau_i, \tau_j)$ -pgrw-LC(X).

 $\therefore \quad (\tau_i, \tau_j) \text{-pgrw-} LC^*(X) \subseteq (\tau_i, \tau_j) \text{-pgrw-} LC(X).$ The converse is not true.

3.21 Example: Inexample 3.3 {a,c,d} is a (τ_1, τ_2) -pgrw-lc set, but not (τ_1, τ_2) -pgrw-lc*.

3.22Theorem:Every(τ_i, τ_i)-pgrw-lc**-subsetofa

bitopological space (X, τ_1, τ_2) is (τ_i, τ_i) -pgrw-lc-set.

Proof: A is a (τ_i, τ_j) -pgrw-lc**-set in X.

 \Rightarrow A=S \cap F where S is τ_i -open and F is τ_j -pgrwclosed.

 \Rightarrow A=S \cap F where S is τ_i -pgrw-open and F is τ_j -pgrw-closed.

 \Rightarrow A is a (τ_i , τ_j)-pgrw- lc set.

The converse is not true.

3.23 Example: In 3.3 the set {a, d} is a (τ_1, τ_2) -pgrw-lc set ,but not (τ_1, τ_2) -pgrw-lc**.

3.24 Remark: (τ_i, τ_j) -pgrw-lc*(X) and (τ_i, τ_j) -pgrw-lc**(X) are independent of each other.

3.25 Example : Consider example 3.3.{a,c,d} is (τ_1, τ_2) -pgrw-lc**, but not (τ_1, τ_2) -pgrw-lc*.

{a,d} is (τ_1, τ_2) -pgrw-lc*, but not (τ_1, τ_2) -pgrw-lc**.

3.26 Theorem : A subset A of a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) -pgrw-lc* iff $A = G \cap \tau_j$ -cl(A) for some τ_i - pgrw-open set G.

Proof: A is a (τ_i, τ_j) -pgrw-lc* subset of a bitopological space (X, τ_1, τ_2) .

 $\Rightarrow A = G \cap F \text{ where } G \text{ is } \tau_i \text{-pgrw- open and } F \text{ is } \tau_j \text{-} \text{ closed.}$

Next $A \subseteq F$ and F is τ_i -closed. $\Rightarrow \tau_i$ -cl(A) $\subseteq F$

 $\Rightarrow G \cap \tau_j \text{-cl}(A) \subseteq G \cap F \qquad \Rightarrow \qquad G \cap \tau_j \text{-}$ cl(A) $\subseteq A$(ii)

From (i) and (ii) $A = G \cap \tau_j$ -cl(A) where G is a τ_i -pgrw-open set.

Conversely

 $A = G \cap \tau_j\text{-}cl(A) \text{ for some } \tau_i\text{-}pgrw\text{-}open \text{ set } G.$

 $\Rightarrow \quad A = G \cap \tau_j\text{-cl}(A) \text{ where } G \text{ is } \tau_i\text{-pgrw-open}$ and $\tau_j\text{-cl}(A)$ is $\tau_j\text{-closed}$.

 \Rightarrow A is (τ_i, τ_j) -pgrw-lc*.

3.27 Theorem: If A is a subset of (X, τ_1, τ_2) such that

 $A \cup (X \text{-} \tau_j \text{-} cl(A)) \text{ is } \tau_i \text{-} pgrw \text{ open, then } A \text{ is } (\tau_i \text{,}$ $\tau_j) \text{-} pgrw \text{-} lc^*.$

Proof: For every subset A of (X, τ_1, τ_2) ,

 $A = A \cup \Phi = A \cup ((X \text{-} \tau_j \text{-} cl(A) \cap (\ \tau_j \text{-} cl(A)))$

 $= (A \cup (X - \tau_j - cl(A)) \cap (A \cup \tau_j - cl(A)))$

 $= (A \cup (X-\tau_j-cl(A)) \cap \tau_j-cl(A), \text{ because } A \subseteq \tau_j-cl(A).$

So if $A \cup (X - \tau_j - cl(A))$ is τ_i -pgrw open, then A is the intersection of a τ_i -pgrw-open set and a τ_j -closed set.

 \therefore A is (τ_i, τ_j) -pgrw-lc*.

3.28 Corollary: If A is a subset of (X, τ_1, τ_2) such that $[\tau_j-cl(A)]$ -A is τ_i -pgrw-closed, then A is (τ_i, τ_i) -pgrw-lc*.

Proof: For any sub-set A of X,

 $\tau_i\text{-}cl(A)\text{-}A\text{=}(\tau_i\text{-}cl(A))\cap A^c\text{=}((X\text{-}\tau_i\text{-}cl(A))\cup A)^c$

 $\div \quad (\tau_j\text{-cl}(A)\text{-}A) \text{ is } \tau_i\text{-}pgrw\text{-}closed.$

 \Rightarrow AU(X- τ_i -cl(A)) is τ_i -pgrw-open.

 \Rightarrow A is (τ_i, τ_j) -pgrw-lc*.

3.29 Theorem: If $A \in (\tau_i, \tau_j)$ -pgrw-LC*(X) and B is τ_i -closed, then $A \cap B \in (\tau_i, \tau_i)$ -pgrw-LC*(X).

Proof: $A \in (\tau_i, \tau_j)$ -pgrw-LC*(X) and B is τ_j -closed.

 $\Rightarrow \quad A=G\cap F \text{ where } G \text{ is } \tau_i\text{-pgrw-open and } F \text{ is } \tau_j\text{-} \\ \text{closed and } B \text{ is } \tau_j\text{-closed.}$

 $\Rightarrow A \cap B = (G \cap F) \cap B = G \cap (F \cap B) \text{ where } G \text{ is } \tau_i \text{-}$ pgrw-open and $F \cap B$ is $\tau_j \text{-closed.}$

 \Rightarrow A \cap B \in (τ_i, τ_j)-pgrw-LC*(X).

3.30 Theorem: If $A \in (\tau_i, \tau_j)$ -pgrw-LC** (X) and B is

 τ_i -open, then $A \cap B \in (\tau_i, \tau_j)$ -pgrw-LC**(X).

Proof: $A \in (\tau_i, \tau_j)$ -pgrw-LC** (X) and B is τ_i -open. $\Rightarrow A=G\cap F$ where G is τ_i -open and F is τ_j -pgrwclosed and B is τ_i -open.

 $\Rightarrow A \cap B = (G \cap F) \cap B = (G \cap B) \cap F \text{ where } G \cap B \text{ is } \tau_i \text{-}$ open and F is τ_j -pgrw-closed.

 \Rightarrow A \cap B \in (τ_i, τ_j)-pgrw-LC** (X).

IV.PAIRWISE pgrw-lc-CONTINUOUS MAPS AND PAIRWISE pgrw-lc-IRRESOLUTE MAPS

4.1Definition: A map f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called pairwise pgrw-lc-continuous (resp. pairwise pgrw-lc*-continuous, pairwise pgrw-lc**continuous) if f⁻¹(V) \in (τ_i , τ_j) -pgrw-LC(X)(resp. (τ_i,τ_j)-pgrw-LC*(X), (τ_i,τ_j)-pgrw-LC**(X)) $\forall \sigma_i$ open set V in (Y, σ_1,σ_2).

4.2

Example: $X = \{a, b, c, d\}, \tau_1 = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b\},$

c}, $\tau_2 = \{X, \Phi, \{a\}, \{c, d\}, \{a, c, d\}\}$

 $, \{c\}.$

 τ_2 -closed sets are X, Φ , {b,c,d}, {a,b}, {b}

 τ_2 -pgrw-closed setsare X, Φ , {b},{c},{d},{a,b},{b,c},{b,d},{a,b,c},{b,c,d},{a,c, d},{a,b,d}

 $Y = \{a,b,c,d\}, \sigma_1 = \{Y,\Phi,\{b,c\},\{b,c,d\},\{a,b,c\}, \{a,b,c\}, \{a,b,c$

$$\sigma_2 = \{Y, \Phi, \{a, b\}, \{c, d\}\}$$

Define $f: X \rightarrow Y$ as f(a)=b, f(b)=c, f(c)=d, f(d)=a. Pre images of σ_1 -open sets are X, Φ ,{a,b},{a,b,d},{a,b,c} which are (τ_1, τ_2) -pgrwlc sets $((\tau_1, \tau_2)$ -pgrw-lc* sets and (τ_1, τ_2) -pgrwlc** sets). τ_1 —pgrw-closed sets: X, Φ ,{c},{d},{b,c},{c,d},{a,d},{b,d},{b,c,d},{a,c,d},{a,b,d}

 τ_2 -pgrw-open sets: X, Φ , {a,c,d},{a,b,d},{a,b,c},{c,d},{a,d},{a,c},{d},{a},{b},{c},{c}

 $\tau_1 \text{-closed sets: } X, \emptyset, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{d\}$

Pre images of σ_2 -open sets are X, Φ ,{a,d},{b,c} which are (τ_2, τ_1) -pgrw-lc sets $((\tau_2, \tau_1)$ -pgrw-lc* sets and

 (τ_2, τ_1) -pgrw-lc** sets).

 $\therefore f \text{ is } (\tau_2, \tau_1) \text{ -pgrw-lc continuous}((\tau_2, \tau_1) \text{ -pgrw-lc}^* \text{ continuous}, (\tau_2, \tau_1) \text{ -pgrw-lc}^{**} \text{ continuous}.)...... (ii)$

So from (i) and (ii) it follows that f is pairwise pgrw-lc-continuous (pairwise pgrw-lc*-continuous , pairwise pgrw-lc**-continuous).

4.3Definition: A map f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called pairwise pgrw-lc-irresolute (resp. pairwise pgrw-lc*- irresolute, pairwise pgrw-lc**- irresolute) if

$$\begin{split} f^{-1}(V) &\in (\tau_i \ , \ \tau_j) \text{-} \ pgrw\text{-}LC(X)(\text{resp.} \ (\tau_i \ , \ \tau_j)\text{-}pgrw\text{-}LC^*(X), \ (\tau_i \ , \ \tau_j)\text{-} \ pgrw\text{-}LC^{**}(X)) \ \forall \ V &\in (\sigma_i, \sigma_j)\text{-}\\ pgrw\text{-}LC(Y)(\text{resp.} \ (\sigma_i, \sigma_j))\text{-}pgrw\text{-}LC^*(Y), \ (\sigma_i, \sigma_j)\text{-}\\ pgrw\text{-}LC^{**}(Y)). \end{split}$$

4.4 Theorem: If a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise-lc-continuous, then it is pairwise-pgrw-lc-continuous.

Proof: A mapf: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwiselc-continuous.

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j)-LC (X) \quad \forall \sigma_i\text{- open set } V \text{ in}$ $(Y, \sigma_1, \sigma_2).$

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X) \ \forall \sigma_i \text{-open set } V \text{ in}$ $(Y, \sigma_1, \sigma_2).$

 \Rightarrow f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise pgrw-lccontinuous. The converse is not true.

4.5 Example: $X = \{a,b,c\}, \tau_1 = \{X,\Phi,\{a\},\{a,c\}\}, \tau_2 = \{X,\Phi,\{a\},\{b,c\}\}$ $Y = \{a,b,c\}, \sigma_1 = \{Y,\Phi,\{a\},\{b\},\{a,b\}\}, \tau_1 = \{x,\Phi,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{x,\Phi,\{a\},\{b\},\{a,b\},\{a,b\}\}, \tau_2 = \{x,\Phi,\{a\},\{b\},\{a,b\},\{a,b\},\{b\},\{a,b\}\}, \tau_2 = \{x,\Phi,\{a\},\{b\},\{a,b\},\{a$

 $\sigma_2 = \{Y, \Phi, \{b\}, \{c\}, \{b, c\}\}$

 σ_1 -pgrw-open sets are Y, Φ , {a},{b},{a,b}, σ_2 pgrw-closed sets are Y, Φ ,{b},{c},{b,c}. (τ_1 , τ_2)pgrw-lc sets: All subsets of X. Define a map f: X \rightarrow Y by f(a)=c , f(b)=b , f(c)= a. f is pairwise pgrw-lc-continuous.

 (τ_1, τ_2) -lc sets : X , Φ ,{a},{c},{b,c}, {a,c} f is not pairwise-lc-continuous. For $f^1(\{b\})=\{b\}$ and is not

 (τ_1, τ_2) -lc set.

4.6 Theorem:

(i) If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise pgrw-lc*-continuous, then it is pairwise pgrw-lc-continuous.

(ii) If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise pgrw-lc**-continuous, then it is pairwise pgrw-lc-continuous.

Proof:

(i) f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise pgrw-lc*continuous.

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}^*(X) \ \forall \sigma_i \text{-open}$ set V in (Y, σ_1, σ_2) .

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X) \quad \forall \sigma_i \text{-open}$ set V in (Y, σ_1, σ_2) .

 \Rightarrow f is pairwise pgrw-lc-continuous.

(ii) Proof is similar to (i).

The converse statements are not true.

4.7Example: Consider the bitopological spaces in example in 4.2.

The function f: X \rightarrow Y defined by f(a)=b , f(b)=a , f(c)=c , f(d)=d is pairwise pgrw-lc-continuous. But f is not pairwise pgrw-lc*-continuous. For ({b,c,d} is σ_1 -open in Y, but f¹({b,c,d})={a,c,d} is not (τ_1, τ_2)-pgrw-lc*. **4.8 Example:** Consider the spaces in example in 4.2 in which the function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ defined by f(a)=b, f(b)=a, f(c)=d, f(d)=c is a pairwise pgrw-lc-continuous. But it is not pairwise pgrw-lc**-continuous. For, {b,c} is σ_1 -open in Y, but f⁻¹({b,c})={a,d} is not (τ_1, τ_2)-pgrw-lc**.

4.9 Theorem: If a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise-pgrw-lc-irresolute, then it is pairwise-pgrw-lc-continuous.

Proof: V is σ_i -open in (Y,σ_1,σ_2) and f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc-irresolute. \Rightarrow V is (σ_i,σ_j) -pgrw-lc and f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc-irresolute.

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j)\text{-} pgrw\text{-}LC(X) \ \forall \ V \in \sigma_i$

 $\Rightarrow f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2) \text{ is pairwise-pgrw-lc-continuous.}$

Converse is not true.

4.10 Example: $X = \{a,b,c\}, , \tau_1 = \{X,\Phi,\{a\},\{b,c\}\}, \tau_2 = \{X,\Phi,\{a\},\{a,c\}\}$

 τ_1 -pgrw-open sets: X, Φ ,{a},{b,c},

 τ_2 -pgrw-closed sets: X, Φ , {b}, {b,c}

$$Y = \{a,b,c\},\sigma_1 = \{Y,\Phi,\{a\},\{a,c\}\},\sigma_2 = Y,\Phi,\{a\},\{b\},\{a,b\}\}$$

,,(..,,(..,,))

 σ_1 - pgrw-open sets: Y, Φ ,{a},{a,c},

 $\sigma_2\text{-pgrw-closed sets: } Y, \Phi, \{b, c\}, \{a, c\}, \{c\}$

A function f :X \rightarrow Y defined by f(a)=b, f(b)= a, f(c)=c is (τ_1, τ_2) -pgrw-lc-continuous .

 (σ_1, σ_2) -pgrw-lc sets of Y are Y, Φ , $\{a\}$, $\{c\}$, $\{a,c\}$, $\{b,c\}$. f is not (τ_1, τ_2) -pgrw-lc-irresolute.

For {b,c} is (σ_1, σ_2) -pgrw-lc set in Y, but f⁻¹({b,c})={a,c} is not (τ_1, τ_2) -pgrw-lc.

4.11Theorem: If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc*-irresolute, then it is pairwise-pgrw-lc*-continuous.

Proof: V is σ_i -open in (Y,σ_1,σ_2) and f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc*irresolute. $\Rightarrow V \text{ is } (\sigma_i, \sigma_j) \text{-pgrw-lc}^* \text{ and } f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \text{ is pairwise-pgrw-lc}^* \text{-irresolute }.$

 $\Rightarrow f^{-1}(V) \in (\tau_i, \tau_j)\text{-} pgrw\text{-}LC^*(X) \forall V \in \sigma_i$

 $\Rightarrow f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2) \text{ is pairwise-pgrw-lc*-} continuous.$

The converse is not true. For example, consider the example in 4.10.

A function f:X \rightarrow Y defined by f(a)=b, f(b)= a, f(c)=c is (τ_1, τ_2)-pgrw-lc*-continuous. (σ_1, σ_2)pgrw-lc* sets of Y are Y, Φ ,{a}, {c}, {b,c},{a,c}. f is not (τ_1, τ_2)-pgrw-lc*-irresolute. For {b,c} is (σ_1, σ_2)-pgrw-lc* set in Y,

 $f^{-1}(\{b,c\}) = \{a,c\} \text{ is not } (\tau_1, \tau_2) \text{-pgrw-lc}^*.$

4.12Theorem: If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc**-irresolute, then it is pairwise-pgrw-lc**-continuous.

Proof: Proof is similar to 4.11.

4.13 Corollary:

- (i) If a map f: (X,τ₁,τ₂)→ (Y,σ₁,σ₂) is pairwise-pgrw-lc*-irresolute, then it is pairwise pgrw-lc-continuous.
- (ii) If a map f: (X,τ₁,τ₂)→ (Y,σ₁,σ₂) is pairwise-pgrw-lc**-irresolute, then it is pairwise-pgrw-lc-continuous.

Proof:

(i)f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pairwise-pgrw-lc*-irresolute.

 \Rightarrow f is pairwise-pgrw-lc*-continuous.

⇒pairwise pgrw-lc-continuous.

(ii) Proof is similar to (i).

V.COMPOSITION OF MAPS

5.1 Theorem: If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a pairwise pgrw-lc-irresolute map and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a pairwise pgrw-lc-continuous map, then gof is pairwise pgrw-lc-continuous.

Proof: f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a pairwise pgrw-lc-irresolute map and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a pairwise pgrw-lc-continuous map. $\Rightarrow \forall \ V \in \eta_i \quad g^{-1}(V) \in (\sigma_i, \sigma_j) \text{-pgrw-LC}(Y) \text{ and } f^1(g^{-1}(V))) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X).$

 $\Rightarrow \forall V \in \eta_i \ (gof)^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X).$

 \Rightarrow gof is pairwise pgrw- lc-continuous.

5.2 Theorem: Iff: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a pairwise pgrw-lc*-irresolute map and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a pairwise pgrw-lc*-continuous map, then gof is pairwise pgrw-lc*-continuous.

 $\textbf{Proof:} f: X {\rightarrow} Y is pairwise pgrw-lc*-irresolute and$

g:Y→Zispairwisepgrw-lc*-continuous.

 $\Rightarrow \forall V \in \eta \ g^{-1}(V) \text{ is } (\tau_i, \tau_j)\text{-pgrw-lc*} \text{ and } f^{-1}(g^{-1}(V)) \text{ is } (\tau_i, \tau_j)\text{-pgrw-lc*}.$

 $\Rightarrow \forall V \in \eta \quad (gof)^{-1}(V) \text{ is } (\tau_i, \tau_j)\text{-pgrw-lc}^*.$

 \Rightarrow gof: (X, τ_1,τ_2) \rightarrow (Z, η_1,η_2) is pairwise pgrw-lc*continuous.

5.3 Theorem: If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a pairwise pgrw-lc^{**}-irresolute map and g : $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is a pairwise pgrw-lc^{**}- continuous map, then gof is pairwise pgrw-lc^{**} continuous.

Proof: $f:X \rightarrow Y$ is pairwise pgrw-lc**-irresolute and g: $Y \rightarrow Z$ is pairwise pgrw-lc**-continuous.

 $\Rightarrow \forall V \in \eta \quad g^{-1}(V) \text{ is } (\tau_i, \tau_j)\text{-pgrw-lc}^{**} \text{ and } f^{-1}(g^{-1}(V)) \text{ is } (\tau_i, \tau_j)\text{-pgrw-lc}^{**}.$

 $\Rightarrow \forall V \in \eta \quad (gof)^{-1}(V) \text{ is } (\tau_i, \tau_j) \text{-pgrw-lc}^{**}.$

 \Rightarrow gof: $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is pairwise pgrw-lc**-continuous.

5.4 Theorem: If f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are pairwise pgrw-lcirresolute, then gof is pairwise pgrw-lc-irresolute.

Proof: f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are pairwise pgrw-lc-irresolute.

 $\Rightarrow \forall V \in (\eta_i, \eta_j) \text{-pgrw-LC}(Z) g^{-1}(V) \in (\sigma_i, \sigma_j) \text{-pgrw-LC}(Y) \text{ and } f^{-1}(g^{-1}(V)) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X).$

 $\Rightarrow \forall \ V \in (\eta_i, \eta_j) \text{-pgrw-LC}(Z) \ (\text{gof})^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}(X).$

 \Rightarrow gof is pairwise pgrw-lc-irresolute.

5.5 Theorem: f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are pairwise-pgrw-lc*irresolutes \Rightarrow gof is pairwise pgrw-lc*-irresolute. **Proof:** f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: (Y,σ_1,σ_2) $\rightarrow (Z,\eta_1,\eta_2)$ are pairwise-pgrw-lc*-irresolutes. $\Rightarrow \forall V \in (\eta_i, \eta_j)$ -pgrw-LC*(Z) g⁻¹ $(V) \in (\sigma_i, \sigma_j)$ pgrw-LC*(Y) and f⁻¹ $(g^{-1}(V)) \rightarrow (\tau_i, \tau_j)$ -pgrw-LC*(X).

 $\Rightarrow \forall \ V \in (\eta_i, \eta_j) \text{-pgrw-LC}^*(Z) \ (\text{gof})^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}^*(X).$

 \Rightarrow gof is pairwise pgrw-lc*-irresolute.

5.6 Theorem: f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are pairwise-lc**irresolute. \Rightarrow gof is pairwise pgrw-lc**-irresolute. **proof:** f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow$ (Z,η_1,η_2) are pairwise-lc**-irresolute. $\Rightarrow \forall V \in (\eta_i, \eta_i)$ -pgrw-LC**(Z) g⁻¹(V) $\in (\sigma_i, \sigma_i)$ -

pgrw-LC**(Y) and f $^{-1}(g^{-1}(V))) \in (\tau_i, \tau_j)$ -pgrw-LC**(X).

 $\Rightarrow \forall V \in (\eta_i, \eta_j) \text{-pgrw-LC}^{**}(Z) (\text{gof})^{-1}(V) \in (\tau_i, \tau_j) \text{-pgrw-LC}^{**}(X).$

 \Rightarrow gof is pairwise pgrw-lc**-irresolute.

REFERENCES

- [1]. N. Bourkbaki, *General Topology*, Part I Addison-Wesley, Reading Mass, 1996.
- [2]. J. C. Kelly, *Bitopological Spaces*, Proc. London Math. Soc. (3), 13 (1962), 71-89.
- [3]. S. S. Benchalli and et.al. On ω-Locally Closed Sets in Bitopological Spaces. Int. Journal of Math. Analysis, Vol. 4, 2010, no. 39, 1937 - 1944
- [4]. R.S.Wali, *Thesis: Some topics in general and fuzzy topological spaces*, Karnataka University.
- [5]. R. S. Wali and Vijayakumari T. Chilakwad, On Pre Generalized Regular Weakly [pgrw]-Closed sets in a Topological Space, Int. J. of Math Archive, 6(1), Jan.-2015.