On δ - lower semi precontinuous functions

Dr. Runu Dhar Associate Professor Department of Applied Mathematics, MBB University, Agartala, Tripura west-799004, INDIA

Abstract : In this paper, the concept of δ - lower semi precontinuous functions is to be introduced. Some characterization theorems and their basic properties are also to be investigated. It is note that δ - lower semi precontinuous functions play an important role in defining δ - preinduced fuzzy supra topological spaces. The connection between the δ - preinduced fuzzy supra topology and its corresponding topological space is to be studied. The relationship between δ - preinduced fuzzy supra topological spaces and that of the induced fuzzy topological spaces due to Lon owen are to be investigated. Lastly some applications are to be shown.

Key Words : δ - lower semi precontinuous function, induced fuzzy topological spaces, δ - induced fuzzy topological spaces, δ - preinduced fuzzy topological spaces.

AMS classification : 54 A 40.

1. Introduction

The concept of induced fuzzy topological space (IFTS) was introduced by Weiss [16]. Lowen [8] called these spaces as topologically generated space. The concept of fuzzy supra topological space was introduced by Abd El-Monsef and Ramadan [1]. The notion of lower semi continuous functions [16] plays an important role in defining the above concept. The concept of lower semi precontinuous functions was introduced by Mukherjee [11]. Mukherjee and Halder [12] introduced the concepts of δ - lower semi continuous functions and δ - induced fuzzy topological spaces. The aim of this chapter is to introduce a new class of functions, called δ - lower semi precontinuous functions as a generalization of δ precontinuous functions. Also the purpose of this chapter is to introduce the notion of δ - preinduced fuzzy supra topological spaces. The notion of δ lower semi precontinuous functions plays an important role in defining δ - preinduced fuzzy supra topological spaces.

In section 3, I would introduce the concept of δ lower semi precontinuous functions. Some of their characterization theorems and basic properties are also to be studied. In section 4, δ - preinduced fuzzy supra topological spaces is to be defined. I would also study some connections between the properties of a topological space (X, T) and that of the corresponding δ - preinduced fuzzy supra topological space (X, D(T)). In section 5, I introduce and study δ - p - initial spaces.

2. Preliminaries

In this section I would like to mention some known results and definitions for ready references.

Definition 2.1. [15] A set A of a topological space (X, T) is called regular open if A = intcl(A).

Definition 2.2. [9] A set A of a topological space (X, T) is called preopen if $A \subset intcl(A)$.

Definition 2.3. [15] A set A of a topological space (X, T) is called δ - open if for each point $x \in A$, there exists a regular open set W such that $x \in W \subseteq A$. The complement of a δ - open set is said to be δ - closed.

Definition 2.4. [5] A set A of X is called δ - preopen if A \subset int $\delta cl(A)$. The complement of a δ - preopen set is said to be δ - preclosed.

Definition 2.5. [6] The strong r - cut and weak r - cut of α are defined by $\sigma_r(\alpha) = \{x \in X : \alpha(x) > r\}$ and $W_r(\alpha) = \{x \in X : \alpha(x) \ge r\}$ where $\alpha \in I^X$ and $r \in I = [0,1]$.

Definition 2.6. [16] A function $f : (X, T) \rightarrow (R, U)$ is said to be lower semi continuous (LSC) at a point x_0 of X if and only if for every $\varepsilon > 0$ there exists an open neighbourhood N(x_0) such that for every $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$.

Definition 2.7. [16] Let (X, T) be a topological space. The collection W(T) of all lower semi continuous (LSC) functions $f : (X, T) \rightarrow I$ (I is the unit closed interval) forms a fuzzy topology on X. Then (X, W(T)) is known as an induced fuzzy topological (IFT) space.

Definition 2.8. [11] A function $f : (X, T) \rightarrow (R, U)$ is said to be lower semi precontinuous (LSPC) at a point x_0 of X if and only if for every $\varepsilon > 0$ there exists an preopen neighbourhood $N(x_0)$ such that for every $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$.

Definition 2.9. [12] A function $f: (X, T) \rightarrow (R, U)$ is said to be δ - lower semi continuous at a point x_0 of X if and only if for every $\varepsilon > 0$, there exists a δ - open neighbourhood N(x_0) such that for every $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$.

Definition 2.10. [12] Let (X, T) be a topological space. The collection W(T) of all δ - lower semi continuous (LSC) functions $f: (X, T) \rightarrow I$ (I is the unit closed interval) forms a fuzzy topology on X. Then (X, W(T)) is known as an δ - induced fuzzy topological space.

3. δ - lower (upper) semi precontinuous functions

In this section, I would introduce a new class of functions as a generalization of δ - precontinuous functions. A function $f : (X, T_1) \rightarrow (Y, T_2)$ from a topological space (X, T_1) to another topological space (Y, T_2) is called δ - precontinuous if and only if the inverse image of each every open subset in Y is δ - preopen in X. By X, we mean a topological space (X, T).

Definition 3.1. A function $f : X \rightarrow R$, where R is the real line is said to be δ - lower

semi precontinuous (δ LSPC) at x_0 of X if and only if for each $\varepsilon > 0$, there exists a δ - preopen neighbourhood N(x_0) such that for every $x \in N(x_0)$ implies $f(x) > f(x_0) - \varepsilon$.

A function $f: X \rightarrow R$ is said to be δ LSPC if it is so at each point of X.

Definition 3.2. A function $f : X \rightarrow R$, where R is the real line is said to be δ - upper

semi precontinuous (δ USPC) at x_0 of X if and only if for each $\varepsilon > 0$, there exists a δ - preopen neighbourhood N(x_0) such that for every $x \in N(x_0)$ implies f(x) < f(x_0) + ε .

A function $f: X \rightarrow R$ is said to be δ USPC if it is so at each point of X.

Theorem 3.3. The necessary and sufficient condition for a real valued function f to be δ LSPC is that for all $a \in R$, the set { $x \in X : f(x) > a$ } is δ - preopen.

Proof: Let f be δ LSPC function and let $x_0 \in X$ and $N(x_0)$ be the δ - preopen nbd. of a point x_0 of X. Then $f(x_0)$ is a real number so that $f(x_0) - \varepsilon$ is a fixed real number in R for a point x_0 of X. By definition $f(x) > f(x_0) - \varepsilon = a$ (say). Hence the set of all points x for which f(x) > a is δ - preopen.

Conversely, let $x \in X$ be such that f(x) > a is δ preopen and x_0 be any point in X. Let us choose a real number ε such that $f(x_0) - \varepsilon = a \in R$. From the given condition the set $\{x \in X : f(x) > f(x_0) - \varepsilon\}$ is δ preopen which implies that if $\{x \in A \subseteq X\}$ is δ preopen, the condition $f(x) > f(x_0) - \varepsilon$ is true which shows that f is δ LSPC.

Theorem 3.4. The necessary and sufficient condition for a real valued function f to be δ USPC is that for all $a \in R$, the set $\{x \in X : f(x) \le a\}$ is δ - preclosed.

Proof : From Theorem 3.3., it follows that the necessary and sufficient condition for a real valued function f to be δ LSPC is that for all $a \in \mathbb{R}$, the set { $x \in X : f(x) \le a$ } is δ preclosed, being the complement of δ - preopen.

Hence the theorem.

Theorem 3.5. A function f from a topological space (X, T) onto a space (R, σ_1) , where $\sigma_1 = \{(r, \infty) : r \in R\}$ is δ LSPC if and only if the inverse image of any open subset of (R, σ_1) is δ - preopen in (X, T).

Proof : Let $f : (X, T) \rightarrow (R, \sigma_1)$ be a δ LSPC function and N(x₀) be any δ - preopen nbd. of a point x₀ of X. Then for any point x in N(x₀), $f(x) > f(x_0) - \varepsilon$. It is clear that the set { $x \in X : f(x) > f(x_0) - \varepsilon$ } = N(x₀), which is δ - preopen. Taking $f(x_0) - \varepsilon$ = r, we have { $x \in X : f(x) > r$ }, which is same as the set { $x \in f^{-1}(r, \infty) : f(x) > r$ }. Thus for any open set (r, ∞) in (R, σ_1) , $f^{-1}(r, \infty) = {x \in X : f(x) > r}$ is δ - preopen.

Conversely, let the inverse image of an open subset (r, ∞) is δ - preopen in (X, T). Then f⁻¹(r, ∞) consists of those points of X whose images are > r, i.e., f⁻¹(r, ∞) = {x \in X : f(x) > r} is δ - preopen. Thus by **Theorem 3.3.**, f is δ LSPC function.

Theorem 3.6. The characteristic function of a δ - preopen set is δ LSPC function.

Proof : Let A be a δ - preopen set. The characteristic function of A is defined by

$$\mu_A = \begin{cases} 1, x \in A \\ 0, x \in X - A \end{cases}$$

We have to show that μ_A is δ LSPC function. We wish to show that $\{x : \mu_A(x) \le r\}$ is δ - preclosed, for each $r \in R$. For r < 0, the set $\{x : \mu_A(x) \le r\} = \Phi$, which is δ - preclosed. For $0 \le r < 1$, the set $\{x : \mu_A(x) \le r\} = X$ - A, which is again δ - preclosed, being complement of δ - preopen subset of A. For $r \ge 1$, the set $\{x : \mu_A(x) \le r\} = X$, shich is δ - preclosed. Hence μ_A is δ LSPC function.

Hence the theorem.

Theorem 3.7. If $\{f_j : j \in I\}$ is an arbitrary family of δ LSPC functions, then the function g defined by g(x) =Sup $(f_i(x))$ is δ LSPC.

Proof : Let $r \in R$ and g(x) < r, then $f_j < r$, for all $j \in I$. Now $\{x \in X : g(x) \le r\} = \cap \{x \in X : f_j(x) \le r\}$. But each f_j being δ - lower semi precontinuous, by **Theorem 3.4.**, each set $\{x \in X : f_j(x) \le r\}$ is δ preclosed in X. Now we know that an arbitrary intersection of δ - preclosed sets is δ - preclosed. Therefore g is δ LSPC.

Theorem 3.8. If f_1 , f_2 , f_3 , ..., f_n are δ LSPC functions, then the function h defined by $h(x) = inf(f_i(x))$ is not δ LSPC, where j = 1 to n.

Proof : The theorem follows from the fact that an arbitrary intersection of δ - preopen subsets may not be δ - preopen.

Result 3.9. Every δ -lower semi continuous (δ -LSC) function is δ -lower semi precontinuous (δ -LSPC) function.

Proof : Since every δ -open subset is δ -preopen, the result follows immediately.

The converse of the above result is not true, which can be shown from the fllowing example.

Example 3.10. Let $X = \{a, b, c\}$ and $Y = \{0, 1, 2\}$. Let $\tau_1 = \{X, \phi, \{x, b\}\}$ and $\tau_2 = \{Y, \phi, \{1\}, \{2\}, \{1, 2\}\}$ be the topologies on X and Y respectively. A function $f : X \rightarrow Y$ is defined by f(a) = 1, f(b) = 2, f(c) = 0. Now $f^1(0) = \{c\}, f^1(2) = \{b\}, f^1(1, 2) = \{a, b\}$. We observe that $\{a\}, \{b\}, \{a, b\}, \{a, b\}, \{a, c\}, \{b, c\}$ are preopen subsets in (X, τ_1) [11]. Hence each of them is δ -preopen set in (X, τ_1) . We fix r = 1, then the set $\{x \in X : f(x) > 1\}$ is δ - preopen in X (since the inverse image of the open subset {2} in Y is δ - preopen in X), thus by **Theorem 3.3.**, f is δ -LSPC. But f is not δ -LSC since {b} $\notin \tau_1$.

4. δ - preinduced fuzzy supra topological spaces

The notion of induced fuzzy topology W(T) was due to Weiss [16]. It is the collection of all semicontinuous functions from a topological space (X, T) to the unit closed interval I = [0, 1]. If $A \in T$, then $I_A \in W(T)$. Abd El-Monsef and Ramadan [1], introduced the concept of fuzzy supra topology as follows :

A family $T^* \subset I^X$ is called a fuzzy supra topology on X, if 0, $1 \in T^*$ and T^* is closed under arbitrary union. In this section, the notion of δ - preinduced fuzzy supra topology (δ PIFST) is to be introduced. Its properties and the concept of fuzzy supra δ - precontinuity in δ PIFST spaces are to be studied.

Theorem 4.1. Let (X, T) be a topological space. The family of all δ - lower semi precontinuous functions from the topological space (X, τ) to the unit closed interval I = [0, 1] forms a fuzzy supra topology on X.

Proof : Let D(T) be the collection of all δ LSPC functions from (X, T) to I. We will now prove that D(T) forms a fuzzy supra topology on X.

(i) Since X is open, it is δ - preopen and thus 1_X is δ LSPC, i.e., $1_X \in D(T)$ (by Theorem 3.6.).

(ii) Φ is δ - preopen, thus $1_{\Phi} \in D(T)$.

(iii) Let $\{f_j : j \in I\}$ be an arbitrary family of $\delta LSPC$ functions, then $Sup(f_j(x)) \in D(T)$ [by **Theorem 3.6.**]. Thus D(T) forms a fuzzy supra topology.

Definition 4.2. The fuzzy supra topology obtained as above is called δ - preinduced fuzzy supra topology (δ PIFST) and the space (X, D(T)) is called the δ - preinduced fuzzy supra topological (δ PIFST) space. The members of D(T) are called fuzzy supra δ -open subsets.

Example 4.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \varphi, \{a, b\}\}$ be a topology on X. Besides the members of τ , it follows that $\{a\}$, $\{b\}$, $\{a, c\}$, $\{b, c\}$ are also preopen subsets, hence δ - preopen susets. Thus 1_{φ} , 1_X , $1_{\{a\}}$, $1_{\{b\}}$, $1_{\{a, c\}}$, $1_{\{b, c\}}$ are all δ LSPC. Then the collection of all these functions form a δ PIFST on X, $P(\tau) = \{1_{\varphi}, 1_X, 1_{\{a\}}, 1_{\{b\}}, 1_{\{a, b\}}, 1_{\{a, b\}}, 1_{\{a, c\}}, 1_{\{b\}}, 1_{\{a, c\}}, 1_{\{b, c\}}$.

Lemma 4.4. If A is δ - preopen in (X, T), then $\mu_A \in D(T)$.

Proof : By the **Theorem 3.6.**, the lemma follows immediately.

Lemma 4.5. If W(T) is an induced fuzzy topology and D(T) is a δ - preinduced fuzzy supra topology on X, then W(T) \subset D(T).

Proof : If $\alpha \in W(T)$, i.e., α is lower semi continuous function. Since every lower semi continuous function is δ - lower semi precontinuous, $\alpha \in D(T)$. Hence $W(T) \subset D(T)$.

Theorem 4.6. A fuzzy subset A in a δ PIFST space (X, D(T)) is fuzzy supra open if and only if for each $r \in I$,

strong r - cut $\sigma_r(A) = \{x \in X : A(x) \ge r\}$ is δ - preopen in the topological space (X, T).

Proof : A fuzzy subset A is fuzzy supra open in (X, D(T)) if $A \in D(T)$. Now $A \in D(T)$ if and only if A is δ LSPC. Again A is δ LSPC if and only if for each $r \in I$, $\{x \in X : A(x) > r\}$ is δ - preopen in (X, T), i.e., $\sigma_r(A)$ is the δ - preopen in (X, T).

Corollary 4.7. A fuzzy subset A in a δ PIFST space (X, D(T)) is fuzzy supra closed if and only if for each $s \in I$, the weak s - cut $W_s(A) = \{x \in X : A(x) \ge s\}$ is δ - preclosed in the topological space (X, T).

Definition 4.8. A function $f : (X, D(T_1)) \rightarrow (X, D(T_2))$ from a δ PIFST space to another δ PIFST space is said to be fuzzy supra δ - precontinuous if $f^1(A) \in D(T_1)$ for every $A \in D(T_2)$.

Definition 4.9. A function $f : X \to Y$ from a topological space (X, T_1) to another topological space (Y, T_2) is said to be δ - preirresolute if and only if the inverse image of each δ - preopen subset in Y is δ - preopen in X.

Theorem 4.10. A function $f : (X, D(T_1)) \rightarrow (X, D(T_2))$ is fuzzy supra δ - precontinuous if and only if $f : (X, T_1) \rightarrow (Y, T_2)$ is δ - preirresolute.

Proof : Let f be fuzzy supra δ - precontinuous and A is δ - preopen in (Y, T₂). Then

$$f^{1}(A) = \{ x \in X : \mu_{A}(f(x)) = 1 \}$$

$$= \{ x \in X : f^{1}(\mu_{A}(x)) > r, 0 < r < 1 \}$$

= $\sigma_{r}(f^{1}(\mu_{A})).$

Since A is δ - preopen, by **Lemma 4.4.**, $\mu_A \in D(T)$, thus, $f^1(\mu_A) \in D(T_1)$. Hence by **Theorem 4.6.**, $\sigma_r(f^1(\mu_A))$ is δ - preopen in (X, D_1) which implies f is δ - preirresolute.

Conversely, let us consider $f : (X, D_1) \rightarrow (Y, D_2)$ to be δ - preirresolute and $B \in D(T_2)$. Now, for any s > 0,

$$\sigma_{s}(f^{1}(B)) = \{ x \in X : f^{1}(B)(x) \} > s, 0 < s < 1 \}$$

$$= \{ x \in X : B(f(x)) > s \}$$

$$=$$
 (Bf)⁻¹(s, ∞)

$$=\mathbf{f}^{-1}(\mathbf{B}^{-1}(\mathbf{s},\infty)).$$

Since $B \in D(T_2)$, B is δ LSPC, therefore, $B^{-1}(s, \infty)$ is δ - preopen in (Y, T_2) . Hence by hypothesis, $f^{-1}(B^{-1}(s, \infty))$ is δ - preopen in (X, T_1) , i.e., $\sigma_s(f^{-1}(B))$ is δ - preopen in (X, τ_1) , which implies $f^{-1}(B) \in D(T_1)$. Hence f is fuzzy supra δ - precontinuous.

5. δ - p - initial spaces

The notion of initial fuzzy topology was first introduced by Lowen [8] and was further studied by Chang Ming [10]. Mukherjee [11] introduced and studied the concept of p - initial topology. In this section, the concepts δ - p - initial topology are to be introduced in a δ PIFST and some of its properties are to be investigated. The relationship between the topologies of δ - p - initial space and an p - initial space is also to be studied.

 $\begin{array}{l} \mbox{Definition 5.1. Let } (X,\,D(T)) \mbox{ be a } \delta PIFST \mbox{ spaces. The } \\ family \mbox{ } \sigma_r(A): A \in D(T), r \in I \} \mbox{ of } \delta \mbox{ - preopen subsets } \\ subbase \mbox{ of } x \mbox{ forms a subbase of some topology of } X, \mbox{ called } \delta \end{array}$

- p -initial topology of D(T) and is denoted by $i_{\delta p}(T')$ where T' = D(T). Then (X, $i_{\delta p}(T')$) is known as δ - p - initial topological space or δ - p - initial space.

Example 5.2. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi\}$, $\{a, b\}$ be a topology on X. Here preopen sets, hence δ -preopen sets of (X, τ) are $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. $i_{\delta p}(T) = \{X, \{a\}, \{b\}, \{a, b\}.$

Lemma 5.3. $i(W)(T) \subset i_{\delta p}(D(T))$, where $i_{\delta p}(D(T))$ is the δ - p - initial topology and i(W) is the initial topology on X.

Proof : Straight forward.

Theorem 5.4. Let (X, T_1) and (Y, T_2) be two topological spaces and $i_{\delta p}(D(T_1) \text{ and } i_{\delta p}(D(T_2) \text{ be the } \delta$ - p - initial topological spaces on X and Y respectively. Then

- (a) If $f: (X, T_1) \to (Y, T_2)$ is δ precontinuous, then $f: (X, i_{\delta p}(D(T_1)) \to (Y, i_{\delta p}(D(T_2)))$ is δ - continuous.
- (b) If $f : (X, T_1) \rightarrow (Y, T_2)$ is δ preirresolute, then $f : (X, i_{\delta p}(D(T_1)) \rightarrow (Y, i_{\delta p}(D(T_2)))$ is δ continuous.

Proof : Straight forward.

References

- M. E. Abd El-Monsef and A. E. Ramandan, Fuzzy supra topological spaces, Indian J. Pure and Appl. Math., 18 (1987) 322-329.
- R. N. Bhaumik and A. Mukherjee, Completely induced fuzzy topological spaces, Fuzzy Sets and Systems, 47 (1992) 387-390.
- R. N. Bhaumik and A. Mukherjee, Induced fuzzy supra topological spaces, Fuzzy Sets and Systems, 91 (1997) 121-126.
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- 5. S. Ray Chaudhuri and M. N. Mukherjee, δ almost continuity and δ preopen sets, Bulletin of the Institute of Mathematics Academia Sinica, 21(4) (1993).
- Wang Geping and Hu Lanfang, Induced fuzzy topological spaces, J. Math. Anal. Appl., 108 (1985) 495-506.
- N. Levin, Semiopen sets and semicontinuity in topological space, Amer. Math. Monthly 70 (1963) 36-41.
- R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1975) 621-633.
- A. S. Masshour, M. E. Abd El. Monsef and S. N. El. Deeb, Precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982) 47-53.
- Hu Chang Ming, Fuzzy topological spaces, J. Math. Anal. Appl., 118 (1985) 141-178.
- A. Mukherjee, Preinduced fuzzy supra topological spaces and the corresponding p-initial spaces, J. Tri. Math. Soc., 3 (2001) 69-75.
- 12. A. Mukherjee and S. Halder, δ induced fuzzy topological spaces, Proc. Nat. Sem. On Recent Trends in Maths & its Appl., April 28-29 (2003) 177-182.
- 13. T. Noiri, δ continuous functions, J. Korean Math. Soc., 16 (1986) 161-166.
- 14. R. K. Saraf and S. K. Gupta, δ semi preopen sets, the Bulletin, GUMA 5 (1998) 89-93.
- N. V. Velicko, H-closed topological space, Amer. Math. Soc. Transl 78 (1968) 103-118.
- M. D. Weiss Fixed Points, Separation and induced topologies for fuzzy sets, J. Math. Anal. Appl., 50 (1975) 142-150.