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Abstract:  Prime number theorem is a well known 

theorem in Mathematics, specially in Number 

Theory which describes the asymptotic distribution 

of prime numbers. One of the remarkable discovery 

regarding this topic is Riemann Hypothesis. Since a 

long period several renowned mathematicians are 

trying to prove or disprove this hypothesis and to 

reduce the error bound of the asymptotic 

distribution of prime counting function.    
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1 .Introduction : 

Analytic number theory is a branch of number 

theory that uses methods from mathematical 

analysis to solve problems about natural numbers 

[1, 2]. The modern study of analytic number theory 

may be said to have begun in the eighteenth 

century with Euler‟s proof of the divergence of the 

series of inverse prime  
1

𝑝
= ∞ and latter with 

Dirichlet‟s introduction of Dirichlet L-functions in 

the first half of nineteenth century to give the first 

proof of Dirichlet‟s theorem on arithmetic 

progressions [1]. Dirichlet‟s theorem on arithmetic 

progressions was one of the major achievements of 

19th century mathematics.  One of the major 

milestones in this subject is the Prime Number 

Theorem (PNT). 

Analytic number theory can be classified into two 

classes depending on the nature of the problems, 

one is multiplicative number theory and the second 

is additive number theory . Multiplicative number 

theory deals with the distribution of prime 

numbers, such as estimating the number of primes 

in an interval and includes the prime number 

theorem and Dirichlet‟s theorem on primes in 

arithmetic progressions. Additive number theory is 

concerned with the additive structure of integers 

such as Goldbach‟s conjecture which states that 

every even number greater than 2 is the sum of two 

primes. One of the main results in additive number 

theory is the solution of Waring‟s problem. 

Developments within analytic number theory are 

often refinements of earlier techniques which 

reduce the error terms and widen their applicability. 

The biggest technical change after 1950 has been 

the development of Sieve methods as a tool, 

particularly in multiplicative problems. These are 

combinatorial in nature and quite varied. The 

external branch of combinatorial theory has in 

return been greatly influenced by the value placed 

in analytic number theory on quantitative upper and 

lower bounds. Another recent development is 

probabilistic number theory. Which uses tools from 

probability theory as estimate the distribution of 

number theoretic functions, such as how many 

prime divisors a number has. In this paper we 

mainly focus on prime number theorem.  

2.  Statement of Prime Number Theorem : 

Let 𝛱(𝑥) be the prime counting function that gives 

the number of primes less than or equal to  𝑥, for 

any real number 𝑥. For example, 𝛱 8 = 3  

because there are three prime numbers (3, 5 and 7) 

less than or equal to 8. The prime number theorem 

then states that the limit of the quotient of the two 

functions  𝛱(𝑥) and 
x

log x
  as 𝑥 approaches infinity 

is 1, which is expressed by the formula 

lim𝑥→∞

𝛱(𝑥)
x

log x
 
= 1, known as the asymptotic law of 

distribution of prime numbers. Using asymptotic 

notation this result can be restated as  𝛱(𝑥) ∼
x

log x
 .   

This notation (and the theorem) does not say 

anything about the limit of difference of the two 

functions as 𝑥 approaches infinity. Indeed, the 

behaviour of this difference is very complicated 

and related to the Riemann Hypothesis. Instead, the 

theorem states that 
x

log x
   approaches 𝛱(𝑥) in the 

sense that the relative error of this approximation 

approaches 0 as 𝑥 approaches infinity. Accordingly 

to the RH, the relative correction (error) should be 

given by  
𝛱(𝑥)

x

log x

= 1 + 𝑂(𝑥−
1

2
+𝜀), for any 𝜀 > 0. So 

far no proof of the PNT could retrieve and 

substantiate the RH correction term, although all 

the current experimental searches on primes are 

known to agree with the RH value [2]. 
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The prime number theorem is equivalent to the 

statement that the nth prime number 𝑝𝑛  is 

approximately equal to n ln𝑛, again with the 

relative error of this approximation approaches 0 as 

n approaches infinity.   

3. Theoretical development of Prime Number 

Theorem : 

Let 𝛱(𝑥) be the number of primes 𝑝 ≤ 𝑥. It was 

discovered experimentally by Gauss about 1793 [3] 

and by Legendre  in 1798 that  as  𝛱(𝑥) ∼
𝑥

log 𝑥
 . 

This statement is the prime number theorem. 

Actually Gauss used the equivalent formulation 

 𝛱(𝑥)  ∼  
dt

log t

x

2
 . 

In 1850 Chebysev [5] proved a result for weaker 

than the prime number theorem – that for certain 

constants 0 < 𝐾1 < 1 < 𝐾2,  𝐾1 <
𝛱(𝑥)

𝑥/ log 𝑥
< 𝐾2 . 

An elementary proof of Chebysev‟s theorem is 

given in Andrews [6]. Chebysev‟s introduced the 

functions Ɵ 𝑥 =  log 𝑝𝑝≤𝑥 ,𝑝  𝑝𝑟𝑖𝑚𝑒 , (Chebysev‟s 

theta function) and                         𝛹 𝑥 =
 log 𝑝𝑝𝑛≤𝑥 ,𝑝  𝑝𝑟𝑖𝑚𝑒     (Chebysev‟s psi function). 

Note that 𝛹 𝑥 =  Ɵ(𝑥1/𝑛 )∞
𝑛=1  where the sum is 

finite for each 𝑥 since Ɵ  𝑥
1

𝑛 = 0 if 𝑥 < 2𝑛 . 

Chebysev proved that prime number theorem is 

equivalent to either of the relations Ɵ 𝑥 ∼ 𝑥 , 

𝛹 𝑥 ∼ 𝑥.  

 Chebysev also showed that if lim𝑥→∞

Ɵ 𝑥 

𝑥
 exists, 

then it must be 1, which then implies the prime 

number theorem. He was, however, unable to 

establish the existence of the limit. 

Like Gauss, Riemann formulate his estimate of  

𝛱(𝑥) in terms of the logarithmic integral 𝐿𝑖 𝑥 =

 𝑝𝑣  
𝑑𝑡

log 𝑡

𝑥

0
, 𝑥 > 1. In his famous 1859 paper [7] 

he related the relative error in the asymptotic 

approximation 𝛱(𝑥) ∼ 𝐿𝑖 𝑥  to the distribution of 

the complex zeros of the Riemann zeta function 

𝜁 𝑠 =  
1

𝑛𝑠
∞
𝑛=1 =  (1 − 𝑝−𝑠)−1

𝑝 𝑝𝑟𝑖𝑚𝑒                         

(1) 

The Riemann zeta function was actually introduced 

by Euler as early as 1737. Riemann did not prove 

the prime number theorem in his 1859 paper. He 

found an explicit analytic expression for 𝛱(𝑥).  He 

did comment that 𝛱(𝑥) is about 𝐿𝑖(𝑥) and that 

𝛱 𝑥 = 𝐿𝑖 𝑥 + 𝑂(𝑥1/2). This would imply 

𝛱(𝑥)

𝐿𝑖(𝑥)
= 1 + 𝑂  𝑥−

1

2 log 𝑥 = 1 + 𝑂(1)  which again 

gives the prime number theorem. In 1896 the prime 

number theorem was finally proved by Jacques 

Hadamard [8] and also by Poussin [9]. The first 

part of the proof is to show that   𝜁 𝑠 ≠ 0 if Re 𝑠 = 

1. As a general principle, finding zero-free regions 

for the zeta function in the critical strip leads to 

better estimates of the error in  𝛱(𝑥) ∼ 𝐿𝑖 𝑥 . In 

his paper [7] Riemann asserts that 𝛱 𝑥 < 𝐿𝑖 𝑥 . 

This is known to be true for all 𝑥 ≤ 108 but was 

proved false in general in 1914 by Littlewood [10]. 

Littlewood showed that 𝛱 𝑥 − 𝐿𝑖 𝑥  changes sign 

infinitely often. Littlewood also showed that there 

is a constant 𝑘 > 0 such that 
(𝛱 𝑥 −𝐿𝑖 𝑥 ) log 𝑥

𝑥1/2 log log log 𝑥
 is 

greater than k and less than –k for arbitrarily large 

𝑥. Littlewood‟s methods gives no information on 

where the first sign change occurs. In 1933 Skewes 

[11] shows that   there is atleast one sign change at 

𝑥 for some 𝑥 < 101034
. Skewes‟s  proof required 

the Riemann hypothesis. In 1955 [12] he obtained a 

bound with out using Riemann hypothesis. This 

new bound was 101010964

. In 1966 Shermann 

Lehmann [13] showed that between 1.53 𝑋 101165   

and 1.65 𝑋 101165   there are more than 10500  

successive integers 𝑥 for which 𝛱 𝑥 > 𝐿𝑖(𝑥).  In 

1987 Riele [14] showed that between 6.62 𝑋 10370  

and 6.69 𝑋 10370  there are more than 10180  

successive integers 𝑥 for which 𝛱 𝑥 > 𝐿𝑖(𝑥). 

Ramanujan estimates 𝛱 𝑥  by 𝛱 𝑥 ≈

 
𝜇 𝑛 

𝑛
𝐿𝑖(𝑥1/𝑛 )∞

𝑛=1                                             (2) 

(Ramanujan‟s 2nd letter to Hardy in 1913, see [14], 

page 53) 

Where 𝜇(𝑛) is the Mobious function. This 

expression was obtained by Riemann in 1859, 

except Riemann has additional terms, arising from 

the complex zeros of 𝜁 𝑠 . Littlewood points out  

that  𝛱 𝑥 − 𝐿𝑖 𝑥 +
1

2
 𝐿𝑖(𝑥1/2) ≠ 𝑂(

𝑥
1
2

log 𝑥
) 

It follows that 𝛱 𝑥 − 𝐿𝑖 𝑥 +
1

2
 𝐿𝑖(𝑥

1

2) ≠

𝑂(𝐿𝑖(𝑥1/2))           (3) 

Thus it is clear that equation (2) can not be 

interpreted as an asymptotic series for 𝛱 𝑥 . 

Ramanujan says to truncate the series at the first 

term less than one. This gives an excellent 

approximation to 𝛱 𝑥 , but it is empirical. The 
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actual expression obtained by Ramanujan is      

 𝛱 𝑥  =   
𝜇 𝑛 

𝑛
𝐽(𝑥1/𝑛 )∞

𝑛=1  ,     𝐽 𝑥 = 𝐿𝑖 𝑥 −

 𝐿𝑖 𝑥⍴ − log 2 +  
𝑑𝑡

𝑡(𝑡2−1) log 𝑡

∞

𝑥⍴    where ⍴ runs 

over the complex roots of the zeta function. The 

first term here is actually finite for each  𝑥 since 

𝐽 𝑥 =  
1

𝑛
𝛱(𝑥1/𝑛 ) is 0 for 𝑥 < 2. The complete 

proof of Riemann‟s formula (in a different form) 

was given by Von Mangoldt [16] in 1895. In 

connection with equation (2) we now have 

𝛱 𝑥 −  
𝜇 𝑛 

𝑛
𝑁
𝑛=1 𝐿𝑖  𝑥

1

𝑛 =   𝐿𝑖(𝑥⍴/𝑛 )⍴
𝑁
𝑛=1  + 

“other terms”,  where the omitted terms are not 

particularly significant. The terms in the double 

sum are Riemann‟s “periodic” terms. Individually 

they are quite large, but there must be a large 

amount of cancellation to account for the fact that 

equation (2) gives a very close estimate of 𝛱 𝑥 . 

Riemann‟s formula for 𝛱 𝑥  shows that the error 

term in this approximation can be expressed in 

terms of zeros of the zeta function. In his 1859 

paper, Riemann conjectured that all the “Non-

trivial” zeros of ζ lie on the line 𝑅 𝑠 = 1/2 but 

never provided a proof of this statement. This 

famous and long-standing conjecture is known as 

Riemann  Hypothesis. Based on some deep results 

derieved on 1859 by Riemann on the relationship 

of PNT and the complex zeros of the Riemann zeta 

function, the first proof of PNT was given 

independently by J Hadamard and de la Vallee 

Poussin on 1896 using methods of advanced theory 

of complex analysis. The first elementary proof of 

the PNT without using complex analysis was 

obtained by A.Selberg and P.Erdos on 1949. The 

proof does not use advanced tools such as complex 

analysis-in fact their argument is a complicated 

one. Their proof must some how show that there is 

no zero on the real line R(S)=1, and indeed their 

combinatories masks a subtle complex analysis 

proof beneath the surface for a careful examination 

of the argument.      

 Recently we have presented a new proof of Prime 

Number Theorem [17]. We call it elementary 

because the proof does not require any advanced 

techniques from the analytic number theory and 

complex analysis. The proof of the PNT is derived 

on the scale invariant, non-archimedean model 𝑹 of 

real number system 𝑅, involving non-trivial 

infintesimals and infinities. The model 𝑹 is realized 

as a completion of the field of rational numbers 𝑄 

under a new non-archimedean absolute value ||.||, 

which treats arbitrarily small and large numbers 

separately from any finite number [18]. The so-

called scale invariant  infinitesimals are modelled 

as p-adic integers 𝑋𝑖  with |𝑋𝑖 | < 1, |. |𝑝  being the p-

adic absolute value and is given by the adelic 

formula 𝑋 = 𝑋𝑝  (1 + 𝑋𝑞)𝑞>𝑝 . The infinitesimals 

considered here are said to be active as the 

definition involves an asymptotic limit of the form 

𝑥 → 0+.  As a consequence the value of a scale 

invariant infinitesimals 𝑋 would undergo infinitely 

slow variations over p-adic local fields 𝑄𝑝  as a 

scale free variable 𝑥−1, called the internal time 

variable, approaches ∞ through the sequence of 

primes 𝑝. In our paper [17] we have showed that 

these p-adic infinitesimals living in 𝑹,  have an 

influence over the structure of the ordinary real 

number system 𝑅 there by extending it into an 

associated infinite dimensional Euclidean space ʀ , 

so that a finite real number 𝑟 gets an infinitely 

small correction term given by 𝑟𝑐𝑜𝑟 = 𝑟 +

𝜀 𝑥 | 𝑋 |, where 𝜀 𝑥−1 =
log 𝑥−1

𝑥−1   is the inverse of 

the asymptotic PNT formula of the prime counting 

function 𝛱 𝑥−1 =  1𝑝<𝑥−1 . The proof of the 

PNT in this formalism is accomplished by proving 

that the value of | 𝑋 | of a scale free infinitesimal 

actually corresponds to the prime counting function 

𝛱(𝑥−1) as the internal time  𝑥−1 approaches 

infinity through larger and larger scales denoted by 

primes 𝑝. The error term in this proof respects 

Riemann hypothesis.     

4. Some Consequences of Riemann hypothesis: 

The Riemann Hypothesis is one of the hardest and 

most famous problems in mathematics. Its original 

formulation, which comes from the theory of 

complex functions, asserts that all non-real zeros of 

the Riemann zeta function have real part equal to 

one-half. Because of its technical formulation, it is 

not easy to talk about the Riemann hypothesis 

without assuming knowledge of the complex 

function theory, but we can exploit its connections 

to other branches of mathematics. One of the most 

important is the light it sheds on the distribution of 

prime numbers. And there are also some 

elementary conjectures that turn out to be 

equivalent to the Riemann hypothesis. Some of the 

consequences are listed below. 

.i)  Large prime gap conjecture – The Prime 

number theorem implies that an average of  the gap 

between the prime 𝑝 and its successor is log 𝑝. 
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However, some gaps between primes may be much 

larger than the average. Cramer proved that, 

assuming the Riemann hypothesis, every gap is 

𝑂( 𝑝 log 𝑝). This is a case when even the best 

bound that can currently be proved using the 

Riemann hypothesis is far weaker than what seems 

to be true. Cramer‟s conjecture implies that every 

gap is 𝑂((log 𝑝)2) which, while larger than the 

average gap, is far smaller than the bound implied 

by the Riemann hypothesis. Numerical evidence 

supports Cramer‟s Conjecture (1999). 

ii) Distribution of Prime numbers – Riemann‟s 

explicit formula for the number of primes less than 

a given number in terms of a sum over zeros of 

Riemann zeta function says that the magnitude of 

the oscillations of primes around their expected 

position is controlled by the real parts of the zeros 

of the zeta function. In particular the error term in 

the prime number theorem is closely related to the 

position of zeros; for example, the supremum of 

real parts of the zeros is the infimum of numbers β 

such that the error is 𝑂(𝑥𝛽 ). 

Von Koch (1901) proved that the Riemann 

hypothesis is equivalent to the “best possible” 

bound for the error of the Prime number theorem. 

A precise version of Koch‟s result, due to 

Schornfeld (1976), says that the Riemann 

hypothesis is equivalent to 𝛱 𝑥 − 𝐿𝑖 𝑥 <
1

8𝛱
 𝑥 log 𝑥,   for all 𝑥 ≥ 2657. 

iii) Growth of Arithmetic function – The 

Riemann hypothesis implies strong bounds on the 

growth of many other arithmetic functions, in 

addition to the prime counting function above. One 

example involves the Mobius function 𝜇. The 

statement that the equation 
1

𝜁(𝑠)
=  

𝜇 (𝑛)

𝑛𝑠
∞
𝑛=1   is 

valid for every 𝑠 with real part greater than ½, with 

the sum on the right hand side converging, is 

equivalent to the Riemann hypothesis. From this 

we can also conclude that if the Mertens function is 

defined by 𝑀 𝑥 =  𝜇(𝑛)𝑛≤𝑥  then the claim that 

𝑀 𝑥 = 𝑂(𝑥
1

2
+𝜀) for every positive 𝜀 is equivalent 

to the Riemann hypothesis. 

5. Criticism of Riemann hypothesis : 

There are several arguments for and against 

Riemann hypothesis. Some authors  such as 

Riemann (1859) or Bombieri (2000), express an 

opinion that they expect that it is true. The few 

authors express serious doubt about it. Ivic (2008) 

lists some reasons for being sceptical and 

Littlewood (1962) flatly states that it would to be 

false and that there is no evidence whatever for it 

and no imaginable reason for it to be true. 

Some of the arguments for (or against) Riemann 

hypothesis are listed by Sarkar (2008), Conrey 

(2003) and Ivic (2008) and include the following 

reasons. 

•  Several analogues of Remann hypothesis have 

already been proved. The proof of the Riemann 

hypothesis for varieties over finite fields by 

Deligne (1974) is strong theoretical reason in 

favour of the Riemann hypothesis. This provides 

some evidence for the more general conjecture that 

all zeta functions associated with automorphic  

forms satisfy Riemann hypothesis, which includes 

the classical Riemann hypothesis as a special case. 

The Riemann hypothesis for the Gross zeta 

function was proved by Sheats (1998). In contrast 

to these positive examples, however , some Epstein 

zeta functions do not satisfy the Riemann 

hypothesis, even though they have an infinite 

number of zeros on the critical line (Titchmaesh 

1986). 

•  The numerical verification that many zeros lie on 

the line seems at first sight to be strong evidence 

for it. However analytic number theory has had 

many conjectures supported by large amounts of 

numerical evidence that turn out to be false. 

Denjoy,s probabilistic argument for the Riemann 

hypothesis (Edwards 1974) based on observation 

that if 𝜇(𝑥) is a random sequence of “1”s and “-1”s 

then, for every 𝜀 > 0, the partial sums 𝑀 𝑥 =

 𝜇(𝑛)𝑛≤𝑥  satisfy the bound 𝑀 𝑥 = 𝑂(𝑥
1

2
+𝜀) with 

probability 1. The Riemann hypothesis is 

equivalent to this bound for the Mobious function 𝜇 

and the Mertens function 𝑀 derieved in the same 

way from it. In other words, the Riemann 

hypothesis is in some sense equivalent to saying 

that 𝜇(𝑥) behaves like a random sequence of coin 

tosses. When  𝜇(𝑥) is non-zero its sign gives the 

parity of the number of prime factors of 𝑥, so 

informally the Riemann hypothesis says that the 

parity of the number of prime factors of an integer 

behaves randomly. 

6. Conclusion:  

The prime number theorem has a long and 

interesting history. Subsequent research has 
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provided wider and wider subregions of the critical 

strip without zeros of 𝜁 𝑠  (and thus improved 

approximations to the number of primes up to 𝑥), 

without coming anywhere near to proving the 

Riemann hypothesis. This remains as an 

outstanding open problem of mathematics.  In this 

paper we have mentioned just a few of the many 

historical issues related to the PNT including our 

work in this field.   
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