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Abstract: The present article deals with the effect of 

Dufour number variation on free-convection flow of 

a viscous incompressible fluid through a porous 

medium bounded by an infinite vertical porous plate 

with periodic permeability. Obtaining closed form 

solution for this type of 3-D flow problems is 

practically not feasible due to its high degree of non-

linearity. So the problem is solved using finite 

difference and perturbation methods, for which 

numerical simulation is carried out by coding in C-

Program. Graphical results for velocity, 
temperature, concentration, Skin-friction and 

Nusselt number are presented and discussed at 

various parametric conditions. It is observed that 

velocity, temperature and Nusselt number increase 

in the presence of Dufour. Dufour effect greatly 

influence the temperature profile in the thermal 

boundary layer.   
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1. INTRODUCTION  

The phenomenon of three dimensional free 

convective flows with simultaneous heat and mass 

transfer has been a subject of discussion in the 

research circles because of its various applications in 

natural sciences, engineering sciences and in 

industry. Such phenomenon is observed in buoyancy 

induced motions in the atmosphere, in bodies of 

water, quasi-solid bodies such as earth, etc. Free 
convective flows with periodic permeability through 

highly porous media play an significant role in 

chemical engineering, turbo-machinery and in 

aerospace technology. Such flow include numerous 

practical applications, for example, geothermal 

reservoirs, drying of porous solids, thermal 

insulation, enhanced oil recovery, packed-bed 

catalytic reactors, cooling of nuclear reactors and 

under-ground energy transport. Due to these 

applications, a majority of the investigators [1-6] 

have confined themselves to two-dimensional flows 
only by taking either constant or time dependent 

permeability of the porous medium. However, there 

situations may be encountered where the flow field 

is aessentially three dimensional, for example, when 

variation of the permeability distribution is 

transverse to the potential flow. The effect of such a 

transverse permeability distribution of the porous 

medium bounded by horizontal flat plate has been 

studied by Sing and Verma [7] and Singh et al [8]. 

The effect of magnetic field on three dimensional 

flow of a viscous, incompressible and electrically 

conducting fluid past an infinite porous plate with 

transverse sinusoidal suction was discussed by Singh 

[9]. Singh, [10] studied hydro magnetic effects on 

the three dimensional oscillatory flow of an 

electrically conducting viscous incompressible fluid 

past an infinite porous plate subjected to a transverse 

sinusoidal sections. Singh and Sharma [11] studied 

the effect of transverse periodic variation of the 
permeability on the heat transfer and the free-

convective of a viscous incompressible fluid through 

a highly porous medium bounded by a vertical 

porous plate. Later this same study with mass 

transfer was extended by Varshney and Singh [12]. 

Jain et al. [14] analyzed the effects of periodic 

temperature and periodic permeability on three-

dimensional free convective flow through porous 

medium in slip flow regime. Srihari and Anand Rao 

[15] analyzed the effect of magnetic field on three-

dimensional free-convective heat and mass transfer 
flow through a porous medium with periodic 

permeability. Ahmed [16] obtained an analytical 

solution for three-dimensional mixed convective 

flow with mass transfer along an infinite vertical 

porous plate in the presence of a magnetic field 

effect. Ravinder Reddy et al [17] analyzed the effect 

of heat sink in the presence of magnetic field on 

three-dimensional free convective heat and mass 

transfer flow through a porous medium with periodic 

permeability. Hayat et al. [18] investigated the three-

dimensional flow of viscous fluid with convective 

boundary conditions and heat generation/absorption. 
Many transport processes are found in different 

ways in which the combined heat and mass transfer 

takes place due to buoyancy forces caused by 

difference in temperature and concentrations. The 

relations between the fluxes and the driving 

potentials may be of a more complicated nature 

when heat and mass transfer occurs simultaneously 

in a moving fluid. An energy flux can be generated 

not only by temperature gradients but also by 
concentration gradients. The energy flux caused by a 

composition gradient is termed the diffusion-thermo 
or Dufour effect. On the other hand, mass fluxes can 

also be created by temperature a gradient is known 

as thermal-diffusion or Soret effect. Such effects are 

significant when density differences exist in the flow 

regime. 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 4 July 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 269 

In the above three-dimensional 

investigations, the effect of Dufour number has not 

been studied. So, the objective of the present 

investigation is to analyze the effect of Dufour 

number variation on three-dimensional free-

convection flow of a viscous incompressible fluid 
through a porous medium bounded by an infinite 

vertical porous plate. In order to obtain the solution 

and to describe the physics of the problem, first the 

governing non-linear equations with boundary 

conditions are transformed to ordinary and partial 

differential equations of zeroth and first order 

respectively, using perturbation method. 

Subsequently, the partial differential equations of 

first order are reduced to coupled non-linear 

differential equations using appropriate 

substitutions. Then, these coupled equations are 

solved using finite difference formulae. 
 

    2. Mathematical analysis: 

     The flow of a viscous fluid through a highly porous 

medium bounded by an infinite vertical porous plate 

with constant suction is considered. The plate is lying 

vertically on the x*-z* plane with x*-axis taken along 

the plate in the upward direction. The y*-axis is taken 

perpendicular to the plane of plate and directed into the 

fluid flowing laminarly with a uniform free stream 

velocity U. Since the plate consider infinite in x* -

 direction, so all physical quantities will be independent 
of x*.  

    The permeability of the porous medium is assumed to 

be of the form                                                          

)/cos1(
)(
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       Where 
*

0K  is the mean permeability of the medium. 

L is the wavelength of the permeability distribution   and 

ε (<<1) is the amplitude of the permeability variation. 

The problem becomes three-dimensional due to    such a 

permeability variation.  

      Thus, denoting velocity components by 
*** ,, wvu  in the directions of 

*** ,, zyx  respectively 

and       the temperature by the T* and concentration by 

C*, the flow through a highly porous medium is 

governed       by following non-dimensional equations:                         
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    with boundary conditions in non-dimensional 
form          :            

  ;0y ,0u ,1v ,0w ,1 1    (8)                                                                                                                                                              
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 To solve the above equations, the solutions of the 

equations (2) to (7) are assumed to be of the form:                 
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10  zyfzyfyfzyf                (9)                                     

       Where f  stands for  ,,,, pwvu  and . 

   Using (9) in the equations (2) to (7) and equating 

the co-efficient of like powers of , and neglecting 

the higher powers of ,  the following sets of the 

differential equations are obtained:          
       

      Zeroth-order equations: 
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        The corresponding boundary conditions are  
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      ;0y ,00 u ,10 v ,10  10             (14)   

     ;y ,10 u ,0  pp ,00  00   

     First order equations:  
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   The corresponding boundary conditions are                                                  

    ;0y ,01 u ,01 v ,01 w ,01  01       (21)                                                                                  

  ,01 u ,01 w ,01 p ,01  01   

  The Solutions of equations (10) to (13) under the 

boundary conditions (14) are given by        
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  In order to solve equations (15) to (20), we separate the  

variables y and z in the following manner. 
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        Making use of equations (22), (23) and (24) in 

equations (17) and (18) and eliminating the  

  terms 1111, pp , we have   
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       The corresponding boundary conditions are 

         
0:

0,0:0

11

1111





vy

vvy
 .                               (26)      

         In order to solve the equations (16), (19) and (20) 

for 11,u and 1 the subsequent are supposed  
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       Using the above expressions 11 ,u and 1  in (16), 

(19) and (20), the following are obtained: 
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 Obtaining exact solution of the above coupled 

differential equations is difficult, so substituting the 

following finite difference formulae  
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Equations (34), (35),(36) and (37) are solved by Gauss-

seidel iteration method, for which numerical code is 
executed by using C-Program. In order to obtain the 

numerical solution with slight error and to verify the 

convergence of present numerical scheme, a grid 

independent test is applied by experimenting with 

various grid sizes i.e. the computation is carried out by a 

little varied values of .h  This process is repeated until 

we get the results up to the desired degree of accuracy 

10-8. No significant change is observed in the values of 
velocity, temperature and concentration profiles. 

      

   Skin-Friction coefficient: 

      Skin friction components in the 
*x -direction in the 

non-dimensional form is given by:               
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    Nusselt -number:    

    The rate of heat transfer coefficient in terms of Nusselt 

number Nu  is given by     
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  3. Results and discussion:                                                     

        In order to know the physics of the problem, 

the problem of three-dimensional free-convection 

flow through a porous medium is solved 

approximately using finite difference and 

perturbation methods.  The effects of main 
controlling parameters, which are appeared in the 

governing equations, are discussed    graphically in 

the presence of Dufour. 

      

       The effect of Dufour (Du) on velocity and 

temperature field is shown in the figures (1), (5) 

respectively. The Dufour number describes the 

contribution of the concentration gradients to the 

thermal energy flux in the flow. It is noted that the 

velocity and temperature increase for the increasing 

values of Dufour number. Figures (7) and (8) show 

that Skin-friction  versus Reynolds number Re 

and Nusselt number Nu versus Re respectively. The 

assessment of the curves in the figures shows that 

an increase in the Dufour number leads to increase 

in the Skin-friction and Nusselt number. 

 

        Figures (2) and (3) show the velocity field u for 

various values of Grashof number (Gr) and modified 

Grashof number (Gm), respectively. It is observed 
from the figures that the velocity of the flow 

increase with the increasing values of Gr and Gm. 

This is due to the physical fact that the growing 

values of thermal Grashof number and mass Grashof 

number has the inclination to increase the thermal 

and mass buoyancy effect. This gives rise to an 

enhancement in the induced flow. It is also observed 

that as the values of Gr (or) Gm increases, the peak 

value of the velocity increases rapidly near the wall 

of the plate and then decay to the free stream 

velocity. From fig (4), a significant observation 
noted that raise in permeability parameter leads to 

increase in the velocity of the flow as the degrees of 

moment of particles in the fluid becomes maximum. 

More over it is interesting to note that the velocity, 

temperature, Skin-friction and Nusselt number 

increase in the presence of Dufour. 

 

Figure (6) depicts the temperature profile for 

various values of Pr. It is observed that a fluid with 

higher Prandtl number is to initiate to decelerate the 

temperature of the fluid at all points. This is owing to 
the physical reality that a fluid with high Prandtl 

number has a comparatively low thermal 

conductivity which consequences in the decline of 

the thermal boundary layer. The effect of Schmidt 

number (Sc) on the concentration field is shown in 

figure (9). It is seen that the concentration of the fluid 

decreases with the increasing values of Sc. 

Physically; the increase of Sc means decline of 

molecular diffusivity (D) those consequences in 

decrease of concentration boundary layer. Hence, the 
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concentration of the species is higher for small values 

of Sc and lower for bigger values of Sc. 

      4. Conclusions: 

      The following conclusions have been drawn from 

the   above results: 

 The temperature, velocity, Skin–friction and 
Nusselt number increase in the presence of 

Dufour.  

 Dufour effects greatly influence the temperature 

profile in the thermal boundary layer.   

 For increasing values of Dufour parameters, 

there is a considerable enhancement in the 

velocity of the fluid is observed.       

   5. Nomenclature 

 g- Acceleration due to gravity,  - Coefficient of 

volumetric thermal expansion, * -  Coefficient 

of    mass expansion, 
*p - Pressure,   -Density,  - 

Kinematics viscosity,  -  Viscosity , k- 

Thermal  conductivity, Cp -Specific heat at constant 

pressure,D-Concentration     diffusivity
*

wC -

 Concentration    of the plate, 
*

wT -Temperature of the 

plate,
*

T - Temperature of the fluid far away  from the 

plate 
*

C -  Concentration of the fluid far   away 

from    the plate , p -pressure in stream, Du-Dufour 

number, Pr- Prandtl number, Sc-Schmidth 

number,              Gr-Grashof number, Gm- Modified 

Grashof number.  

 

6.  Figures 

 

 
 

 

 
 

 

 
 

 

 

 

 

     Fig.1: Effect of Dufour on velocity field u  
 (Gr=3.0, Gm=3.0, Re=3.0, K0 =1.0, Pr=0.71, Sc=0.66, ε =0.1 and 

Z=0.0) 

u

y

    Fig.2: Effect of ‘Gr’ velocity field u in the presence of Dufour 

      (Gr=3.0, Gm=3.0,  K0 =1.0, Pr=0.71, Sc=0.66, ε =0.1 and Z=0.0) 

  Fig.3: Effect of ‘Gm’ on velocity field u  
  (Gr=3.0, Gm=3.0, Re=3.0, K0 =1.0, Pr=0.71, Sc=0.66, ε =0.1 and Z=0.0) 

  Fig.4: Effect of permeability parameter on velocity field u  
  (Gr=3.0, Gm=3.0, Re=3.0, K0 =1.0, Pr=0.71, Sc=0.66, ε =0.1 and Z=0.0) 

u

y

y

y

u

u



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 4 July 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 273 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

7. REFERENCES  
 

[1] A.Raptis, G.Perdikis and G.Tzirandis, “Free convection 

flow through a porous   medium bounded by a vertical 

surface,” J. Phys. D. Appl. Phys, vol,14, pp. 99-102(1), 

1981a. 

[2] A.Raptis,G.Tzirandis and N.Kafousias , “Free convection 

A and mass transfer  flow through a porous medium 

bounded by an infinite vertical limiting surface 

with  constant suction,”Letters Heat Mass Transfer,8, , pp. 

417-24.(2), 1981b. 

[3] A.Raptis, N. Kafousis and C Massalas, “Free convection 

and mass transfer flow through a porous medium bounded 

by an infinite vertical porous plate with constant heat flux,” 

ZAMM, 62, pp.489-91(3), 1982. 

[4] A.Raptis, “Unsteady free convective flow through a porous 

medium,” Int.J. Engng.Sci. 21, pp.345-48(4), 1983. 

[5] A.Raptis and C.P.Perdikis, “Oscillatory flow through a 

porous medium by the   presence of free convective flow,” 

Int. J. Engng Sci.23, pp. 51-55(5), 1985. 

[6] K.D.Singh and Suresh Kumar, “Two dimensional unsteady 

free convective flow through a porous medium bounded by 

an infinite vertical porous plate with periodic 

permeability,” J. Math. Phys. Sci. 27, pp. 141-48(6), 1993. 

    Fig.5-Effects of Dufour ‘Du’ on temperature profile 𝝷 
                  (Pr=0.71, Re=3.0,K0=1.0, ε=0.1 and Z=0.0) 

    Fig.6-Effects of Pr on temperature profile 𝝷 in the presence of Dufour 

                  ( K0=1.0, Re=3.0,ε=0.1 and Z=0.0) 

    Fig 7- Skin-friction versus ‘Re’ in the presence of Dufour 

   (Gr=5.0, Gm=5.0, Re=3.0, Ko=1.0, Pr=0.71, Sc=0.66, ε=0.1 and Z=0.0)            

 

Fig 8-Nusselt number ‘Nu’ versus ‘Re’ in the presence of 

Dufour   (Pr=0.71, Re=3.0,Ko=1.0,  ε=0.1 and Z=0.0)            

 

        Fig 9-Effect of Schmidt number on Concentration field  
                 (Pr=0.71, Re=2.0,  Ko=1.0, ε=0.1 and Z=0.0)            







Nu



y

y

y

Re

Re



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 4 July 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 274 

[7] K.D.Singh and G.N.Verma, “Three dimensional oscillatory 

flow thorough a porous medium with periodic 

permeability,” ZAMM 75, pp. 599-604.(7) 1995. 

[8] K.D.Singh,Khem Chand and G.N.V Verma, “Heat transfer 

in a three dimensional flow through a porous medium with 

periodic permeability,” ZAMM 75, pp. 950-52 (8), 1995. 

[9] K.D.Singh, “Hydromagnetic effects on three dimensional 

flow past a porous  plate,” ZAMP 41, pp. 441-446(9), 1990. 

[10] K.D.Singh,“Three-dimensional MHD oscillatory flow past 

a porous plate,” ZAMM 71 (3), pp. 192-195(10), 1991. 

[11] K.D.Singh and Rakesh Sharma, “Three dimensional free 

convective flow and  heat transfer through a porous 

medium with periodic permeability,” Indian J. pure  appl. 

Math, 33(6), pp. 941-949, 2002. 

[12] N.K.Vershney and K.D.Singh, “Three Dimensional Free 

Convective Flow and Heat and Mass transfer through a 

Porous Medium with Periodic Permeability,” Bulletin of 

Cal Math Society, vol 97(2), pp.95-106, 2005. 

[13] P.R.Sharma and G.R.Yadav, “Three-dimensional flow and 

heat transfer through a porous medium bounded by a 

porous vertical surface with variable permeability and 

heat source”, Bull. Cal. Math. Soc, vol98 (3), pp. 237-254, 

2005. 

[14]  N.C.Jain, B.Sharma and D.KVijay, “Three dimensional 

free convective   flow  heat transfer flow through a porous 

medium with periodic permeability in slip Flow  regime,” 

J.Energy,Heat &Mass transfer, vol 28(1), pp.29-44,2006. 

[15] K.Srihari, J.Anand Rao, “MHD Three Dimensional free 

convective flow with   heat and mass transfer through a 

porous medium with periodic permeability,” Journal of the 

institution of Engineers Mechanical (India), vol89, pp.3-30, 

2008. 

[16] N.Ahmed, “Magnetic field effect on a three-dimensional 

mixed convective flow with masstransfer along an infinite 

vertical porous plate,” Int. J. Eng. Sci. Tech, vol 2(2), pp. 

117–135, 2010. 

[17] P.Ravinderreddy, K.Srihari and S.Rajireddy, “Combined 

heat and mass transfer in MHD   three-dimensional porous 

flow with periodic permeability and absorption, 

“International journal of mechanical Engineering 

and technology,” vol3 (2), pp. 573-593, 2012. 

[18] Taswar Hayat, Sabir Ali Shehzad, Mohmmad 

Qasim,SaleemAsgar,“Three dimensional stretched flow via 

convective boundary condition   and heat 

generation/absorption,” International Journal of Numerical 

methods for Heat and fluid flows,. 

[19] Taswar Hayat, Sabir Ali Shehzad, Mohmmad 

Qasim,SaleemAsgar, Three-dimensional stretched flow via 

convective boundary condition and heat generation 

/absorption, ”International Journal of Numerical methods 

for Heat and fluid flows,” vol24,2014, pp. 342- 358. 

 


