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Abstract 

 The -dual of a vector-valued double sequence space is defined and studied we    show that if an X-valued 

sequence space E is a BK-space having AK property, then the dual space of E and its -dual are isometrically 

isomorphic. We also give characterizations of      -dual of vector-valued sequence spaces of Maddox 
2 (X, , p), 

2
 (X, , p), 

2
0c  (X, , p)  and c2(X, , p). 

Introduction 

Let (X, ||.||) be a Banach space and p = (pij) a bounded sequence of positive real numbers. Let N be the set 

of all natural numbers, we write X = (xij) with xij in X for all i,j   N. The X-valued sequence spaces of Maddox are 

defined as – 

2
0c (X, , p) = 
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




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2
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When X = K, the scalar held of X, the corresponding spaces are written          as c0(p), c(p),  (p),  (p), 

respectively. All of these spaces are known as the sequence Maddox. These spaces were introduced and studied by 

Simons [7] and Maddox [3, 4, 5]. The space  (p) was first defined by Nakano [6] and is known as the Nakano 

sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces 0c (p), c(p),  (p) and  (p) and 

has given characterization of -dual of scalar-valued sequence spaces of Maddox. 

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space p [X], where 

p [X], 1 < p <  , is defined by 

p [X] = 








 



Xeachfor||)(x|:)x(x p

k
1k

k ff ,                  (1.2) 

In this paper, the -dual of a vector-valued sequence space is defined and studied and we give 

characterizations of -dual of vector-valued sequence spaces of Maddox 
2 (X, , p), 

2
 (X, , p), 

2
0c (X, , p) 

and 
2c (x, , p). Some results, obtained in this paper, are generalizations of some in [1, 3]. 

2. Notation and Definitions 

Let (X, ||.||) be a Banach space. Let W(X) and (X) denote the space of all sequences in X and the space of 
all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued 

sequence space. For    xE and i,jN we write that xij stand for the i,j
th

 term of x. For xX and i,jN, we let 
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e(i,j)(x) be the sequence 

0.....x....x....000

0...................

0...................

0................000

0................000

 with x in the i.jth position and let e(x) be the sequence 

0........

0.....,x,x,x

0.....,x,x,x

. For a fixed scalar sequence u = (uij) the sequence space 
2
uE  is defined as 

                                              
2
uE  =  2

ijij
2

ij E)xu(:)X(W)x(x                                    (2.1) 

An X-valued sequence space E is said to be normal if (yij) E2 whenever             ||yij|| ||xij|| for all i,jN 

and (xij)E. Suppose that the X-valued sequence space E is endowed with linear topology  . The E is called a K-

space if, for each i,jN, the i,jth coordinate mapping pi,j : EX, defined by pij(x) = xij, is continuous on E. In 

addition, if (E, ) is a Frecher (Banach) space then E is called an FK-(BK)-space. Now, suppose that E contains 

(X), then E is said to have property AK if x)x(e ij
)ij(

Nji2



 in E as N for every x = (xij)E2. 

The spaces c0(p) and c(p) are FK-spaces. In 
2
0c (X, , p), we consider           the function g(x) = 

Mijp
ijij ||x||sup , where M = max[1.supijpij], as a paranorm on 

2
0c (X, , p) and it is known that 

2
0c (X, , p) is 

an FK-space having property AK under the paranorm p defined as above in 
2 (X, , p) we consider it as a 

paranormed sequence space with the paranorm given by ||xij||=

M1

ijp
ijij

Nji
||x||


















. It is known that 
2 (X, 

, p) is an FK-space under the paranorm defined as above. 

For an X-valued sequence space E, define its Köthe dual with respect to the dual pair (X, X ) (see [2]) as 
follows : 

 Ex|(X, X )| = 








 



E)x(x|)x(|:X)( kkk

1k
k ff      (2.2) 

In this paper, we denote EX|(X, X )|  by E and it is called the -dual of E. 

For a sequence space E, the -dual of E is defined by 

 E = 








 



E)x(converges)x(:X)( kkk

1k
k ff                    (2.3) 

It is easy to see that EE. 

For the sake of completeness we introduce some further sequence spaces that will be considered as -dual 
of the vector-valued sequence spaces of Maddox : 

2
0M (X, , p) = 


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
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2
0 (X, , p)=


















 NMsomeforM||x:)x(x ijpijp
ijij

Nji
ij || ; pij > 1   i,jN 

cs[ X ] = 














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 Xxconverges(x):X)( ij
Nji

ij ff                      (2.4) 

When X = K, the scalar field of X, the corresponding first two sequence spaces are written as M0(p) and M 

= (p), respectively. These two spaces were first introduced by Grosse-Erdmann [1]. 

3. Main Results 

We begin by giving some general properties of -dual of vector-valued sequence spaces. 

Proposition 3.1 : Let X be a Banach space and let E2, 
2
1E  and 

2
2E  be           X-valued sequence spaces. 

Then 

(i) 
E2  E2



(ii) If 
2
2

2
1 EE   then 


2

2 E 

1

2 E  

(iii) If E = 
2
2

2
1 EE  , then 

E2
 = 


1

2 E  

2

2 E 

(iv) If E is normal then 
E2

 = 
E2


Proof : Assertions (i), (ii) and (iii) are immediately obtained by the definitions.       To prove (iv), by (i), it suffices 

to show only that 
E2

 = 
E2

. Let   fij
E2

 and      x = (xij)E2. Then 

Nji 

 fij(xij) converges. Choose a 

scalar sequence (tij) with |tij| = 1 and fij(tijXij) = |fij(xij)| for all i,jN. Since E is normal, (tijxij)E. It follows that  

Nji 

  fij(xij) converges, hence (fij) 
E2

. 

It E is a BK-space, we define a norm on 
E  by the formula 

            E2ij ||)(|| f =

1| |ijx| |

sup


)x( ijij
Nji

f


                                             (3.1) 

It is easy to show that E2||.||  is a norm on 
E2

. 

Next, we give a relationship between -dual of a sequence space and its continuous dual. Indeed, we need a 
lemma. 

Lemma 3.2 : Let E be an X-valued sequence space which is an                    FK-space containing (X). 

Then for each i,jN, the mapping Ti,j : XE, defined by Tijx = eij(x), is continuous. 

Proof : Let V = eij(x) : xX. Then V is a closed subspace of E, so it is         an FK-space because E is an 

FK-space. Since E is a K-space, the coordinate mapping pij : VX is continuous and bijective. It follows from the 

open mapping theorem that pij is open, which implies that 
1
ijp  : XV is continuous. But since Tij = 

1
ijp , we thus 

obtain that Tij is continuous. 

Theorem 3.3 : If E is a BK-space having property AK, then 
E2

 and E2   are isometrically isomorphic. 

Proof : We first show that for x = (xij)E2 and f E2  . 

    f(x) = 

Nji 

  f(eij(xij))             (3.2)  

To show this, let x = (xij)E and f E . Since E has property AK, 
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X = 
nm

lim
Nji2 

 (eij(xij))                                  (3.3) 

By the continuity of f, it follows that 

f(x) =

nmji2 

  f(eij(xij))=

Nji 

  f(eij(xij))        (3.4)  

so (3.2) is obtained. For each i,jN, let Ti,j : XE be defined as in Lemma 3.2. Since E is a BK-space, be Lemma 

3.2, Tij is continuous. Hence f  Ti,j X  for all i,jN. It follows from (3.2) that  

           f(x) = ( f o Ti,j) (xij)   x = (xij) E                          (3.5) 

It implies, by (3.5), thet 

1j,iij)T( f  E2

. Define   : E2  E2
 by 

 (f) = 

1j,iij)T( f   f E2                                   (3.6) 

It is easy to see that   is linear. Now, we show that   is onto. Let (fij)
E2

. Define f : , where K is the 

scalar field of X, by 

f(x) = 

Nji 

 fij(xij)  x = (xij)E2          (3.7) 

For each i,jN, let pij be the (i,j)th coordinate mapping on E. Then we have  

f(x) = 

Nji 

 (fij o pij) = 
nm

lim
Nji 

 (f o pij)(x)    (3.8) 

Since fij and pij are continuous linear, so is also continuous f o pij. It follows by Banach Steinhaus theorem 

that f E2   and we have by (3.7) that; for each i,jN and each zX, (f o Tij)(z) = f(e(ij)(z)) = fij(z). Thus f o Tij = fij  

for all i,jN, which implies that (f) = (fij), hence  is onto. 

Finally, we show that  is linear isometry. For fE, we have 

  ||f|| = 

1| |)ijx(| |

sup


|f(xij)| 

        = 

1| |)ijx(| |

sup


|))x()(e(| ij
ij

Nji

f


                                        by (3.2) 

      = 

1| |)ijx(| |

sup


|)x()T(| ijij
Nji

f


                                     (3.9) 

      = 

 E21j,iij ||)T(|| f  

      = 
E2||)(|| f . 

Hence  is isometry. Therefore,  : E2  E2
 is an isometrically isomorphism from E  onto 

E . This 
completes the proof. 

We next give characterizations of -dual of the sequence space  (X, p) when pij > 1 for all i,jN.  

Theorem 3.4 : Let p = (pij) be a bounded sequence of positive real numbers with pij > 1 for all i,jN. Then 

 (X, , p) = 
2
0 ( X , , q) where q = (qij) is a sequence of positive real numbers such that 

ijij q

1

p

1
  = 1 for all 

i,jN. 

Proof : Suppose that (fij)
2
0 ( X , , q). Then 

Nji 


ijqijq

ij M||||


f <  for some MN. Then for 

each x = (xij)  (X, , p), we have 
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Nji 

 |fij(xij)| 
Nji2 

 ||fij|| 
ijp/1

M
 ijp/1

M  ||ij xij|| 

  
Nji 

 









 ijp

ijij
ijpijqijq

ij xMMf  

   
Nji 

 ||fij||
)1ijq(

M


+ M

Nji2 


ijp

ijijx  

which implies that 

Nji 

 fij(ijxij) converges, so (fij) < 
2
0 (X, , p). 

On the other hand, assume that (fij)
2 (X, , p), then 

Nji 

  fij(ijxij) converges for all x = (xij)
2 (X, , p). 

For each x = (xij)
2 (X, , p) choose scalar sequence (tij) with |tij| = 1 such that fij(tijxij) = |fij(xij)| for all i,jN. 

Since (tijxij)
2 (X, , p), by our assumption, we have 

Nji 

  fij(ijxij) converges, so that 

Nji 

 |fij(xij)| <    x 2 (X, , p)                             (3.11)  

We want to show that (fij)
2
0 ( X , , q), that is 

Nji 


ijqijq

ij M


f <  for some MN. 

If it is not true, then 

Nji 


ijqijq

ij m


f < mN                                    (3.12) 

It implies by (3.12) that for each i,jN, 

iiq
ii f iiq

M 
=    r,sN                                        (3.13) 

By (3.12), let r,s = 1, then there is a i1,j1N 

1
j

1
iji2 


ijq

ijf ijq
)sr(


 >1                                     (3.14) 

By (3.13), we can choose m2 > m1 and k2 > k1 with m2 > 22 such that 

2kji1k 

  ijq
2

ijq
ij m||||


f  > 1           (3.15) 

Proceeding in this way, we can choose sequences of positive integers (ki) and (mi) with i = k0 < k1 < k2 < 

…… and m1 < m2 < ….., such that m1 > 2i and  

ikji1ik 

  
ijq

i
ijq

ij m||||


f  > 1           (3.16) 

For each iN, choose xi,j in X with ||xij||=1 for all i,jN, Ki1< k k, such that 

ikji1ik 


ijqijq

ijij m|)x(|


f > 1                                    (3.17) 

Let ai =

ikji1ik 


ijq

i
ijq

ijij m|)x(|


f . Put y = (yij), (yij)=
ijq1

i ma


ij
1j,1iq

ijij x|)x(| f  for all kN with ki1 

< k ki. By using the fact that pkqk = pk + qk and pk(qk1) = qk for all i,jN, we have that for each iN,  
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ikji1ik 


ijp

ij |||| f =
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
ijq

ij
1j,1iq

ijij
ijq

i
1

i ||x|)x(ma||  f|  

        = 

ikji1ik 


ijq

ijij
ijqijp

i
ijp

i
|)x(ma f|


 

        =

ikji1ik 


ijq

ijij
1j,1iq

i
ijp

i
ijp

i
ijp

i
|)x(mmma f|


     

         
1

i
1

i ma


ikji1ik 


ijq

ijij
ijq

i
|)x(m f|


                (3.18)

 

 

        i
1

i
1

i ama 
 

        
1

im
 

So we have that 

Nj,i 


ijp

ij ||y|| 

Nji2 


i2

1
 <  . Hence, y = (yij). For each iN, we have mm 

ikji1ik 

 |)y( ijijf| = 

ikji1ik 

 |x|)x(||)ma(|| ij
1j,1iq

ijij
ijq

i
1

iij
 ff  

= 

ikji1ik 


ijq

i
1

i ma
 ijq

ijij |)y(f|                      (3.19) 

= 
1

ia

ikji1ik 


ijq

i
m
 ijq

ijij |)y(f|  

= 1 

So that 

Nj,i 

 |)y( ijijf|  =  , which contradicts (3.11). Hence ( ijf ) 2
0 ( X , , q). The proof is now 

complete. 

The following theorem gives a characterization of -dual of 
2 (X, , p), when pij 1 for all i,jN. To do 

this, the following lemma is needed. 

Lemma 3.5 : Let p = (pij) be a bounded sequence of positive real numbers. Then 
2
 (X, , p) = 


1n  

ijp1
n

2 )p,,X(   . 

Proof : Let x 2
 (X, , p), then there is some nN with 

ijp
ij ||x||  n          for all i,jN. Hence 

ijp1
ij n||x||


 1 for all x

ijp1
n

2 )p,,X(   . On the other hand, if x 
1n

ijp1
n

2 )p,,X(   , then 

there are some nN and M > 1 such       that 
ijp1

n
ij ||x||  M for every i,jN. The we have 

ijp
ij ||x||  n

ijp
M  n

M  for all i,jN, where  = supij p
ij. Hence x 2

 (X, , p).  

Theorem 3.6 : Let p = (pij) be a bounded sequence of positive real numbers with pij 1 for all i,jN. Then 

2 (X, , p) = 
2
 ( X , , p). 
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Proof : If (fij)=
2 (X, , p), then 

Nji 

 fij(xij) converges for every                    x = (xij)
2 (X, , p) 

using the same proof as in Theorem 3.4, we have 

Nj,i 

 |fij(xij)| <       x = (xij)
2 (X, , p)                                 (3.20) 

If (fij)
2
 ( X , , p), it follows by Lemma 3.5 that supij||fij||

ijp1
m


=  for all            mN. For each iN, 

choose sequences (mi) and (ki) of positive integers with                 m1 < m2 < ….. and k1 < k2 < ….. such that mi > 2i 

and ||fij||
ijp1

i
m


> 1. Choose xij
X with ||xij|| = 1 such that 

|fij(xij)|
ijp1

m


 > 1              (3.21) 

Let y = (yij), yij =
ijp1

i
m


xij if some i, and 0 otherwise. Then                    

Nji 


ijp

ij ||y|| = 


1i im

1
 < 




1i
i2

1
 = 1, so that (yij)

2 (X, , p) and 

Nj,i 

 fij(yij) = 

Nj,i 

 






 

ik
ikp1

iik xmf  

         = 

Nj,i 

 ikp1

i
m
  

ikik xf         (3.22) 

        =    (by 3.21),  

and this is contradictory to (3.20), hence (fij)
2
 (X, , p). 

Conversely assume that (fij)
2
 ( X ,, p). By Lemma 3.3 there exists MN, such that supij||fij||

ijp1
m


 <  , so there is a K > 0 such that 

||fij||K
ijp1

M         i,jN.            (3.23) 

Let x = (xij)
2 (X, , p). Then there is a k0

N such that 
ijp1

M ||xij|| 1 for all k   k0. By pij 1 for 

all i,jN, we have that for all i,j k0. 

ijp1
M ||xij||

ijp

ij
ijp1

||x||M 







= M

ijp
ij ||x||            (3.24) 

Then 

Nji 

 |fij(xij)| 

0kji2 

 ||fij|| ||xij|| + 

10k 

  ||fij|| ||xij|| 

   

0kji2 

 ||fij|| ||xij|| + K





ji10k

 
ijp1

M ||xij||    (by (3.23))     (3.25) 

   

0kji2 

 ||fij|| ||xij|| + KM





ji10k

ijp
ij ||x||  <   (by (3.24)) 

     . 

This implies that 





ji2

fij(xij) converges, hence (fij)
2 (X, , p). 
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Theorem 3.7 : Let p = (pij) be a bounded sequence of positive real numbers. Then 
2
 (X, , p) = 

2M (

X , , p). 

Proof : If (fij) = 
2M ( X , , p), then 

Nji 

  ||fij||
ijp1

m <  for all mN, we have that for each x = 

(xij)
2
 (X, , p), there is m0

N such that ||xij||
ijp1

0m  for all i,jN, hence 

Nji 

  fij(xij)

 Nji 

 ||fij|| ||xij||



Nji 

 ||fij||
ijp1

0m <  , which imples that 

Nji 

  fij(xij) converges, so that (fij)
2
 (X, , p). 

Conversely, assume that (fij)
2
 (X, , p), then 

Nji 

  fij(xij) converges for all x = (xij)
2
 (X, , p) 

by using the same proof as in Theorem 3.4, we have 

Nji 

  |fij(xij)|<    x = (xij)
2
 (X, , p)         (3.26) 

If (fij)
2M ( X , , p) then 

Nji 

 ||fij||
ijp1

M =  for some MN. Then we can choose a sequence 

(ki) of positive integers with  = k0 < k1 < k2 < … such that 

ikji1ik 

 ||fij||
ijp1

M  > i          iN          (3.27) 

And we choose xij in X with ||xij|| = 1 such that for all iN, 

ikji1ik 

 |fij(xij)| 
ijp1

M > i           (3.28) 

Put y = (yij), (yij) = 
ijp1

M  xij clearly, y 2
 (X, , p) and  

Nj,i 

  |fij(yij)| > 

ikji1ik 

 |fij(xij)| 
ijp1

M > i  iN      (3.29) 

Hence 

Nj,i 

 |fij(yij)|= , which contradicts (3.26). Hence (fij)
2M ( X , , p). The  proof is now 

complete. 

Theorem 3.8 : Let p = (pij) be a bounded sequence of positive real numbers. Then 
2
0c (X, , p) = 

2
0M (

X , , p). 

Proof : Suppose (fij) = 
2
0M ( X , , p), then 

Nj,i 

 ||fij||
ijp1

M


<  for some   MN. Let x = (xij)
2
0c

(X, , p). Then there is a positive integer K0 such that 
ijp

ij ||x|| < 
m

1
 for all kK0, hence ||xij|| < 

ijp1
M


 for all 

i+jK0. Then we have 

          0kji 

 |fij(xij)|

0kji 

 ||fij|| ||xij||

0kji 

 ||fij||
ijp1

M


<                   (3.30) 

It follows that 

Nji 

 |fij(xij)| converges, so that (fij)
2
0c (X, , p). 
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On the other hand, assume that (fij)
2
0c (X, , p), then 

Nji 

 fij(xij) converges for all x=(xij)
2
0c (X, , 

p). For each x = (xij)
2
0c ( X , , p), choose scalar sequence (tij) with |tij| = i such that fij(tij xij) = |fij(xij)| for all i,j

N. Since (tijxij)
2
0c (X, , p), by our assumption, we have 

Nji 

 fij(tijxij) converges, so that 

  

Nji 

 |fij(xij)| <             x 2
0c (X, , p)           (3.31) 

Now, suppose that (fij)
2
0M (X, , p).Then

Nji 

 ||fij||
ijp1

m


= for all mN. Choose m1k1
N such 

that 

 

1kji2 

 ||fij||
ijp1

1m


> 1             (3.32) 

And choose m2 > m1 and k2 > k1 such that 

2kji1k 

 ||fij||
ijp1

2m


> 2             (3.33) 

Proceeding in this way, we can choose m1 < m2 < ……, and 0 < k1 < k2 < … such that 

ikji1ik 

 ||fij||
ijp1

im


> i,              (3.34) 

Take xij in X with ||xij|| = 1 for all k, ki1< k k, such that 

ikji1ik 

 |fij(xij)| 
ijp1

im


> i        iN           (3.35) 

Put y = (yij) = 
ijp1

im


xij for ki1 < i+j  ki, then y 2
0c (X, , p) and 

Nji 

 |fij(xij)|  

ikji1ik 

 |fij(xij)| 
ijp1

im


> i      iN          (3.36) 

Hence, we have 

Nj,i 

  |fij(yij)| =  , which contradicts (3.31), therefore            (fij)
2M ( X , , p). 

This completes the proof. 

Theorem 3.9 : Let p = (pij) be a bounded sequence of positive real numbers. Then c2(X, , p) =
2
0M ( X , 

, p) cs[ X ]. 

Proof : Since c0(X, , p)=
2
0c (X, , p)+E, where E={e(x) : xX} it follows by proposition 3.1(iii) and 

Theorem 3.8 that c0(X,,p)=
2
0M ( X ,, p) E. It is obvious by definition that E={(fij) X :

 Nji 

 fij(xij)) 

converges for all xX}=cs[ X ]. Hence we have the theorem. 
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