β-Dual of Vector-Valued Double Sequence Spaces of Maddox

Naveen Kumar Srivastava
Department of Mathematics
St. Andrew's College, Gorakhpur, U.P.

Abstract

The β-dual of a vector-valued double sequence space is defined and studied we show that if an X -valued sequence space E is a BK -space having AK property, then the dual space of E and its β-dual are isometrically isomorphic. We also give characterizations of $\quad \beta$-dual of vector-valued sequence spaces of Maddox $\ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$, $\ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p}), \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$ and $\mathrm{c}^{2}(\mathrm{X}, \lambda, \mathrm{p})$.

Introduction

Let $(\mathrm{X},\| \| \|)$ be a Banach space and $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $\mathrm{X}=\left(\mathrm{x}_{\mathrm{ij}}\right)$ with X_{ij} in X for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. The X -valued sequence spaces of Maddox are defined as -

$$
\begin{aligned}
& c_{0}^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \lim _{i+j \rightarrow \infty}\left\|\lambda_{i j} x_{i j}\right\|^{p_{i j}}=0\right\} \\
& c^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \lim _{i+j \rightarrow \infty}\left\|\lambda_{i j} x_{i j}-a\right\|^{p_{i j}}=0\right\} \text { for some } a \in x \\
& \ell_{\infty}^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \sup _{i, j}\left\|\lambda_{i j} x_{i j}\right\|^{p_{i j}}<\infty\right\} \\
& \ell^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \sum_{2 \leq i+j \leq N}\left\|\lambda_{i j} x_{i j}\right\|^{p_{i j}}<\infty\right\}
\end{aligned}
$$

When $X=K$, the scalar held of X, the corresponding spaces are written as $c_{0}(p), c(p), \ell_{\infty}(p), \ell(p)$, respectively. All of these spaces are known as the sequence Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(\mathrm{p})$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $\mathrm{c}_{0}(\mathrm{p}), \mathrm{c}(\mathrm{p}), \ell(\mathrm{p})$ and $\ell_{\infty}(\mathrm{p})$ and has given characterization of β-dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_{\mathrm{p}}[\mathrm{X}]$, where $\ell_{\mathrm{p}}[\mathrm{X}], 1<\mathrm{p}<\infty$, is defined by

$$
\begin{equation*}
\ell_{\mathrm{p}}[\mathrm{X}]=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right): \sum_{\mathrm{k}=1}^{\infty} \mid f\left(\mathrm{x}_{\mathrm{k}}\right) \|^{\mathrm{p}}<\infty \text { for each } f \in \mathrm{X}^{\prime}\right\}, \tag{1.2}
\end{equation*}
$$

In this paper, the β-dual of a vector-valued sequence space is defined and studied and we give characterizations of β-dual of vector-valued sequence spaces of Maddox $\ell^{2}(\mathrm{X}, \lambda, \mathrm{p}), \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p}), \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$ and $c^{2}(x, \lambda, p)$. Some results, obtained in this paper, are generalizations of some in $[1,3]$.

2. Notation and Definitions

Let ($\mathrm{X},\|\|$.$) be a Banach space. Let \mathrm{W}(\mathrm{X})$ and $\phi(\mathrm{X})$ denote the space of all sequences in X and the space of all finite sequences in X , respectively. A sequence space in X is a linear subspace of $\mathrm{W}(\mathrm{X})$. Let E be an X -valued sequence space. For $x \in E$ and $i, j \in N$ we write that $x_{i j}$ stand for the $i, j^{\text {th }}$ term of x. For $x \in X$ and $i, j \in N$, we let
 with x in the $\mathrm{i} . \mathrm{j}^{\text {th }}$ position and let $\mathrm{e}(\mathrm{x})$ be the sequence $\left|\begin{array}{rrr}x, & x, & x, \\ x, & & \ldots .0 \\ . & . & \ldots . .0\end{array}\right|$. For a fixed scalar sequence $u=\left(u_{i j}\right)$ the sequence space E_{u}^{2} is defined as

$$
\begin{equation*}
\mathrm{E}_{\mathrm{u}}^{2}=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{W}^{2}(\mathrm{X}):\left(\mathrm{u}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}^{2}\right\} \tag{2.1}
\end{equation*}
$$

An X-valued sequence space E is said to be normal if $\left(y_{i j}\right) \in E^{2}$ whenever $\quad\left\|y_{i j}\right\| \leq\left\|x_{i j}\right\|$ for all $i, j \in N$ and $\left(x_{i j}\right) \in E$. Suppose that the X-valued sequence space E is endowed with linear topology τ. The E is called a Kspace if, for each $i, j \in N$, the $i, j^{\text {th }}$ coordinate mapping $p_{i, j}: E \rightarrow X$, defined by $p_{i j}(x)=x_{i j}$, is continuous on E. In addition, if (E, τ) is a Frecher (Banach) space then E is called an FK-(BK)-space. Now, suppose that E contains $\phi(X)$, then E is said to have property AK if $\sum_{2 \leq i+j \leq N} e^{(i j)}\left(x_{i j}\right) \rightarrow x$ in E as $N \rightarrow \infty$ for every $x=\left(x_{i j}\right) \in E^{2}$.

The spaces $\mathrm{c}_{0}(\mathrm{p})$ and $\mathrm{c}(\mathrm{p})$ are FK-spaces. In $\mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$, we consider the function $\mathrm{g}(\mathrm{x})=$ $\sup _{\mathrm{ij}}\left\|\mathrm{X}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}} / \mathrm{M}}$, where $\mathrm{M}=\max \left[1 \cdot \sup _{\mathrm{ij}} \mathrm{p}_{\mathrm{ij}}\right]$, as a paranorm on $\mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$ and it is known that $\mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$ is an FK-space having property AK under the paranorm p defined as above in $\ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$ we consider it as a paranormed sequence space with the paranorm given by $\left\|x_{i j}\right\|=\left(\sum_{i+j \geq N}\left\|\lambda_{i j} x_{i j}\right\|^{p_{i j}}\right)^{1 / M}$. It is known that ℓ^{2} (X, λ, p) is an FK-space under the paranorm defined as above.

For an X-valued sequence space E, define its Köthe dual with respect to the dual pair ($\mathrm{X}, \mathrm{X}^{\prime}$) (see [2]) as follows :

$$
\begin{equation*}
\mathrm{E}^{\mathrm{x}}\left|\left(\mathrm{X}, \mathrm{X}^{\prime}\right)\right|=\left\{\left(f_{\mathrm{k}}\right) \subset \mathrm{X}^{\prime}: \sum_{\mathrm{k}=1}^{\infty}\left|f_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}\right)\right|<\infty \quad \forall \mathrm{x}=\left(\mathrm{x}_{\mathrm{k}}\right) \in \mathrm{E}\right\} \tag{2.2}
\end{equation*}
$$

In this paper, we denote $\mathrm{E}^{\mathrm{X}}\left|\left(\mathrm{X}, \mathrm{X}^{\prime}\right)\right|$ by E^{α} and it is called the α-dual of E .
For a sequence space E, the β-dual of E is defined by

$$
\begin{equation*}
\mathrm{E}^{\beta}=\left\{\left(f_{\mathrm{k}}\right) \subset \mathrm{X}^{\prime}: \sum_{\mathrm{k}=1}^{\infty} f_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}\right) \text { converges } \forall\left(\mathrm{x}_{\mathrm{k}}\right) \in \mathrm{E}\right\} \tag{2.3}
\end{equation*}
$$

It is easy to see that $\mathrm{E}^{\alpha} \leq \mathrm{E}^{\beta}$.
For the sake of completeness we introduce some further sequence spaces that will be considered as β-dual of the vector-valued sequence spaces of Maddox :

$$
\begin{aligned}
& M_{0}^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \sum_{i+j \geq N}\left\|x_{i j}\right\|^{\left.M^{-1 / p_{i j}}<\infty \text { for some } M \in N\right\}}\right\} \\
& M_{\infty}^{2}(X, \lambda, p)=\left\{x=\left(x_{i j}\right): \sum_{i+j \geq N}\left\|\lambda_{i j} x_{i j}\right\|^{\left.n^{-1 / p_{i j}}<\infty \forall n \in N\right\}}\right\}
\end{aligned}
$$

$$
\begin{gather*}
\ell_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})=\left\{\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right): \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|\lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}} \mathrm{M}^{\left.-\mathrm{p}_{\mathrm{ij}}<\infty \text { for some } \mathrm{M} \in \mathrm{~N}\right\} ; \mathrm{p}_{\mathrm{ij}}>1 \forall \mathrm{i}, \mathrm{j} \in \mathrm{~N}}\right. \\
\operatorname{cs}\left[\mathrm{X}^{\prime}\right] \tag{2.4}
\end{gather*}=\left\{\left(f_{\mathrm{ij}}\right) \subset \mathrm{X}^{\prime}: \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}(\mathrm{x}) \quad \text { converges } \forall \mathrm{x} \in \mathrm{X}\right\},
$$

When $X=K$, the scalar field of X, the corresponding first two sequence spaces are written as $M_{0}(p)$ and M $=(\mathrm{p})$, respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main Results

We begin by giving some general properties of β-dual of vector-valued sequence spaces.
Proposition 3.1 : Let X be a Banach space and let E^{2}, E_{1}^{2} and E_{2}^{2} be $\quad X$-valued sequence spaces. Then
(i) ${ }^{2} \mathrm{E}^{\alpha} \subseteq{ }^{2} \mathrm{E}^{\beta}$
(ii) If $\mathrm{E}_{1}^{2} \subseteq \mathrm{E}_{2}^{2}$ then ${ }^{2} \mathrm{E}_{2}^{\beta} \subseteq{ }^{2} \mathrm{E}_{1}^{\beta}$
(iii) If $\mathrm{E}^{2}=\mathrm{E}_{1}^{2}+\mathrm{E}_{2}^{2}$, then ${ }^{2} \mathrm{E}^{\beta}={ }^{2} \mathrm{E}_{1}^{\beta}{ }^{2} \mathrm{E}_{2}^{\beta}$
(iv) If E is normal then ${ }^{2} \mathrm{E}^{\alpha}={ }^{2} \mathrm{E}^{\beta}$

Proof : Assertions (i), (ii) and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that ${ }^{2} \mathrm{E}^{\beta}={ }^{2} \mathrm{E}^{\alpha}$. Let $f_{\mathrm{ij}} \in{ }^{2} \mathrm{E}^{\beta}$ and $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}^{2}$. Then $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges. Choose a scalar sequence $\left(\mathrm{t}_{\mathrm{ij}}\right)$ with $\left|\mathrm{t}_{\mathrm{ij}}\right|=1$ and $f_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}\right)=\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. Since E is normal, $\left(\mathrm{t}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}$. It follows that $\sum \sum \quad f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges, hence $\left(f_{\mathrm{ij}}\right) \in{ }^{2} \mathrm{E}^{\alpha}$. $i+j \geq N$

It E is a BK -space, we define a norm on E^{β} by the formula

$$
\begin{equation*}
\left\|\left(f_{\mathrm{ij}}\right)\right\|_{2} \mathrm{E}^{\beta}=\sup _{\| \mathrm{x}_{\mathrm{ij}} \mid \leqslant 1}\left|\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \tag{3.1}
\end{equation*}
$$

It is easy to show that $\|\cdot\|_{2} E^{\beta}$ is a norm on ${ }^{2} E^{\beta}$.
Next, we give a relationship between β-dual of a sequence space and its continuous dual. Indeed, we need a lemma.

Lemma 3.2 : Let E be an X -valued sequence space which is an
FK-space containing $\phi(\mathrm{X})$. Then for each $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, the mapping $\mathrm{T}_{\mathrm{i}, \mathrm{j}}: X \rightarrow E$, defined by $\mathrm{T}_{\mathrm{ij}} \mathrm{X}=\mathrm{e}^{\mathrm{ij}}(\mathrm{x})$, is continuous.

Proof : Let $V=e^{i j}(x): x \rightarrow X$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K -space, the coordinate mapping $\mathrm{p}_{\mathrm{ij}}: \mathrm{V} \rightarrow \mathrm{X}$ is continuous and bijective. It follows from the open mapping theorem that $p_{i j}$ is open, which implies that $p_{i j}^{1}: X \rightarrow V$ is continuous. But since $T_{i j}=p_{i j}^{1}$, we thus obtain that T_{ij} is continuous.

Theorem 3.3 : If E is a $B K$-space having property $A K$, then ${ }^{2} E^{\beta}$ and ${ }^{2} E^{\prime}$ are isometrically isomorphic.
Proof : We first show that for $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}^{2}$ and $f \in{ }^{2} \mathrm{E}^{\prime}$.

$$
\begin{equation*}
f(\mathrm{x})=\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f\left(\mathrm{e}^{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right) \tag{3.2}
\end{equation*}
$$

To show this, let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}$ and $f \in \mathrm{E}^{\prime}$. Since E has property AK ,

$$
\begin{equation*}
\mathrm{X}=\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{N}} \sum_{\mathrm{ij}}\left(\mathrm{e}_{\mathrm{ij}}\left(\mathrm{X}_{\mathrm{ij}}\right)\right) \tag{3.3}
\end{equation*}
$$

By the continuity of f, it follows that

$$
\begin{equation*}
f(\mathrm{x})=\sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{m}+\mathrm{n}} f\left(\mathrm{e}^{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right)=\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f\left(\mathrm{e}^{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right) \tag{3.4}
\end{equation*}
$$

so (3.2) is obtained. For each $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, let $\mathrm{T}_{\mathrm{i}, \mathrm{j}}: \mathrm{X} \rightarrow \mathrm{E}$ be defined as in Lemma 3.2. Since E is a BK-space, be Lemma 3.2, T_{ij} is continuous. Hence $f^{\circ} \mathrm{T}_{\mathrm{i}, \mathrm{j}} \in \mathrm{X}^{\prime}$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. It follows from (3.2) that

$$
\begin{equation*}
f(\mathrm{x})=\left(f \mathrm{o}_{\mathrm{i}, \mathrm{j}}\right)\left(\mathrm{x}_{\mathrm{ij}}\right) \quad \forall \mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E} \tag{3.5}
\end{equation*}
$$

It implies, by (3.5), thet $\left(f \circ \mathrm{~T}_{\mathrm{ij}}\right)_{\mathrm{i}, \mathrm{j}=1}^{\infty} \in{ }^{2} \mathrm{E}^{\beta}$. Define $\varphi:{ }^{2} \mathrm{E}^{\prime} \rightarrow{ }^{2} \mathrm{E}^{\beta}$ by

$$
\begin{equation*}
\varphi(f)=\left(f \circ \mathrm{~T}_{\mathrm{ij}}\right)_{\mathrm{i}, \mathrm{j}=1}^{\infty} \forall f \in{ }^{2} \mathrm{E}^{\prime} \tag{3.6}
\end{equation*}
$$

It is easy to see that φ is linear. Now, we show that φ is onto. Let $\left(f_{\mathrm{ij}}\right) \in{ }^{2} \mathrm{E}^{\beta}$. Define $f: \mathrm{E} \rightarrow \mathrm{K}$, where K is the scalar field of X, by

$$
\begin{equation*}
f(\mathrm{x})=\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right) \forall \mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{E}^{2} \tag{3.7}
\end{equation*}
$$

For each $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, let p_{ij} be the (i, j) th coordinate mapping on E . Then we have

$$
\begin{equation*}
f(\mathrm{x})=\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} \sum_{\mathrm{ij}}\left(f_{\mathrm{ij}} \circ \mathrm{p}_{\mathrm{ij}}\right)=\lim _{\mathrm{m}+\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} \sum\left(f o \mathrm{p}_{\mathrm{ij}}\right)(\mathrm{x}) \tag{3.8}
\end{equation*}
$$

Since f_{ij} and p_{ij} are continuous linear, so is also continuous f o p_{ij}. It follows by Banach Steinhaus theorem that $f \in{ }^{2} \mathrm{E}^{\prime}$ and we have by (3.7) that; for each $\mathrm{i}, \mathrm{j} \in \mathrm{N}$ and each $\mathrm{z} \in \mathrm{X},\left(f \mathrm{o} \mathrm{T}_{\mathrm{ij}}\right)(\mathrm{z})=f\left(\mathrm{e}^{(\mathrm{ij})}(\mathrm{z})\right)=f_{\mathrm{ij}}(\mathrm{z})$. Thus $f \mathrm{o} \mathrm{T}_{\mathrm{ij}}=f_{\mathrm{ij}}$ for all $i, j \in N$, which implies that $\varphi(f)=\left(f_{\mathrm{ij}}\right)$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E$, we have

$$
\begin{align*}
\|f\| & =\sup _{\|\left(\mathrm{x}_{\mathrm{ij}}\right) \mid=1}\left|f\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \\
& =\sup _{\left|\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \models=1}\left|\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left(f\left(\mathrm{e}^{\mathrm{ij}}\right)\left(\mathrm{x}_{\mathrm{ij}}\right)\right)\right| \tag{3.2}\\
& =\sup _{\left|\left(\mathrm{x}_{\mathrm{ij}}\right)\right|=1}\left|\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left(f \circ \mathrm{~T}_{\mathrm{ij}}\right)\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \\
& =\left\|\left(f \circ \mathrm{~T}_{\mathrm{ij}}\right)_{\mathrm{i}, \mathrm{j}=1}^{\infty}\right\|_{2} \mathrm{E}^{\beta} \tag{3.9}\\
& =\|\varphi(f)\|_{2} \beta .
\end{align*}
$$

Hence φ is isometry. Therefore, $\varphi:{ }^{2} \mathrm{E}^{\prime} \rightarrow{ }^{2} \mathrm{E}^{\beta}$ is an isometrically isomorphism from E^{\prime} onto E^{β}. This completes the proof.

We next give characterizations of β-dual of the sequence space $\ell(X, p)$ when $p_{i j}>1$ for all $i, j \in N$.
Theorem 3.4 : Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers with $\mathrm{p}_{\mathrm{ij}}>1$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. Then $\ell(X, \lambda, p)^{\beta}=\ell_{0}^{2}\left(X^{\prime}, \lambda, q\right)$ where $q=\left(q_{i j}\right)$ is a sequence of positive real numbers such that $\frac{1}{p_{i j}}+\frac{1}{q_{i j}}=1$ for all $i, j \in N$.

Proof : Suppose that $\left(f_{\mathrm{ij}}\right) \in \ell_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda\right.$, q). Then $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{M}^{-\mathrm{q}_{\mathrm{ij}}}<\infty$ for some $\mathrm{M} \in \mathrm{N}$. Then for each $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell(\mathrm{X}, \lambda, \mathrm{p})$, we have

$$
\begin{aligned}
\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \leq & \sum_{2 \leq \mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|f_{\mathrm{ij}}\right\| \mathrm{M}^{-1 / \mathrm{p}_{\mathrm{ij}}} \mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}}\left\|\lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right\| \\
& \leq \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left(\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{M}^{-\mathrm{q}_{\mathrm{ij}} / \mathrm{p}_{\mathrm{ij}}}+\mathrm{M}\left\|\lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}}\right) \\
& \leq \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|\sum_{\mathrm{i}_{\mathrm{ij}} \|} \mathrm{M}^{-\left(\mathrm{q}_{\mathrm{ij}}-1\right)}+\mathrm{M} \sum_{2 \leq \mathrm{i}+\mathrm{j} \geq \mathrm{N}} \sum\right\| \lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}} \|^{\mathrm{p}_{\mathrm{ij}}}
\end{aligned}
$$

which implies that $\sum_{i+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right)$ converges, so $\left(f_{\mathrm{ij}}\right)<\ell_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$.
On the other hand, assume that $\left(f_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$, then $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\lambda_{\mathrm{i} \mathrm{X}} \mathrm{x}_{\mathrm{ij}}\right)$ converges for all $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$.
For each $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$ choose scalar sequence $\left(\mathrm{t}_{\mathrm{ij}}\right)$ with $\left|\mathrm{t}_{\mathrm{ij}}\right|=1$ such that $\left.f_{\mathrm{ij}\left(\mathrm{t}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right)}\right)=\left|f_{\mathrm{ij}}\left(\mathrm{X}_{\mathrm{ij}}\right)\right|$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. Since $\left(\mathrm{t}_{\mathrm{i}} \mathrm{X}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$, by our assumption, we have $\sum \sum \quad f_{\mathrm{ij}}\left(\lambda_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right)$ converges, so that $i+j \geq N$

$$
\begin{equation*}
\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|<\infty \quad \forall \mathrm{x} \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p}) \tag{3.11}
\end{equation*}
$$

We want to show that $\left(f_{\mathrm{ij}}\right) \in \ell_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{q}\right)$, that is $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{M}^{-\mathrm{q}_{\mathrm{ij}}}<\infty$ for some $\mathrm{M} \in \mathrm{N}$.
If it is not true, then

$$
\begin{equation*}
\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{~m}^{-\mathrm{q}_{\mathrm{ij}}}<\infty \forall \mathrm{m} \in \mathrm{~N} \tag{3.12}
\end{equation*}
$$

It implies by (3.12) that for each $\mathrm{i}, \mathrm{j} \in \mathrm{N}$,

$$
\begin{equation*}
\left\|f^{\prime} i^{\prime \prime}\right\|^{\mathrm{q}^{\prime} \mathrm{i}^{\prime \prime}} \mathrm{M}^{-\mathrm{q}^{\prime} i^{\prime \prime}}=\infty \forall \mathrm{r}, \mathrm{~s} \in \mathrm{~N} \tag{3.13}
\end{equation*}
$$

By (3.12), let $\mathrm{r}, \mathrm{s}=1$, then there is a $\mathrm{i}_{1}, \mathrm{j}_{1} \in \mathrm{~N}$

$$
\begin{equation*}
\sum_{\mathrm{i}+\mathrm{j} \leq \mathrm{i}}^{1}+\mathrm{j}_{1}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}}(\mathrm{r}+\mathrm{s})^{-\mathrm{q}_{\mathrm{ij}}>1} \tag{3.14}
\end{equation*}
$$

By (3.13), we can choose $m_{2}>m_{1}$ and $k_{2}>k_{1}$ with $m_{2}>2^{2}$ such that

$$
\sum_{\mathrm{k}_{1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k} 2}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{~m}_{2}^{-\mathrm{q}_{\mathrm{ij}}>1}
$$

Proceeding in this way, we can choose sequences of positive integers $\left(\mathrm{k}_{\mathrm{i}}\right)$ and $\left(\mathrm{m}_{\mathrm{i}}\right)$ with $\mathrm{i}=\mathrm{k}_{0}<\mathrm{k}_{1}<\mathrm{k}_{2}<$ $\ldots .$. and $\mathrm{m}_{1}<\mathrm{m}_{2}<\ldots .$. , such that $\mathrm{m}_{1}>2^{\mathrm{i}}$ and

$$
\begin{equation*}
\sum_{-1 \leq i+j \leq \mathrm{k}_{\mathrm{i}}}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}>1 \tag{3.16}
\end{equation*}
$$

For each $\mathrm{i} \in \mathrm{N}$, choose $\mathrm{x}_{\mathrm{i}, \mathrm{j}}$ in X with $\left\|\mathrm{x}_{\mathrm{ijj}}\right\|=1$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}, \mathrm{K}_{\mathrm{i}-1}<\mathrm{k} \leq \mathrm{k}$, such that

$$
\begin{equation*}
\sum_{-1 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{~m}^{-\mathrm{q}_{\mathrm{ij}}>1} \tag{3.17}
\end{equation*}
$$

Let $\mathrm{a}_{\mathrm{i}}=\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \mathrm{m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}$. Put $\mathrm{y}=\left(\mathrm{y}_{\mathrm{ij}}\right),\left(\mathrm{y}_{\mathrm{ij}}\right)=\mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}^{-\mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{i}-1, \mathrm{j}-1}} \mathrm{x}_{\mathrm{ij}}$ for all $\mathrm{k} \in \mathrm{N}$ with $\mathrm{k}_{\mathrm{i}-1}$ $<\mathrm{k} \leq \mathrm{k}_{\mathrm{i}}$. By using the fact that $\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}+\mathrm{q}_{\mathrm{k}}$ and $\mathrm{p}_{\mathrm{k}}\left(\mathrm{q}_{\mathrm{k}}-1\right)=\mathrm{q}_{\mathrm{k}}$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, we have that for each $\mathrm{i} \in \mathrm{N}$,

$$
\begin{aligned}
\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}^{\sum \sum}\left\|f_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}} & =\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}^{\sum \sum \mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{i}-1, \mathrm{j}-1}} \mathrm{x}_{\mathrm{ij}} \|^{\mathrm{q}_{\mathrm{ij}}}} \\
& =\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}^{\sum \sum \mathrm{a}_{\mathrm{i}}^{-\mathrm{p}_{\mathrm{ij}}} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{p}_{\mathrm{ij}} \mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}}} \\
& =\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}} \mathrm{a}_{\mathrm{i}}^{-\mathrm{p}_{\mathrm{ij}}} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{p}_{\mathrm{ij}}} \mathrm{~m}_{\mathrm{i}}^{\mathrm{p}_{\mathrm{ij}}} \mathrm{~m}_{\mathrm{i}}^{\mathrm{q}_{\mathrm{i}-1, \mathrm{j}-1}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \\
& \leq \mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}_{\mathrm{i}}^{-1}{\sum \sum \sum \mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \\
& \leq \mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}_{\mathrm{i}}^{-1} \mathrm{a}_{\mathrm{i}} \\
& \leq \mathrm{m}_{\mathrm{i}}^{-1}
\end{aligned}
$$

So we have that $\sum_{i, j \geq N}\left\|y_{i j}\right\|^{p_{i j}} \leq \sum_{2 \leq i+j \leq N} \frac{1}{2^{i}}<\infty$. Hence, $y=\left(y_{i j}\right)$. For each $i \in N$, we have $m m$

$$
\begin{aligned}
\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right| & =\left.\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\right|\left(\mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}\right)| | f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{i}-1, \mathrm{j}-1} \mathrm{x}_{\mathrm{ij}} \mid} \\
& =\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}} \mathrm{a}_{\mathrm{i}}^{-1} \mathrm{~m}_{\mathrm{i}}^{-\mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \\
& =\mathrm{a}_{\mathrm{i}}^{-1} \sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}^{\sum \mathrm{m}_{\mathrm{i}}}{ }^{-\mathrm{q}_{\mathrm{ij}}}\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|^{\mathrm{q}_{\mathrm{ij}}} \\
& =1
\end{aligned}
$$

So that $\sum_{\mathrm{i}, \mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|=\infty$, which contradicts (3.11). Hence $\left(f_{\mathrm{ij}}\right) \in \ell_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{q}\right)$. The proof is now
complete.
The following theorem gives a characterization of β-dual of $\ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$, when $\mathrm{p}_{\mathrm{ij}} \leq 1$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. To do this, the following lemma is needed.

Lemma 3.5: Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})=\bigcup_{\mathrm{n}=1}^{\infty}$ $\ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})_{\mathrm{n}}{ }^{-1 / \mathrm{p}_{\mathrm{ij}}}$.

Proof : Let $\mathrm{x} \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})$, then there is some $\mathrm{n} \in \mathrm{N}$ with $\left\|\mathrm{x}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}} \leq \mathrm{n} \quad$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. Hence $\left\|\mathrm{x}_{\mathrm{ij}}\right\| \mathrm{n}^{-1 / \mathrm{p}_{\mathrm{ij}}} \leq 1$ for all $\mathrm{x} \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})_{\mathrm{n}}-1 / \mathrm{p}_{\mathrm{ij}}$. On the other hand, if $\mathrm{x} \in \bigcup_{\mathrm{n}=1}^{\infty} \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})_{\mathrm{n}}-1 / \mathrm{p}_{\mathrm{ij}}$, then there are some $\mathrm{n} \in \mathrm{N}$ and $\mathrm{M}>1$ such \quad that $\left\|\mathrm{x}_{\mathrm{ij}}\right\|_{\mathrm{n}}-1 / \mathrm{p}_{\mathrm{ij}} \leq \mathrm{M}$ for every $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. The we have $\left\|\mathrm{x}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}} \leq \mathrm{n}$ $\mathrm{M}^{\mathrm{p}_{\mathrm{ij}}} \leq \mathrm{nM}^{\alpha}$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, where $\alpha=\sup _{\mathrm{ij}} \mathrm{p}^{\mathrm{ij} .}$. Hence $\mathrm{x} \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})$.

Theorem 3.6: Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers with $\mathrm{p}_{\mathrm{ij}} \leq 1$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$. Then $\ell^{2}(X, \lambda, p)^{\beta}=\ell_{\infty}^{2}\left(X^{\prime}, \lambda, p\right)$.

Proof : If $\left(f_{\mathrm{ij}}\right)=\ell^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$, then $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges for every $\quad \mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$ using the same proof as in Theorem 3.4, we have

$$
\begin{equation*}
\sum_{\mathrm{i}, \mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|<\infty \quad \forall \mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p}) \tag{3.20}
\end{equation*}
$$

If $\left(f_{\mathrm{ij}}\right) \notin \ell_{\infty}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$, it follows by Lemma 3.5 that $\sup _{\mathrm{ij}}\left\|f_{\mathrm{ij}}\right\| \mathrm{m}^{-1 / \mathrm{p}_{\mathrm{ij}}}=\infty$ for all $\quad \mathrm{m} \in \mathrm{N}$. For each $\mathrm{i} \in \mathrm{N}$, choose sequences $\left(\mathrm{m}_{\mathrm{i}}\right)$ and $\left(\mathrm{k}_{\mathrm{i}}\right)$ of positive integers with $\quad \mathrm{m}_{1}<\mathrm{m}_{2}<\ldots$. and $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots$. such that $\mathrm{m}_{\mathrm{i}}>2^{\mathrm{i}}$ and $\left\|f_{\mathrm{ij}}\right\| \mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}}>1$. Choose $\mathrm{x}_{\mathrm{ij}} \in \mathrm{X}$ with $\left\|\mathrm{x}_{\mathrm{ij}}\right\|=1$ such that

$$
\begin{gather*}
\mid f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right) \mathrm{m}^{-1 / \mathrm{p}_{\mathrm{ij}}}>1 \tag{3.21}\\
\text { Let } \mathrm{y}=\left(\mathrm{y}_{\mathrm{ij}}\right), \mathrm{y}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}} \mathrm{x}_{\mathrm{ij}} \text { if some } \mathrm{i} \text {, and } 0 \text { otherwise. Then }
\end{gather*}
$$

$$
\sum_{i+j \geq N}\left\|y_{i j}\right\|^{p_{i j}}=\sum_{i=1}^{\infty} \frac{1}{m_{i}}<
$$

$\sum_{\mathrm{i}=1}^{\infty} \frac{1}{2^{\mathrm{i}}}=1$, so that $\left(\mathrm{y}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$ and

$$
\begin{align*}
\sum_{\mathrm{i}, \mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right) & =\sum_{\mathrm{i}, \mathrm{j} \geq \mathrm{N}} \mid f_{\mathrm{k}_{\mathrm{i}}}\left(\mathrm{~m}_{\mathrm{i}}^{\left.-1 / \mathrm{p}_{\mathrm{k}_{\mathrm{i}}} \mathrm{x}_{\mathrm{k}_{\mathrm{i}}}\right) \mid}\right. \\
& =\sum_{\mathrm{i}, \mathrm{j} \geq \mathrm{N}} \mathrm{~m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{i}}}\left|f_{\mathrm{k}_{\mathrm{i}}}\left(\mathrm{x}_{\mathrm{k}_{\mathrm{i}}}\right)\right| \tag{3.22}\\
& =\infty(\text { by } 3.21),
\end{align*}
$$

and this is contradictory to (3.20), hence $\left(f_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})$.
Conversely assume that $\left(f_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$. By Lemma 3.3 there exists $\mathrm{M} \in \mathrm{N}$, such that $\sup _{\mathrm{ij}}\left\|f_{\mathrm{ij}}\right\|$ $\mathrm{m}^{-1 / \mathrm{p}_{\mathrm{ij}}}<\infty$, so there is a $\mathrm{K}>0$ such that

$$
\begin{equation*}
\left\|f_{\mathrm{ij}}\right\| \leq \mathrm{K} \mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}} \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{~N} \tag{3.23}
\end{equation*}
$$

Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})$. Then there is a $\mathrm{k}_{0} \in \mathrm{~N}$ such that $\mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}}\left\|\mathrm{x}_{\mathrm{ij}}\right\| \leq 1$ for all $\mathrm{k} \geq \mathrm{k}_{0}$. By $\mathrm{p}_{\mathrm{ij}} \leq 1$ for all $i, j \in N$, we have that for all $i, j \geq k_{0}$.

$$
\begin{equation*}
M^{1 / p_{i j}}\left\|x_{i j}\right\| \leq\left(M^{1 / p_{i j}}\left\|x_{i j}\right\|\right)^{p_{i j}}=M\left\|x_{i j}\right\|^{p_{i j}} \tag{3.24}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \leq \sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{0}}\left\|f_{\mathrm{ij}}\right\|\left\|\mathrm{x}_{\mathrm{ij}}\right\|+\sum_{\mathrm{k}_{0+1}}\left\|f_{\mathrm{ij}}\right\|\left\|\mathrm{x}_{\mathrm{ij}}\right\| \\
& \leq \sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{0}}\left\|f_{\mathrm{ij}}\right\|\left\|\mathrm{x}_{\mathrm{ij}}\right\|+\mathrm{K} \sum_{\mathrm{k}_{0+1} \leq \mathrm{i}+\mathrm{j} \leq \infty} \sum^{1 / \mathrm{p}_{\mathrm{ij}}}\left\|\mathrm{x}_{\mathrm{ij}}\right\| \quad \text { (by (3.23)) } \\
& \leq \sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{0}}\left\|f_{\mathrm{ij}}\right\|\left\|\mathrm{x}_{\mathrm{ij}}\right\|+\mathrm{KM} \sum_{\mathrm{k}_{0+1} \leq \mathrm{i}+\mathrm{j} \leq \infty}\left\|\mathrm{x}_{\mathrm{ij}}\right\|^{\mathrm{p}_{\mathrm{ij}}}<\infty(\text { by (3.24)) } \\
& \leq \infty \text {. }
\end{aligned}
$$

This implies that $\sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \infty} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges, hence $\left(f_{\mathrm{ij}}\right) \in \ell^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$.

$$
2 \leq i+j \leq \infty
$$

Theorem 3.7 : Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}=\mathrm{M}_{\infty}^{2}($ $\left.\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$.

Proof : If $\left(f_{\mathrm{ij}}\right)=\mathrm{M}_{\infty}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$, then $\sum \sum \quad\left\|f_{\mathrm{ij}}\right\| \mathrm{m}^{1 / \mathrm{p}_{\mathrm{ij}}}<\infty$ for all $\mathrm{m} \in \mathrm{N}$, we have that for each $\mathrm{x}=$ $i+j \geq N$
$\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})$, there is $\mathrm{m}_{0} \in \mathrm{~N}$ such that $\left\|\mathrm{x}_{\mathrm{ij}}\right\| \leq \mathrm{m}_{0}^{1 / \mathrm{p}_{\mathrm{ij}}}$ for all $\mathrm{i}, \mathrm{j} \in \mathrm{N}$, hence $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right) \leq \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} \sum_{\mathrm{ij}}\| \| \mathrm{x}_{\mathrm{ij}} \|$ $\leq \sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left\|f_{\mathrm{ij}}\right\| \mathrm{m}_{0}^{1 / \mathrm{p}_{\mathrm{ij}}}<\infty$, which imples that $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges, so that $\left(f_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$.

Conversely, assume that $\left(f_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$, then $\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges for all $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p})$ by using the same proof as in Theorem 3.4, we have

$$
\begin{equation*}
\sum_{\mathrm{i}+\mathrm{j} \geq \mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|<\infty \quad \forall \mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \ell_{\infty}^{2}(\mathrm{X}, \lambda, \mathrm{p}) \tag{3.26}
\end{equation*}
$$

If $\left(f_{i j}\right) \notin \mathbf{M}_{\infty}^{2}\left(\mathbf{X}^{\prime}, \lambda, p\right)$ then $\sum_{i+j \geq N}\left\|f_{i j}\right\| M^{1 / p_{i j}}=\infty$ for some $M \in N$. Then we can choose a sequence $i+j \geq N$
$\left(\mathrm{k}_{\mathrm{i}}\right)$ of positive integers with $\theta=\mathrm{k}_{0}<\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots$ such that

$$
\begin{equation*}
\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left\|f_{\mathrm{ij}}\right\| \mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.27}
\end{equation*}
$$

And we choose x_{ij} in X with $\left\|\mathrm{x}_{\mathrm{ij}}\right\|=1$ such that for all $\mathrm{i} \in \mathrm{N}$,

$$
\begin{equation*}
\sum_{i-1 \leq i+j \leq k_{i}}\left|\mathrm{f}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i} \tag{3.28}
\end{equation*}
$$

Put $y=\left(y_{i j}\right),\left(y_{i j}\right)=M^{1 / p_{i j}}{ }_{x_{i j}}$ clearly, $\mathrm{y} \in \ell_{\infty}^{2}(X, \lambda, p)$ and

$$
\sum \sum\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|>\quad \sum \sum \quad \mid \mathrm{f}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right) \mathrm{M}^{1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i} \forall \mathrm{i} \in \mathrm{~N}
$$

$$
\mathrm{i}, \mathrm{j} \geq \mathrm{N} \quad \mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}
$$

Hence $\sum \sum\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|=\infty$, which contradicts (3.26). Hence $\left(f_{\mathrm{ij}}\right) \in \mathrm{M}_{\infty}^{2}\left(\mathrm{X}^{\prime}, \lambda\right.$, p). The proof is now $i, j \geq N$ complete.

Theorem 3.8 : Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers. Then $\mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}=\mathrm{M}_{0}^{2}$ ($\left.\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$.

Proof : Suppose $\left(f_{\mathrm{ij}}\right)=\mathrm{M}_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$, then $\sum \sum\left\|f_{\mathrm{ij}}\right\| \mathrm{M}^{-1 / \mathrm{p}_{\mathrm{ij}}}<\infty$ for some $\mathrm{M} \in \mathrm{N}$. Let $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}$

$$
\mathrm{i}, \mathrm{j} \geq \mathrm{N}
$$

(X, λ, p). Then there is a positive integer K_{0} such that $\left\|x_{i j}\right\|^{p_{i j}}<\frac{1}{m}$ for all $k \geq K_{0}$, hence $\left\|x_{i j}\right\|<M^{-1 / p_{i j}}$ for all $i+j \geq K_{0}$. Then we have

$$
\begin{equation*}
\sum_{i+\mathrm{j}>\mathrm{k}_{0}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \leq \sum_{\mathrm{i}+\mathrm{j}>\mathrm{k}_{0}}\left\|f_{\mathrm{ij}}\right\|\left\|\mathrm{x}_{\mathrm{ij}}\right\| \leq \sum_{\mathrm{i}+\mathrm{j}>\mathrm{k}_{0}}\left\|f_{\mathrm{ij}}\right\| \mathrm{M}^{-1 / \mathrm{p}_{\mathrm{ij}}}<\infty \tag{3.30}
\end{equation*}
$$

It follows that $\sum \sum\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|$ converges, so that $\left(f_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$.

$$
\mathrm{i}+\mathrm{j}>\mathrm{N}
$$

On the other hand, assume that $\left(f_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}$, then $\sum_{\mathrm{i}+\mathrm{j}>\mathrm{N}} f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)$ converges for all $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda$, p). For each $\mathrm{x}=\left(\mathrm{x}_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)$, choose scalar sequence $\left(\mathrm{t}_{\mathrm{ij}}\right)$ with $\left|\mathrm{t}_{\mathrm{ij}}\right|=\mathrm{i}$ such that $f_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}\right)=\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|$ for all $\mathrm{i}, \mathrm{j} \in$ N. Since $\left(\mathrm{t}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}\right) \in \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$, by our assumption, we have $\sum \sum f_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}\right)$ converges, so that

$$
\sum_{\mathrm{i}+\mathrm{j}>\mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right|<\infty \quad \forall \mathrm{i}+\mathrm{j}>\mathrm{N},
$$

Now, suppose that $\left(f_{\mathrm{ij}}\right) \notin \mathrm{M}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p})$.Then $\sum \sum \quad\left\|\mathrm{f}_{\mathrm{ij}}\right\| \mathrm{m}^{-1 / \mathrm{p}_{\mathrm{ij}}}=\infty$ for all $\mathrm{m} \in \mathrm{N}$. Choose $\mathrm{m}_{1} \mathrm{k}_{1} \in \mathrm{~N}$ such $i+j \geq N$
that

$$
\begin{equation*}
\sum_{2 \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{1}}\left\|f_{\mathrm{ij}}\right\| \mathrm{m}_{1}^{-1 / \mathrm{p}_{\mathrm{ij}}}>1 \tag{3.32}
\end{equation*}
$$

And choose $m_{2}>m_{1}$ and $k_{2}>k_{1}$ such that

$$
\sum_{\leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{2}}\left\|f_{\mathrm{ij}}\right\| \mathrm{m}_{2}^{-1 / \mathrm{p}_{\mathrm{ij}}}>2
$$

Proceeding in this way, we can choose $\mathrm{m}_{1}<\mathrm{m}_{2}<\ldots \ldots$, and $0<\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots$ such that

$$
\text { and } 0<\mathrm{k}_{1}<\mathrm{k}_{2}<.
$$

$$
\begin{equation*}
\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left\|f_{\mathrm{ij}}\right\| \mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i}, \tag{3.34}
\end{equation*}
$$

Take x_{ij} in X with $\left\|\mathrm{x}_{\mathrm{ij}}\right\|=1$ for all $\mathrm{k}, \mathrm{k}_{\mathrm{i}-1}<\mathrm{k} \leq \mathrm{k}$, such that

$$
\begin{gather*}
\sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.35}\\
\text { Put } \mathrm{y}=\left(\mathrm{y}_{\mathrm{ij}}\right)=\mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}} \mathrm{x}_{\mathrm{ij}} \text { for } \mathrm{k}_{\mathrm{i}-1}<\mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}} \text {, then } \mathrm{y} \in \mathrm{c}_{0}^{2}(\mathrm{X}, \lambda, \mathrm{p}) \text { and }
\end{gather*}
$$

$$
\begin{equation*}
\sum_{\mathrm{i}+\mathrm{j}>\mathrm{N}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \geq \sum_{\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{i}+\mathrm{j} \leq \mathrm{k}_{\mathrm{i}}}\left|f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right| \mathrm{m}_{\mathrm{i}}^{-1 / \mathrm{p}_{\mathrm{ij}}}>\mathrm{i} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.36}
\end{equation*}
$$

Hence, we have $\sum \sum\left|f_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{ij}}\right)\right|=\infty$, which contradicts (3.31), therefore

$$
\left(f_{\mathrm{ij}}\right) \in \mathrm{M}_{\infty}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right)
$$

This completes the proof.
Theorem 3.9: Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{ij}}\right)$ be a bounded sequence of positive real numbers. Then $\mathrm{c}^{2}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}=M_{0}^{2}\left(X^{\prime}\right.$, $\lambda, \mathrm{p}) \bigcap \operatorname{cs}\left[\mathrm{X}^{\prime}\right]$.

Proof : Since $c_{0}(X, \lambda, p)=c_{0}^{2}(X, \lambda, p)+E$, where $E=\{e(x): x \in X\}$ it follows by proposition 3.1(iii) and Theorem 3.8 that $\mathrm{c}_{0}(\mathrm{X}, \lambda, \mathrm{p})^{\beta}=\mathrm{M}_{0}^{2}\left(\mathrm{X}^{\prime}, \lambda, \mathrm{p}\right) \bigcap \mathrm{E}^{\beta}$. It is obvious by definition that $\mathrm{E}^{\beta}=\left\{\left(f_{\mathrm{ij}}\right) \subset \mathrm{X}^{\prime}: \sum \sum f_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{ij}}\right)\right)$ $i+j>N$ converges for all $x \in X\}=\operatorname{cs}\left[X^{\prime}\right]$. Hence we have the theorem.

Acknowledgement : The author would like to thank the Thailand Research Fund for the financial support.

References

1. Gross-Erdmann, K.G. : "The structure of the sequence spaces of Maddox", Canada J. Math., 44, (1992), no. 2, 298-302.
2. Gupta, M.; Kamthan, P.K. and Patterson, J. : Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), no. 1, 152-168.
3. Maddox, I.J. : Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., (2) 18(1967), 345-355
4. $. . . \ldots \ldots . . .$. Paranormed sequence spaces generated infinite matrices, Math. Proe. Cambridge Philos. Soc., 64(1968), 335-340.
5. $\ldots \ldots \ldots \ldots .$. : Elements of Functional Analysts, Cambridge University Press, London, 1970.
6. Nakano, H. : Modulared sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
7. Simons, S. : The sequence spaces $\ell(\mathrm{px})$ and $\mathrm{m}(\mathrm{px})$, Proc. London Math. Soc., 2, 15(1963), 422-436.
8. Wu, C.X. and Bu,Q.Y.: Köthe dual of Banach sequence spaces $\ell_{\mathrm{p}}[\mathrm{X}](1 \leq \mathrm{p} \leq \infty)$ and Grothendieck space, Comment. Math. Univ. Carolin, 34(1993), 2, 265-273.
