β-Dual of Vector-Valued Double Sequence Spaces of Maddox

Naveen Kumar Srivastava Department of Mathematics St. Andrew's College, Gorakhpur, U.P.

Abstract

The β -dual of a vector-valued double sequence space is defined and studied we show that if an X-valued sequence space E is a BK-space having AK property, then the dual space of E and its β -dual are isometrically isomorphic. We also give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell^2(X, \lambda, p)$, $\ell_{\infty}^2(X, \lambda, p)$, $c_0^2(X, \lambda, p)$ and $c^2(X, \lambda, p)$.

Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_{ij})$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $X = (x_{ij})$ with x_{ij} in X for all $i, j \in N$. The X-valued sequence spaces of Maddox are defined as –

$$\begin{aligned} c_0^2 \left(X, \lambda, p \right) &= \left\{ x = (x_{ij}) : \lim_{i+j \to \infty} \left\| \lambda_{ij} x_{ij} \right\|^{p_{ij}} = 0 \right\} \\ c^2 \left(X, \lambda, p \right) &= \left\{ x = (x_{ij}) : \lim_{i+j \to \infty} \left\| \lambda_{ij} x_{ij} - a \right\|^{p_{ij}} = 0 \right\} \text{ for some } a \in x \\ \ell_\infty^2 \left(X, \lambda, p \right) &= \left\{ x = (x_{ij}) : \sup_{i,j} \left\| \lambda_{ij} x_{ij} \right\|^{p_{ij}} < \infty \right\} \\ \ell^2 \left(X, \lambda, p \right) &= \left\{ x = (x_{ij}) : \sum_{2 \le i+j \le N} \left\| \lambda_{ij} x_{ij} \right\|^{p_{ij}} < \infty \right\} \end{aligned}$$

When X = K, the scalar held of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, respectively. All of these spaces are known as the sequence Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$ and $\ell_{\infty}(p)$ and has given characterization of β -dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$, 1 , is defined by

$$\ell_{p}[\mathbf{X}] = \left\{ \mathbf{x} = (\mathbf{x}_{k}) : \sum_{k=1}^{\infty} |f(\mathbf{x}_{k})||^{p} < \infty \text{ for each } f \in \mathbf{X}' \right\},$$
(1.2)

In this paper, the β -dual of a vector-valued sequence space is defined and studied and we give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell^2(X, \lambda, p)$, $\ell^2_{\infty}(X, \lambda, p)$, $c_0^2(X, \lambda, p)$ and $c^2(x, \lambda, p)$. Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space. Let W(X) and $\phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $i, j \in N$ we write that x_{ij} stand for the i, j^{th} term of x. For $x \in X$ and $i, j \in N$, we let

 $e^{(i,j)}(x) \text{ be the sequence } \begin{vmatrix} 0 & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \dots & \dots & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & x \dots & x \dots & 0 \end{vmatrix} \text{ with } x \text{ in the } i, j^{\text{th}} \text{ position and let } e(x) \text{ be the sequence } i = 0$

 $\begin{vmatrix} x, x, x, \dots, 0 \\ x, x, x, \dots, 0 \\ . For a fixed scalar sequence <math>u = (u_{ij})$ the sequence space E_u^2 is defined as

$$E_{u}^{2} = \left\{ x = (x_{ij}) \in W^{2}(X) : (u_{ij} x_{ij}) \in E^{2} \right\}$$
(2.1)

An X-valued sequence space E is said to be normal if $(y_{ij}) \in E^2$ whenever $||y_{ij}|| \leq ||x_{ij}||$ for all $i,j \in N$ and $(x_{ij}) \in E$. Suppose that the X-valued sequence space E is endowed with linear topology τ . The E is called a K-space if, for each $i,j \in N$, the i,j^{th} coordinate mapping $p_{i,j} : E \to X$, defined by $p_{ij}(x) = x_{ij}$, is continuous on E. In addition, if (E, τ) is a Frecher (Banach) space then E is called an FK-(BK)-space. Now, suppose that E contains $\phi(X)$, then E is said to have property AK if $\sum_{2 \leq i+j \leq N} e^{(ij)}(x_{ij}) \to x$ in E as $N \to \infty$ for every $x = (x_{ij}) \in E^2$.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0^2(X, \lambda, p)$, we consider the function $g(x) = \sup_{ij} ||x_{ij}||^{p_{ij}/M}$, where $M = \max[1.\sup_{ij}p_{ij}]$, as a paranorm on $c_0^2(X, \lambda, p)$ and it is known that $c_0^2(X, \lambda, p)$ is an FK-space having property AK under the paranorm p defined as above in $\ell^2(X, \lambda, p)$ we consider it as a paranormed sequence space with the paranorm given by $||x_{ij}|| = \left(\sum_{i+j\geq N} ||\lambda_{ij}x_{ij}||^{p_{ij}}\right)^{1/M}$. It is known that $\ell^2(X, \lambda, p)$

 λ , p) is an FK-space under the paranorm defined as above.

For an X-valued sequence space E, define its Köthe dual with respect to the dual pair (X, X') (see [2]) as follows :

$$\mathbf{E}^{\mathbf{X}}(\mathbf{X}, \mathbf{X}') = \left\{ (f_k) \subset \mathbf{X}' : \sum_{k=1}^{\infty} |f_k(\mathbf{x}_k)| < \infty \quad \forall \mathbf{x} = (\mathbf{x}_k) \in \mathbf{E} \right\}$$
(2.2)

In this paper, we denote $E^{X}|(X, X')|$ by E^{α} and it is called the α -dual of E. For a sequence space E, the β -dual of E is defined by

$$\mathbf{E}^{\beta} = \left\{ (f_k) \subset \mathbf{X}' \colon \sum_{k=1}^{\infty} f_k(\mathbf{x}_k) \text{ converges } \forall (\mathbf{x}_k) \in \mathbf{E} \right\}$$
(2.3)

It is easy to see that $E^{\alpha} \leq E^{\beta}$.

For the sake of completeness we introduce some further sequence spaces that will be considered as β -dual of the vector-valued sequence spaces of Maddox :

$$\begin{split} M_0^2(x,\lambda,p) &= \left\{ x = (x_{ij}) : \sum_{i+j \ge N} // x_{ij} \parallel^{M^{-l/p_{ij}}} < \infty \text{ for some } M \in N \right\}; \\ M_\infty^2(x,\lambda,p) &= \left\{ x = (x_{ij}) : \sum_{i+j \ge N} // \lambda_{ij} x_{ij} \parallel^{n^{-l/p_{ij}}} < \infty \forall n \in N \right\}; \end{split}$$

$$\ell_{0}^{2}(\mathbf{X}, \lambda, \mathbf{p}) = \left\{ \mathbf{x} = (\mathbf{x}_{ij}) : \sum_{i+j \ge N} //\lambda_{ij} \mathbf{x}_{ij} \|^{p_{ij}} \mathbf{M}^{-p_{ij}} < \infty \text{ for some } \mathbf{M} \in \mathbf{N} \right\}; p_{ij} > 1 \quad \forall \quad i, j \in \mathbf{N}$$
$$\operatorname{cs}[\mathbf{X}'] = \left\{ (f_{ij}) \subset \mathbf{X}' : \sum_{i+j \ge N} f_{ij}(\mathbf{x}) \quad \text{converges } \forall \mathbf{x} \in \mathbf{X} \right\}$$
(2.4)

When X = K, the scalar field of X, the corresponding first two sequence spaces are written as $M_0(p)$ and M = (p), respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main Results

We begin by giving some general properties of β -dual of vector-valued sequence spaces.

Proposition 3.1 : Let X be a Banach space and let E^2 , E_1^2 and E_2^2 be X-valued sequence spaces.

Then

(i)
$${}^{2}E^{\alpha} \subseteq {}^{2}E^{\beta}$$

(ii) If $E_{1}^{2} \subseteq E_{2}^{2}$ then ${}^{2}E_{2}^{\beta} \subseteq {}^{2}E_{1}^{\beta}$
(iii) If $E^{2} = E_{1}^{2} + E_{2}^{2}$, then ${}^{2}E^{\beta} = {}^{2}E_{1}^{\beta} {}^{2}E_{2}^{\beta}$
(iv) If E is normal then ${}^{2}E^{\alpha} = {}^{2}E^{\beta}$

Proof : Assertions (i), (ii) and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that ${}^{2}E^{\beta} = {}^{2}E^{\alpha}$. Let $f_{ij} \in {}^{2}E^{\beta}$ and $x = (x_{ij}) \in E^{2}$. Then $\sum \sum f_{ij}(x_{ij})$ converges. Choose a $i+j \ge N$ scalar sequence (t_{ij}) with $|t_{ij}| = 1$ and $f_{ij}(t_{ij}X_{ij}) = |f_{ij}(x_{ij})|$ for all $i, j \in N$. Since E is normal, $(t_{ij}x_{ij}) \in E$. It follows that $\sum \sum f_{ij}(x_{ij})$ converges, hence $(f_{ij}) \in {}^{2}E^{\alpha}$.

i+j≥N

It E is a BK-space, we define a norm on E^{β} by the formula

$$\|(f_{ij})\|_{2} = \sup_{\substack{|\mathbf{x}_{ij}| \leq 1 \\ i+j \geq N}} f_{ij}(\mathbf{x}_{ij})$$
(3.1)

It is easy to show that $\| \cdot \|_{2_F \beta}$ is a norm on ${}^2 E^{\beta}$.

Next, we give a relationship between β -dual of a sequence space and its continuous dual. Indeed, we need a lemma.

Lemma 3.2 : Let E be an X-valued sequence space which is an FK-space containing $\phi(X)$. Then for each $i, j \in N$, the mapping $T_{i,j} : X \rightarrow E$, defined by $T_{ij}x = e^{ij}(x)$, is continuous.

Proof : Let $V = e^{ij}(x) : x \rightarrow X$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping $p_{ij} : V \rightarrow X$ is continuous and bijective. It follows from the open mapping theorem that p_{ij} is open, which implies that $p_{ij}^1 : X \rightarrow V$ is continuous. But since $T_{ij} = p_{ij}^1$, we thus obtain that T_{ij} is continuous.

Theorem 3.3 : If E is a BK-space having property AK, then ${}^{2}E^{\beta}$ and ${}^{2}E'$ are isometrically isomorphic. **Proof :** We first show that for $x = (x_{ij}) \in E^{2}$ and $f \in {}^{2}E'$.

$$f(\mathbf{x}) = \sum_{i+j \ge N} f(e^{ij}(\mathbf{x}_{ij}))$$
(3.2)

To show this, let $x = (x_{ij}) \in E$ and $f \in E'$. Since E has property AK,

$$X = \lim_{m+n \to \infty} \sum_{2 \le i+j \le N} (e_{ij}(x_{ij}))$$
(3.3)

By the continuity of f, it follows that

$$f(\mathbf{x}) = \sum_{\substack{2 \le i+j \le m+n}} f(e^{ij}(\mathbf{x}_{ij})) = \sum_{\substack{j \ge N}} f(e^{ij}(\mathbf{x}_{ij}))$$
(3.4)

so (3.2) is obtained. For each $i,j \in N$, let $T_{i,j} : X \to E$ be defined as in Lemma 3.2. Since E is a BK-space, be Lemma 3.2, T_{ij} is continuous. Hence $f \circ T_{i,j} \in X'$ for all $i,j \in N$. It follows from (3.2) that

$$f(\mathbf{x}) = (f \circ \mathbf{T}_{i,j}) (\mathbf{x}_{ij}) \quad \forall \mathbf{x} = (\mathbf{x}_{ij}) \in \mathbf{E}$$
(3.5)

It implies, by (3.5), thet $(f \circ T_{ij})_{i,j=1}^{\infty} \in {}^2E^{\beta}$. Define $\varphi : {}^2E' \rightarrow {}^2E^{\beta}$ by

$$\varphi(f) = (f \circ \mathbf{T}_{ij})_{i,j=1}^{\infty} \quad \forall f \in {}^{2}\mathbf{E}'$$
(3.6)

It is easy to see that φ is linear. Now, we show that φ is onto. Let $(f_{ij}) \in {}^2 E^{\beta}$. Define $f : E \to K$, where K is the scalar field of X, by

$$f(\mathbf{x}) = \sum_{i} \sum_{i \neq j} f_{ij}(\mathbf{x}_{ij}) \quad \forall \mathbf{x} = (\mathbf{x}_{ij}) \in \mathbf{E}^2$$
(3.7)

For each $i, j \in N$, let p_{ij} be the (i, j)th coordinate mapping on E. Then we have

$$f(\mathbf{x}) = \sum_{i+j \ge N} (f_{ij} \circ p_{ij}) = \lim_{m+n \to \infty} \sum_{i+j \ge N} (f \circ p_{ij})(\mathbf{x}) \quad (3.8)$$

Since f_{ij} and p_{ij} are continuous linear, so is also continuous $f \circ p_{ij}$. It follows by Banach Steinhaus theorem that $f \in {}^2 E'$ and we have by (3.7) that; for each $i, j \in N$ and each $z \in X$, $(f \circ T_{ij})(z) = f(e^{(ij)}(z)) = f_{ij}(z)$. Thus $f \circ T_{ij} = f_{ij}$ for all $i, j \in N$, which implies that $\varphi(f) = (f_{ij})$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E$, we have

$$\begin{split} \|f\| &= \sup_{\substack{|\langle x_{ij}\rangle| \models 1}} |f(x_{ij})| \\ &= \sup_{\substack{|\langle x_{ij}\rangle| \models 1}} |\sum \sum_{\substack{i+j \ge N}} (f(e^{ij})(x_{ij}))| \\ &= \sup_{\substack{|\langle x_{ij}\rangle| \models 1}} |\sum \sum_{\substack{i+j \ge N}} (f \circ T_{ij})(x_{ij})| \end{split}$$
(3.9)

$$= \| (f \circ T_{ij})_{i,j=1}^{\infty} \|_{2_{E}\beta}$$
$$= \| \varphi(f) \|_{2_{E}\beta}.$$

Hence ϕ is isometry. Therefore, $\phi: {}^{2}E' \rightarrow {}^{2}E^{\beta}$ is an isometrically isomorphism from E' onto E^{β} . This completes the proof.

We next give characterizations of β -dual of the sequence space ℓ (X, p) when $p_{ij} > 1$ for all $i, j \in N$.

Theorem 3.4 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers with $p_{ij} > 1$ for all $i, j \in N$. Then $\ell (X, \lambda, p)^{\beta} = \ell_0^2 (X', \lambda, q)$ where $q = (q_{ij})$ is a sequence of positive real numbers such that $\frac{1}{p_{ij}} + \frac{1}{q_{ij}} = 1$ for all $i, j \in N$.

Proof : Suppose that $(f_{ij}) \in \ell_0^2(X', \lambda, q)$. Then $\sum_{i+j\geq N} \|f_{ij}\|^{q_{ij}} M^{-q_{ij}} < \infty$ for some $M \in \mathbb{N}$. Then for

each $x = (x_{ij}) \in \ell(X, \lambda, p)$, we have

$$\begin{split} \sum_{i+j\geq N} |f_{ij}(x_{ij})| &\leq \sum_{2\leq i+j\geq N} ||f_{ij}|| \ M^{-1/p_{ij}} \ M^{1/p_{ij}} \ ||\lambda_{ij} x_{ij}|| \\ &\leq \sum_{i+j\geq N} \left(\left\| f_{ij} \right\|^{q_{ij}} M^{-q_{ij}/p_{ij}} + M \left\| \lambda_{ij} x_{ij} \right\|^{p_{ij}} \right) \\ &\leq \sum_{i+j\geq N} ||f_{ij}|| \ M^{-(q_{ij}-1)} + M \sum_{2\leq i+j\geq N} \left\| \lambda_{ij} x_{ij} \right\|^{p_{ij}} \end{split}$$

which implies that $\sum_{i+j\geq N} f_{ij}(\lambda_{ij}x_{ij})$ converges, so $(f_{ij}) < \ell_0^2 (X, \lambda, p)^{\beta}$.

On the other hand, assume that $(f_{ij}) \in \ell^2(\mathbf{X}, \lambda, p)^{\beta}$, then $\sum_{i+j \geq N} f_{ij}(\lambda_{ij}x_{ij})$ converges for all $\mathbf{x} = (\mathbf{x}_{ij}) \in \ell^2(\mathbf{X}, \lambda, p)$.

For each $\mathbf{x} = (\mathbf{x}_{ij}) \in \ell^2(\mathbf{X}, \lambda, \mathbf{p})$ choose scalar sequence (\mathbf{t}_{ij}) with $|\mathbf{t}_{ij}| = 1$ such that $f_{ij}(\mathbf{t}_{ij}\mathbf{x}_{ij}) = |f_{ij}(\mathbf{x}_{ij})|$ for all $i, j \in \mathbf{N}$. Since $(\mathbf{t}_{ij}\mathbf{x}_{ij}) \in \ell^2(\mathbf{X}, \lambda, \mathbf{p})$, by our assumption, we have $\sum_{i+j\geq \mathbf{N}} f_{ij}(\lambda_{ij}\mathbf{x}_{ij})$ converges, so that $i+j\geq \mathbf{N}$

$$\sum_{\substack{i \neq j \geq N}} |f_{ij}(x_{ij})| < \infty \ \forall x \in \ell^2 (X, \lambda, p)$$
 (3.11)

We want to show that $(f_{ij}) \in \ell_0^2(X', \lambda, q)$, that is $\sum_{i+j \ge N} \|f_{ij}\|^{q_{ij}} M^{-q_{ij}} < \infty$ for some $M \in N$.

If it is not true, then

$$\sum_{i+j\geq N} \left\| f_{ij} \right\|^{q_{ij}} m^{-q_{ij}} < \infty \ \forall \ m \in N$$
(3.12)

It implies by (3.12) that for each $i, j \in N$,

$$\|fi'i''\|^{q_i'i''} M^{-q_i'i''} = \infty \ \forall r,s \in \mathbb{N}$$
 (3.13)

By (3.12), let r,s = 1, then there is a $i_1, j_1 \in N$

$$\sum_{2 \le i+j \le i} \sum_{1+j} \|f_{ij}\|^{q_{ij}} (r+s)^{-q_{ij}} > 1$$
(3.14)

By (3.13), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{\substack{k_1 \le i+j \le k_2}} \|f_{ij}\|^{q_{ij}} m_2^{-q_{ij}} > 1$$
(3.15)

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $i = k_0 < k_1 < k_2 < \dots$ and $m_1 < m_2 < \dots$, such that $m_1 > 2^i$ and

$$\sum_{\substack{k_{i-1} \le i+j \le k_i}} \|f_{ij}\|^{q_{ij}} m_i^{-q_{ij}} > 1$$
(3.16)

For each $i \in N$, choose $x_{i,j}$ in X with $||x_{ij}||=1$ for all $i,j \in N$, $K_{i-1} < k \le k$, such that

$$\sum_{\substack{k_{i-1} \le i+j \le k_i}} |f_{ij}(x_{ij})|^{q_{ij}} m^{-q_{ij}} > 1$$
(3.17)

 $\text{Let } a_i = \sum_{k_{i-1} \leq i+j \leq k_i} \sum_{i=1}^{n-1} |f_{ij}(x_{ij})|^{q_{ij}} m_i^{-q_{ij}} \text{. Put } y = (y_{ij}), \ (y_{ij}) = a_i^{-1} m^{-q_{ij}} |f_{ij}(x_{ij})|^{q_{i-1}, j-1} x_{ij} \text{ for all } k \in \mathbb{N} \text{ with } k_{i-1} = (y_{ij}), \ (y_{ij}) = a_i^{-1} m^{-q_{ij}} |f_{ij}(x_{ij})|^{q_{i-1}, j-1} x_{ij} \text{ for all } k \in \mathbb{N} \text{ with } k_{i-1} = (y_{ij}), \ (y_{ij}) = a_i^{-1} m^{-q_{ij}} |f_{ij}(x_{ij})|^{q_{i-1}, j-1} x_{ij} \text{ for all } k \in \mathbb{N} \text{ with } k_{i-1} = (y_{ij}), \ (y_{ij}) = (y_{ij}), \ (y_{ij}) = (y_{ij}), \ (y_{ij}) = (y_{ij}) = (y_{ij}) + (y_{ij}) = (y_{ij}) + (y_{ij})$

 $< k \le k_i$. By using the fact that $p_k q_k = p_k + q_k$ and $p_k(q_k - 1) = q_k$ for all $i, j \in N$, we have that for each $i \in N$,

$$\begin{split} \sum \sum_{k_{i-1} \leq i+j \leq k_{i}} \|f_{ij}\|^{p_{ij}} &= \sum_{k_{i-1} \leq i+j \leq k_{i}} \|a_{i}^{-1}m_{i}^{-q_{ij}} / f_{ij}(x_{ij})|^{q_{i-1,j-1}} x_{ij}\|^{q_{ij}} \\ &= \sum_{k_{i-1} \leq i+j \leq k_{i}} a_{i}^{-p_{ij}}m_{i}^{-p_{ij}} q_{ij} / f_{ij}(x_{ij})|^{q_{ij}} \\ &= \sum_{k_{i-1} \leq i+j \leq k_{i}} a_{i}^{-p_{ij}}m_{i}^{-p_{ij}} m_{i}^{p_{ij}}m_{i}^{q_{i-1,j-1}} / f_{ij}(x_{ij})|^{q_{ij}} \\ &\leq a_{i}^{-1}m_{i}^{-1} \sum_{k_{i-1} \leq i+j \leq k_{i}} m_{i}^{-q_{ij}} / f_{ij}(x_{ij})|^{q_{ij}} \quad (3.18) \\ &\leq a_{i}^{-1}m_{i}^{-1}a_{i} \\ &\leq m_{i}^{-1} \end{split}$$

So we have that $\sum_{i,j \ge N} \|y_{ij}\|^{p_{ij}} \le \sum_{2 \le i+j \le N} \frac{1}{2^i} < \infty$. Hence, $y = (y_{ij})$. For each $i \in N$, we have mm

$$\begin{split} \sum \sum_{\substack{k_{i-1} \leq i+j \leq k_{i} \\ k_{i-1} \leq i+j \leq k_{i} }} |f_{ij}(y_{ij})| &= \sum_{\substack{k_{i-1} \leq i+j \leq k_{i} \\ k_{i-1} \leq i+j \leq k_{i} }} |f_{ij}| (a_{i}^{-1}m_{i}^{-q_{ij}})| |f_{ij}(x_{ij})|^{q_{i-1,j-1}} x_{ij}| \\ &= \sum_{\substack{k_{i-1} \leq i+j \leq k_{i} \\ k_{i-1} \leq i+j \leq k_{i} }} a_{i}^{-1}m_{i}^{-q_{ij}}/f_{ij}(y_{ij})|^{q_{ij}} \qquad (3.19) \\ &= a_{i}^{-1}\sum_{\substack{k_{i-1} \leq i+j \leq k_{i} \\ k_{i-1} \leq i+j \leq k_{i} }} m_{i}^{-q_{ij}}/f_{ij}(y_{ij})|^{q_{ij}} \\ &= 1 \end{split}$$

So that $\sum_{i,j\geq N} |f_{ij}(y_{ij})| = \infty$, which contradicts (3.11). Hence $(f_{ij}) \in \ell_0^2(X', \lambda, q)$. The proof is now

complete.

The following theorem gives a characterization of β -dual of ℓ^2 (X, λ , p), when $p_{ij} \leq 1$ for all $i, j \in N$. To do this, the following lemma is needed.

Lemma 3.5 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}^2(X, \lambda, p) = \bigcup_{n=1}^{\infty} \ell_{\infty}^2(X, \lambda, p)_{n-1/p_{ij}}$.

Proof: Let $x \in \ell_{\infty}^{2}(X, \lambda, p)$, then there is some $n \in N$ with $||x_{ij}||^{p_{ij}} \leq n$ for all $i, j \in N$. Hence $||x_{ij}|| n^{-1/p_{ij}} \leq 1$ for all $x \in \ell_{\infty}^{2}(X, \lambda, p)_{n^{-1/p_{ij}}}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}^{2}(X, \lambda, p)_{n^{-1/p_{ij}}}$, then there are some $n \in N$ and M > 1 such that $||x_{ij}||_{n^{-1/p_{ij}}} \leq M$ for every $i, j \in N$. The we have $||x_{ij}||^{p_{ij}} \leq n$ $M^{p_{ij}} \leq n M^{\alpha}$ for all $i, j \in N$, where $\alpha = \sup_{ij} p^{ij}$. Hence $x \in \ell_{\infty}^{2}(X, \lambda, p)$.

Theorem 3.6 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers with $p_{ij} \leq 1$ for all $i, j \in N$. Then $\ell^2(X, \lambda, p)^\beta = \ell_\infty^2(X', \lambda, p)$.

Proof : If
$$(f_{ij}) = \ell^2 (X, \lambda, p)^{\beta}$$
, then $\sum_{i+j \ge N} f_{ij}(x_{ij})$ converges for every $x = (x_{ij}) \in \ell^2 (X, \lambda, p)$

using the same proof as in Theorem 3.4, we have

$$\sum_{i,j\geq N} |f_{ij}(\mathbf{x}_{ij})| < \infty \quad \forall \mathbf{x} = (\mathbf{x}_{ij}) \in \ell^2 (\mathbf{X}, \lambda, \mathbf{p})$$
(3.20)

If $(f_{ij}) \notin \ell_{\infty}^{2}(X', \lambda, p)$, it follows by Lemma 3.5 that $\sup_{ij} ||f_{ij}|| m^{-1/p_{ij}} = \infty$ for all $m \in N$. For each $i \in N$, choose sequences (m_{i}) and (k_{i}) of positive integers with $m_{1} < m_{2} < \dots$ and $k_{1} < k_{2} < \dots$ such that $m_{i} > 2^{i}$ and $||f_{ij}|| m_{i}^{-1/p_{ij}} > 1$. Choose $x_{ij} \in X$ with $||x_{ij}|| = 1$ such that

$$|f_{ij}(x_{ij})| m^{-l/p_{ij}} > 1$$
(3.21)
Let $y = (y_{ij}), y_{ij} = m_i^{-l/p_{ij}} x_{ij}$ if some i, and 0 otherwise. Then
$$\sum_{i+j\ge N} \|y_{ij}\|^{p_{ij}} = \sum_{i=1}^{\infty} \frac{1}{m_i} < 0$$

 $\sum_{i=1}^{\infty} \frac{1}{2^{i}} = 1, \text{ so that } (y_{ij}) \in \ell^{2} (X, \lambda, p) \text{ and }$

$$\sum_{i,j\geq N} f_{ij}(y_{ij}) = \sum_{i,j\geq N} \left| f_{ki} \left(m_i^{-1/p_{k_i}} x_{k_i} \right) \right|$$
$$= \sum_{i,j\geq N} m_i^{-1/p_{k_i}} \left| f_{k_i} \left(x_{k_i} \right) \right|$$
$$= \overset{\infty}{\longrightarrow} (by \ 3.21),$$
$$(3.22)$$

and this is contradictory to (3.20), hence $(f_{ij}) \in \ell_{\infty}^{2}(X, \lambda, p)$.

Conversely assume that $(f_{ij}) \in \ell_{\infty}^2(\mathbf{X}', \lambda, p)$. By Lemma 3.3 there exists $M \in N$, such that $\sup_{ij} ||f_{ij}|| m^{-1/p_{ij}} < \infty$, so there is a K > 0 such that $1/p_{ij}$:

$$||f_{ij}|| \leq K \mathbf{M}^{1/\mathbf{P}\mathbf{I}\mathbf{J}} \quad \forall \ \mathbf{i}, \mathbf{j} \in \mathbf{N}.$$

$$(3.23)$$

Let $x = (x_{ij}) \in \ell^2$ (X, λ , p). Then there is a $k_0 \in N$ such that $M^{1/p_i j} ||x_{ij}|| \le 1$ for all $k \ge k_0$. By $p_{ij} \le 1$ for all $i, j \in N$, we have that for all $i, j \ge k_0$.

$$\mathbf{M}^{1/p_{ij}} \| \mathbf{x}_{ij} \| \leq \left(\mathbf{M}^{1/p_{ij}} \| \mathbf{x}_{ij} \| \right)^{p_{ij}} = \mathbf{M} \| \mathbf{x}_{ij} \|^{p_{ij}}$$
(3.24)

Then

$$\begin{split} \sum \sum_{i+j \ge N} |f_{ij}(\mathbf{x}_{ij})| &\leq \sum \sum_{\substack{2 \le i+j \le k_0 \\ 2 \le i+j \le k_0 \\ \leq \sum \sum_{\substack{1 \le i+j \le k_0 \\ 2 \le i+j \le k_0 \\ \leq \sum \sum_{\substack{1 \le i+j \le k_0 \\ 2 \le i+j \le k_0 \\ \leq \infty \\ \leq \infty \\ \leq \infty \\ This implies that \sum \sum_{\substack{2 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ \leq \infty \\ \leq \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ \leq \infty \\ \leq \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ \leq \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ = \infty \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ This implies \\ This implies that \sum \sum_{\substack{1 \le i+j \le \infty \\ 2 \le i+j \le \infty \\ This implies \\ Thi$$

Theorem 3.7 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers. Then $\ell^2_{\infty}(X, \lambda, p)^{\beta} = M^2_{\infty}(X', \lambda, p)$.

Proof : If $(f_{ij}) = M_{\infty}^2(X', \lambda, p)$, then $\sum_{i+j\geq N} ||f_{ij}|| m^{1/p_{ij}} < \infty$ for all $m \in N$, we have that for each $x = (i+j) < \infty$

 $(x_{ij}) \in \ell_{\infty}^{2}(X, \lambda, p), \text{ there is } m_{0} \in N \text{ such that } ||x_{ij}|| \leq m_{0}^{1/p_{ij}} \text{ for all } i,j \in N, \text{ hence } \sum_{i+j \geq N} f_{ij}(x_{ij}) \leq \sum_{i+j \geq N} ||f_{ij}|| ||x_{ij}||$

 $\leq \sum_{i+j\geq N} ||f_{ij}|| m_0^{1/p_{ij}} < \infty, \text{ which imples that } \sum_{i+j\geq N} f_{ij}(x_{ij}) \text{ converges, so that } (f_{ij}) \in \ell_{\infty}^2(X, \lambda, p)^{\beta}.$

Conversely, assume that $(f_{ij}) \in \ell_{\infty}^{2}(X, \lambda, p)^{\beta}$, then $\sum_{i+j \geq N} f_{ij}(x_{ij})$ converges for all $x = (x_{ij}) \in \ell_{\infty}^{2}(X, \lambda, p)$

by using the same proof as in Theorem 3.4, we have

$$\sum_{i+j\geq N} |f_{ij}(x_{ij})| < \infty \qquad \qquad \forall x = (x_{ij}) \in \ell_{\infty}^{2}(X, \lambda, p) \qquad (3.26)$$

If $(f_{ij}) \notin M_{\infty}^2(X', \lambda, p)$ then $\sum_{i+j \ge N} ||f_{ij}|| M^{1/p_{ij}} = \infty$ for some $M \in \mathbb{N}$. Then we can choose a sequence

(k_i) of positive integers with $\theta = k_0 < k_1 < k_2 < \dots$ such that

$$\sum_{\substack{k_{i-1} \leq i+j \leq k_i}} \|f_{ij}\| \mathbf{M}^{1/p_{ij}} > i \quad \forall i \in \mathbb{N}$$

$$(3.27)$$

And we choose x_{ij} in X with $||x_{ij}|| = 1$ such that for all $i \in N$,

$$\sum_{\substack{k_{i-1} \leq i+j \leq k_i}} |f_{ij}(x_{ij})| \ M^{l/p_{ij}} > i$$

$$(3.28)$$

Put
$$y = (y_{ij}), (y_{ij}) = M^{1/p_{ij}} x_{ij}$$
 clearly, $y \in \ell_{\infty}^{2}(X, \lambda, p)$ and

$$\sum_{i,j \ge N} |f_{ij}(y_{ij})| > \sum_{k_{i-1} \le i+j \le k_{i}} |f_{ij}(x_{ij})| M^{1/p_{ij}} > i \forall i \in N$$
(3.29)

Hence $\sum \sum_{i,j \ge N} |f_{ij}(y_{ij})| = \infty$, which contradicts (3.26). Hence $(f_{ij}) \in \mathbf{M}_{\infty}^2$ (X', λ , p). The proof is now $i, j \ge N$

complete.

Theorem 3.8 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers. Then $c_0^2 (X, \lambda, p)^{\beta} = M_0^2 (X', \lambda, p)$.

Proof : Suppose $(f_{ij}) = M_0^2 (X', \lambda, p)$, then $\sum_{i,j \ge N} \|f_{ij}\| M^{-1/p_{ij}} < \infty$ for some $M \in N$. Let $x = (x_{ij}) \in c_0^2$

 (X, λ, p) . Then there is a positive integer K_0 such that $||x_{ij}||^{p_{ij}} < \frac{1}{m}$ for all $k \ge K_0$, hence $||x_{ij}|| < M^{-1/p_{ij}}$ for all $i+j \ge K_0$. Then we have

$$\sum_{i+j>k_0} |f_{ij}(\mathbf{x}_{ij})| \le \sum_{i+j>k_0} ||f_{ij}|| \, ||\mathbf{x}_{ij}|| \le \sum_{i+j>k_0} ||f_{ij}|| \, \mathbf{M}^{-l/p_{ij}} < \infty$$
(3.30)

It follows that $\sum_{i+j>N} |f_{ij}(x_{ij})|$ converges, so that $(f_{ij}) \in c_0^2(X, \lambda, p)^{\beta}$.

On the other hand, assume that $(f_{ij}) \in c_0^2(X, \lambda, p)^{\beta}$, then $\sum_{i+j>N} f_{ij}(x_{ij})$ converges for all $x=(x_{ij}) \in c_0^2(X, \lambda, p)^{\beta}$.

p). For each $\mathbf{x} = (\mathbf{x}_{ij}) \in \mathbf{c}_0^2$ (X', λ , p), choose scalar sequence (t_{ij}) with $|t_{ij}| = \mathbf{i}$ such that $f_{ij}(t_{ij} | \mathbf{x}_{ij}) = |f_{ij}(\mathbf{x}_{ij})|$ for all $\mathbf{i}, \mathbf{j} \in \mathbf{N}$. Since $(t_{ij}\mathbf{x}_{ij}) \in \mathbf{c}_0^2$ (X, λ , p), by our assumption, we have $\sum \sum f_{ij}(t_{ij}\mathbf{x}_{ij})$ converges, so that

$$\sum_{i+j>N} |f_{ij}(x_{ij})| < \infty \qquad \forall x \in c_0^2(X, \lambda, p)$$
(3.31)

Now, suppose that $(f_{ij}) \notin M_0^2(X, \lambda, p)$. Then $\sum_{i+j \ge N} ||f_{ij}|| m^{-1/p_{ij}} = \infty$ for all $m \in N$. Choose $m_1 k_1 \in N$ such

that

$$\sum_{2 \le i+j \le k_1} \frac{-1/p_{ij}}{||f_{ij}||} m_1 > 1$$
(3.32)

And choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{\substack{k_1 \leq i+j \leq k_2}} ||f_{ij}|| \operatorname{m}_2^{-i/\operatorname{Pij}} > 2 \tag{3.33}$$

Proceeding in this way, we can choose $m_1 < m_2 < \ldots \ldots$, and $0 < k_1 < k_2 < \ldots$ such that

$$\sum_{1 \le i+i \le k:} ||f_{ij}|| m_i^{-1/p_{1j}} > i,$$
(3.34)

 $k_{i-1} {\leq} i {+} j {\leq} k_i$ Take x_{ij} in X with $||x_{ij}|| = 1$ for all k, $k_{i-1} {<} k {\leq} k,$ such that

$$\sum_{\substack{i=1 \leq i+j \leq k_i}} |f_{ij}(\mathbf{x}_{ij})| \ \mathbf{m}_i^{-1/p_{ij}} > i \quad \forall i \in \mathbb{N}$$

$$(3.35)$$

 $Put \ y = (y_{ij}) = m_i^{-1/p_{ij}} x_{ij} \text{ for } k_{i-1} < i+j \le k_i, \text{ then } y \in c_0^2(X, \lambda, p) \text{ and}$ $\sum_{i+j>N} |f_{ij}(x_{ij})| \ge \sum_{k_{i-1} \le i+j \le k_i} |f_{ij}(x_{ij})| \ m_i^{-1/p_{ij}} > i \quad \forall i \in \mathbb{N}$ (3.36)

Hence, we have $\sum_{i,j>N} |f_{ij}(y_{ij})| = \infty$, which contradicts (3.31), therefore $(f_{ij}) \in \mathbf{M}_{\infty}^2$ (X', λ , p).

This completes the proof.

Theorem 3.9 : Let $p = (p_{ij})$ be a bounded sequence of positive real numbers. Then $c^2(X, \lambda, p)^\beta = M_0^2 (X', \lambda, p) \bigcap cs[X']$.

Proof: Since $c_0(X, \lambda, p) = c_0^2(X, \lambda, p) + E$, where $E = \{e(x) : x \in X\}$ it follows by proposition 3.1(iii) and Theorem 3.8 that $c_0(X,\lambda,p)^{\beta} = M_0^2(X',\lambda, p) \bigcap E^{\beta}$. It is obvious by definition that $E^{\beta} = \{(f_{ij}) \subset X' : \sum_{i+j>N} f_{ij}(x_{ij})\}$ converges for all $x \in X\} = cs[X']$. Hence we have the theorem.

Acknowledgement : The author would like to thank the Thailand Research Fund for the financial support.

References

^{1.} Gross-Erdmann, K.G.: "The structure of the sequence spaces of Maddox", Canada J. Math., 44, (1992), no. 2, 298-302.

^{2.} Gupta, M.; Kamthan, P.K. and Patterson, J.: Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), no. 1, 152-168.

International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 5 July 2017

- 3. Maddox, I.J.: Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser., (2) 18(1967), 345-355
- Paranormed sequence spaces generated infinite matrices, Math. Proe. Cambridge Philos. Soc., 64(1968), 335-340. 4.
-: Elements of Functional Analysts, Cambridge University Press, London, 1970. Nakano, H. : Modulared sequence spaces, *Proc. Japan Acad.*, 27(1951), 508-512. 5.
- 6.
- Simons, S. : The sequence spaces ℓ (px) and m(px), *Proc. London Math. Soc.*, 2, 15(1963), 422-436. 7.
- 8. Wu, C.X. and Bu,Q.Y.: Köthe dual of Banach sequence spaces $\ell_p[X]$ ($1 \le p \le \infty$) and Grothendieck space, *Comment. Math. Univ.* Carolin, 34(1993), 2, 265-273.