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Abstract
The B-dual of a vector-valued double sequence space is defined and studied we  show that if an X-valued
sequence space E is a BK-space having AK property, then the dual space of E and its B-dual are isometrically

isomorphic. We also give characterizations of ~ B-dual of vector-valued sequence spaces of Maddox ¢ 2 X, A, p),
ﬂgo (X, A, p), C% (X, %, p) and (X, A, p).
Introduction

Let (X, ||.|[) be a Banach space and p = (p;;) a bounded sequence of positive real numbers. Let N be the set

of all natural numbers, we write X = (x;) with x;; in X for all i,j € N. The X-valued sequence spaces of Maddox are
defined as —

2 . . p..
Co (X, A, p)= {XZ(Xij)._ I!m ||7\,ijxij | IJ:O}
i+j—00
c? (X, % p) = {X =(Xjj) 1 lim [ A%i—a ||pij = O} for some a € x
i+j—o0

1)

2 . Pij
CAp) = X =(x) 0 TX A 1T < oo
2<i+j<N
When X = K, the scalar held of X, the corresponding spaces are written as Co(p), c(p), £ (P), £ (p),

respectively. All of these spaces are known as the sequence Maddox. These spaces were introduced and studied by
Simons [7] and Maddox [3, 4, 5]. The space £ (p) was first defined by Nakano [6] and is known as the Nakano

sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces Cq (p), ¢(p), ¢ (p) and ¢, (p) and

has given characterization of B-dual of scalar-valued sequence spaces of Maddox.
In [8], Wu and Bu gave characterizations of K6the dual of the vector-valued sequence space £ D [X], where

ﬁp[x], 1< p< o0, is defined by

lplX]= {x =(Xk): ; | f(xy) |IP< oo for each f X’}, (1.2)
k=1

In this paper, the B-dual of a vector-valued sequence space is defined and studied and we give

characterizations of $-dual of vector-valued sequence spaces of Maddox fz X, A, p), zﬁo(x, A, D), C% X, A, p)

and C2 (X, A, p). Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and Definitions

Let (X, ||.|[) be a Banach space. Let W(X) and ¢(X) denote the space of all sequences in X and the space of
all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For x€E and i,j€ N we write that x;; stand for the i,j™ term of x. For x€ X and i,j€ N, we let
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0 0 0.evvee 0
0 0 0.evrre 0
e™(x) be the sequence |. . . eeeeeeenn. 0| with x in the ij" position and let e(x) be the sequence
................ 0
0 0 0..x.x..0
X, Xy X, e 0
X, X, X, ... 0|. For a fixed scalar sequence u = (u;) the sequence space Ea is defined as
..... 0
E2 = =(x) eW2(X): (uj x;j) €E2| @.1)
An X-valued sequence space E is said to be normal if (y;) € E* whenever [Iyill < || for all i,j€ N

and (x;) € E. Suppose that the X-valued sequence space E is endowed with linear topology t. The E is called a K-
space if, for each ije N, the i,j"" coordinate mapping pij : E->X, defined by pi(x) = x;, is continuous on E. In
addition, if (E, 1) is a Frecher (Banach) space then E is called an FK-(BK)-space. Now, suppose that E contains

®(X), then E is said to have property AK if oo ) Ne(ij) (Xij) — X in E as N—ao for every x = (x;) € E>.
<i+j<

The spaces co(p) and c(p) are FK-spaces. In C% (X, A, p), we consider the function g(x) =
e M
supjj I Xij ”p,]/ , where M = max[1.sup;p;], as a paranorm on C% (X, &, p) and it is known that C% (X, A, p) is

an FK-space having property AK under the paranorm p defined as above in 62 (X, A, p) we consider it as a

UM
paranormed sequence space with the paranorm given by ||xi,-||=( > LijXij ||p”j It is known that ¢2 (X,
i+j>N
A, p) is an FK-space under the paranorm defined as above.

For an X-valued sequence space E, define its Kothe dual with respect to the dual pair (X, X") (see [2]) as
follows :

EX|(, X')|={(fk)cx':k§ | i (Xp) k< o0 ‘v’x=(Xk)eE} 2.2)

In this paper, we denote EX|(X, X")| by E“ and it is called the a-dual of E.
For a sequence space E, the B-dual of E is defined by

o0
EP= {(fk) c X't ¥ fr(xy) converges V(xi) € E} (2.3)
k=1
It is easy to see that E*<EP".

For the sake of completeness we introduce some further sequence spaces that will be considered as B-dual
of the vector-valued sequence spaces of Maddox :

—4/Pij
M%(x,x,p): X =(Xjj): ZX ||xij||'vI Y J<ooforsome MeN?¢;
i+j>N

2 _ oY Pij
M K A, p) = XZ(Xij). > ”}”ijxij || <oV neN;:
i+j>N
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6%(X, hp)=iX=(Xij) T ZX |1 ||Ioij M P < o0 for some M e N pi>1VijeN
i+j>N

e[ X'1= 1 (fi) = X' =X fjj(¥) converges V x € X (2.4)
i+j>N
When X = K, the scalar field of X, the corresponding first two sequence spaces are written as My(p) and M
= (p), respectively. These two spaces were first introduced by Grosse-Erdmann [1].
3. Main Results
We begin by giving some general properties of 3-dual of vector-valued sequence spaces.

Proposition 3.1 : Let X be a Banach space and let E?, Ef and E% be X-valued sequence spaces.
Then

i)  1f EZ c E3 then 2ED < 2ED
(i)  IfE’= Ef +E3, then 2EP = 2EP 2ED
(iv) If E is normal then 2E® = 2EP

Proof : Assertions (i), (ii) and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices
to show only that 2EB - 2pa | o fie 2EP and x = (x;)) EE®. Then ¥ ¥ fij(x;) converges. Choose a

i+j>N

scalar sequence (t;) with |t;] = 1 and f;(t;Xy) = [fij(xy)| for all i,j€ N. Since E is normal, (tjx;;) € E. It follows that
> > fi(xy) converges, hence (fj) € 2 EY.
i+j>N

It E is a BK-space, we define a norm on E[3 by the formula

I(fipllz g = sup | XX fij(xij) (3.1)
IKijllsl fi+j=N

It is easy to show that ||. || =B isanormon 2EP.

Next, we give a relationship between B-dual of a sequence space and its continuous dual. Indeed, we need a
lemma.

Lemma 3.2 : Let E be an X-valued sequence space which is an FK-space containing ¢(X).
Then for each i,j € N, the mapping T; : X—E, defined by Tix = e’(x), is continuous.

Proof : Let V = e'(x) : x—>X. Then V is a closed subspace of E, so it is an FK-space because E is an

FK-space. Since E is a K-space, the coordinate mapping p; : V—X is continuous and bijective. It follows from the
open mapping theorem that p; is open, which implies that pilj : X—>V is continuous. But since Tjj = p,lJ we thus
obtain that Tj is continuous.

Theorem 3.3 : If E is a BK-space having property AK, then 2 E'3 and 2 E' are isometrically isomorphic.

Proof : We first show that for x = (x;) € E* and f€ 2 E'.
f)= X fe"(xy) 3.2
i+j>N
To show this, let x = (x;) €E and fe E'. Since E has property AK,
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X= lim > (eij(Xij)) (3.3)

M+N—% 2<j4+j<N
By the continuity of f, it follows that
fo= XX fEew)=23  fe'x)) (B4
2<i+j<m+n i+j>N
50 (3.2) is obtained. For each i,j€ N, let T;; : X—E be defined as in Lemma 3.2. Since E is a BK-space, be Lemma
3.2, Ty is continuous. Hence f° T;;€ X' for all i,j€ N. It follows from (3.2) that

fx)=(f oTiy) (xp) Vx=(x) €E (3.5)
It implies, by (3.5), thet ( f °Tij)??j=l e 2EP . Define ¢ : 2pr 2P by
o= (f oTyj)ijey Ve °E' (3.6)

It is easy to see that ¢ is linear. Now, we show that ¢ is onto. Let (f;) € 2gP. Define f : E5K, where K is the
scalar field of X, by
fX)= =X fixy) Vx=(xp) €E (3.7)
i+j>N
For each i,j € N, let p; be the (i,j)th coordinate mapping on E. Then we have
f)= XX (fopy= lim ¥ (fop)(x) (38)
i+j>N M+N— i >N
Since f;; and pj; are continuous linear, so is also continuous f o p;;. It follows by Banach Steinhaus theorem
that f€ 2E’ and we have by (3.7) that; for each i,je N and each z€ X, (f o Ty)(2) = f(e™(2)) = fj(2). Thus fo T;; = ;
for all i,j € N, which implies that ¢(f) = (f;), hence o is onto.
Finally, we show that ¢ is linear isometry. For f€ E, we have
Ifll =" sup [f(xy)

[(xij)I L

= sup | =% (fe)(xip)l by (3.2)
Ixij)lEL i+j=N

= sup |z (FoTy(xi)l (3.9)

Ixij)IEL i+j=N
=[1(f o Tij)ij=a 2 p
=lle(f)ll2p-

Hence o is isometry. Therefore, ¢ : 2 E'-> 2 EB is an isometrically isomorphism from E' onto EB. This
completes the proof.
We next give characterizations of B-dual of the sequence space ¢ (X, p) when p; > 1 for all i,j € N.

Theorem 3.4 : Let p = (p;;) be a bounded sequence of positive real numbers with p;; > 1 for all i,j € N. Then
2 Nt . . 1 1
0(X np)P= 25 (X", X, g) where q = (g5) is a sequence of positive real numbers such that — + — =1 for all
Pij  dij
i,jeN.
Proof : Suppose that (f;) € K% (X", 2, 0. Then =3 | fj ||qIJ M™% <00 for some M€ N. Then for
i+j>N
each x = (x;) € 7 (X, A, p), we have
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=1/pii . ,1/pii
LY M)l < ZE Il MO MU g
i+j>N 2<i+j=N

<xx (Jfm T ™
i+j>N

—(gii—1 Pii
<XY IRIM (9ij )+|V| P Hkinin .
i+j>N 2<i+j=N
which implies that > f;(Aijx;;) converges, so (f;) < ¢ % X, », p)h.
i+j>N
On the other hand, assume that (f;) € KZ (X, %, p)f, then X f(Aix;) converges for all x = (x;) € fz X, A, p).
i+j>N
For each x = (x;) € £2 (X, A, p) choose scalar sequence (t;) with |tj| = 1 such that f;(tixi;) = [fij(x;;)| for all i,j€ N.
Since (tijxy) € £2 (X, A, p), by our assumption, we have >3  fij(Aix;) converges, so that
i+j>N
SY i)l < 0 VxE L2 (X, 2, p) (3.11)
i+j>N
We want to show that (f;) € ﬁ% (X', %, q), thatis ¥ H finq'J M~ <o for some Me N,
i+j>N
If it is not true, then

Ty Hfinq” m YceovVmen (3.12)
i+j>=N
It implies by (3.12) that for each i,j € N,

5771 MY = o0 VrseN (3.13)

By (3.12), letr,s = 1, then thereis ai;,j; €N
q-- -
1 L R (3.14)

23i+j£i1+j1

By (3.13), we can choose m, > m; and k, > k; with m, > 2% such that
x| T my s (3.15)
kq<i+j<ko

Proceeding in this way, we can choose sequences of positive integers (ki) and (m;) with i = ko < k; < k; <
...... and m; <m, < ....., such that m; > 2" and

L g
x|l m s (316)
kij—1<i+j<kj
For each i € N, choose x;; in X with ||x;||=1 for all i,j € N, Ki_1< k<k, such that
x| o (M m s 3.17)
kij—1<i+j<kj

g e . _
Leta= 33X | f0) 0 m Y puty = (v, =atm 0 | £i(xip) [T xgp for all ke N with ki
Kj_1<i+j<ki

< k<k;. By using the fact that pgx = px+ gk and p(gx — 1) = gk for all i,j € N, we have that for each i € N,
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Pij —1__—dij di-1,j-1 Qij
T Il = =z flamy YOG TR g Y
Kj_1<i+j<ki Kj_1<i+j<ki
_ —Pij . —Pij dij dij
= xx o oay om O Y
Kj_1<i+j<ki
—Pij,.—Pij ..Pij . di-1,j-1 aij
= I g T Y m T ] ) 7Y
Kj_1<i+j<ki
1 —gii .
< g 1mi > m; . | fij(xij) |qIJ (3.18)
Kij—1<i+j<kj
< ai_lmi_lai
< mi_l
ii 1
Sowe havethat ¥ % || Yij ||pIJ S 3y — < 0. Hence, y = (y;). For each i € N, we have mm
i,j=N 2<i+j<N 2
_1_—Gjj Qi-1,j-1
2 | flyip) = ZX | fij | @imy )]0 1777 xgj
Kj—1<i+]j<k;j Kj—1<i+]j<k;j
-1__—dij dij
= ¥y A my ity [ (3.19)
Kij—1<i+j<kj
-1 —qij aij
=i )H) m; | filyi) [
Kij—_1<i+j<kj
=1
So that Y% | fij(yij)| = o0, which contradicts (3.11). Hence (fij)e K%(X', A, q). The proof is now
i, j>N
complete.

The following theorem gives a characterization of 3-dual of 62 (X, A, p), when p;<1 for all i,je N. To do
this, the following lemma is needed.

Lemma 3.5 : Let p = (p;j) be a bounded sequence of positive real numbers. Then éﬁo(x, Ap) = Uoﬁzl
2
00O MP) _1/pi: -
Proof : Let x€ zﬁo(x, % p), then there is some n€N with || Xj; ||pij <n for all i,je N. Hence

Il Xii |l n_]/pij <1forall xe fgo(X,k, P) _1/p;; - On the other hand, if x& Uh1 EEO(X,X, P) _vpj; - then
J o YPij JYpij
there are some n€ N and M > 1 such that || Xjj | ~1/pjj <M for every i,j€ N. The we have || Xij ||pij <n
n

MPT < M for all i,j€ N, where o = sup;;p’. Hence x € zﬁo(x, A, p).

Theorem 3.6 : Let p = (p;;) be a bounded sequence of positive real numbers with p;; <1 for all i,j € N. Then

2 np)P= 02 (X p).
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Proof : If (fij)=£2 X, A, p)’, then T3 fij(xij) converges for every X =(xz) €/ 2 X, A, p)
i+j>N
using the same proof as in Theorem 3.4, we have
SY M)l < 0 Vx=(x)€ 62 (X, 1, p) (3.20)
i,ji=N
If (fy) & égo(X' , A, p), it follows by Lemma 3.5 that supj|f;| m_]/pij =oo for all m€ N. For each i€ N,
choose sequences (m;) and (k;) of positive integers with my<m,<.....and ky <k, < ..... such that m; > 2'

and |ff| mi_]/IOIJ > 1. Choose x;; € X with [|x;| = 1 such that

ot 7P > 1 (321)
1/n:s )
Lety = (yy), yy =M, VP x;; if some i, and O otherwise. Then XX [lyij ||pIJ =X L <
i+j=N i=1 M
0 1 2
> — =1,sothat (yy) € £ (X, A, p)and
i=1 2!
— pk.
22 fily)=2Z fki [mi ]/ ! Xk j‘
i, j>N i, j>N
— p .
=Yy m, Ypk; ‘fki<xki] (3.22)
i,j>N
= 0 (by3.21),

and this is contradictory to (3.20), hence (f;j) € z%o X, A, p).
Conversely assume that (fj) € KEO(X',L p). By Lemma 3.3 there exists M EN, such that supj||fil

m_]/pij < 00, so there isa K > 0 such that
f<kM¥Pi v ijen. (3.23)

Let x = (x;j) € £2 (X, A, p). Then there is a ko€ N such that M]/pij Il <1 for all k = ko. By pj<1 for
all i,j € N, we have that for all i,j > k.

- . Pij -
p p p
m¥Pi ||xi,-||ﬁ(lvly Ul xj Ilj = M| xj; [ (3.24)
Then
ST S XTIl gl + S Il il
i+j=N 2<i+j<kp Ko+1
o
< sy ik xx MPU oye2s) @29)
2<i+j<kg K41 Si+j<oo
oi
S SY Ikl +kM £E XY < o0 by (3.24))
2<i+j<kg k41 <i+j<o0
< oo,
Thisimpliesthat XX  fj(xj) converges, hence (fi) € £2 X, A, p)P.
2<i+ j<oo
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Theorem 3.7 : Let p = (p;j) be a bounded sequence of positive real numbers. Then fgo X, &, p)f = Mgo(
X' L p).
Proof : If (fj) = MEO(X', A p), then X% |Ifill m]/pij < oofor all mE N, we have that for each x =
i+j>N
) _ YPij -
(xi) € L5, (X, &, p), there is mo € N such that [|x;| < Mg~ foralli,jEN, hence X% fi(x) < T2 il IIi
i+j>N i+j>N

1pij
S3yy Ifil Mg < oo, whichimplesthat > >  fj(x;) converges, so that (f;) € KEO(X, L)

i+j>N i+j>N
Conversely, assume that (f;) € £§o(x, A p), then X fi(x;) converges for all x = (x;) € KEO(X, A\op)
i+j>N
by using the same proof as in Theorem 3.4, we have
ST Myl Vx=()€ (A (X p)  (326)
i+j>N
If () & Mgo (X", 2, p)then % |ffil M]/pij =00 for some M € N. Then we can choose a sequence
i+j>N
(ki) of positive integers with 6 = ky < k; <k, < ... such that
sy M s vien (3.27)
Kij—1<i+j<k;j
And we choose X;; in X with [|x;|| = 1 such that for all i €N,
55 o)l MY | (3.28)
Kij—_1<i+j<k;j

Puty = (yy), (Vi) = l\/lj/pij xjj Clearly, y € égo (X, A, p) and
o
Y Ofl> EX ) M™PIL i Vien @29
i,j=N Kj—1<i+]j<k;j

Hence XY [fi(yi)l=c0, which contradicts (3.26). Hence (f;) € Mgo( X", A, p). The proof is now
i,j>N
complete.

Theorem 3.8 : Let p = (p;) be a bounded sequence of positive real numbers. Then C% X, A, p)P= Mg(
X' L p).

Proof : Suppose (f;) = M% (X", A, p), then T3 |Ifi M_]7/pij <oo for some MEN. Let x = (x;) € Cg

i,j>N
— _1/ne
(X, A, p). Then there is a positive integer K such that || Xij ||pIJ < — for all k>K,, hence [|x;l| < M YPij for all
m

i+j = K,. Then we have

—1/pji
SY MRS ST kIS S5 M TP <o (330)
i+j>kq i+j>ko i+j>ko
It follows that >3 [fjj(xi)| converges, so that (fi) € Cg X, A p)h.
i+j>N
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On the other hand, assume that (f;) € C% (X, &, p)’, then % fi(x;) converges for all x=(x;) € C% X A,
i+j>N
p). For each x = (x;;) € C% ( X", %, p), choose scalar sequence (t;) with [t| = i such that fi(t; x;) = [fi(x;)| for all i,j €

N. Since (tijx;;) € Cg (X, A, p), by our assumption, we have > >  fi(tjxi) converges, so that

i+j>N
53 f)<o  YxECX 1 p) (3.31)
i+j>N
Now, suppose that (f;) & M3 (X, %, p).Then £X |l m YPi = oo for all mE N, Choose myk, € N such
i+j>N
that
—1/pjj
22 fillmg >1 (3.32)
2<i+j<kq
And choose m,> m; and k, > k; such that
~Ypij
) [Ifill M7 >2 (3:33)
ky<i+j<ko
Proceeding in this way, we can choose m; <m,<...... ,and 0 <k; <k, <... such that
~Ypij
X [Ifill M >, (3.34)
Kij—1<i+j<kj
Take x;; in X with ||x;j|| = 1 for all k, ki_;< k<K, such that
~Y/pij
> [fi(xip)] M; > Vi€EN (3.35)
Kij—1<i+j<k;j

—1/pjj
Puty = (yy) = M xij for kiy < i+j <k;, theny € C% (X, A, p) and

—Ypjj
LY MeIZ IX O el mp > ViEN (3.36)
i+j>N Kij—1<i+j<kij
Hence, we have > > |[fi(yy)| = 90, which contradicts (3.31), therefore (fp) € Mgo( X" 0 p).
i,j>N

This completes the proof.

Theorem 3.9 : Let p = (p;) be a bounded sequence of positive real numbers. Then XX, A, p) = M% (X",
A p)Nes X1,
Proof : Since co(X, A, p)= Cg (X, A, p)+E, where E={e(x) : x€ X} it follows by proposition 3.1(iii) and

Theorem 3.8 that co(X,A,p)P= M% (X" &, p)EP. It is obvious by definition that EP={(f)c X": =¥ f(xy)
i+j>N
converges for all x € X}=cs[ X" ]. Hence we have the theorem.
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