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Abstract

This paper presents a mathematical model that tracks the transmission dynamics of

Lassa fever in a two-interacting human host and rodent vector populations. The model in-

corporates a non-drug compliance rate in the parameters for the human population. The

basic reproduction number is derived and the stability of the disease-free and endemic

equilibrium points is analysed. A locally asymptotically stable disease-free equilibrium

at the basic reproduction number less than unity is derived through the analysis of char-

acteristic equation. It was established that the disease-free equilibrium point is globally

asymptotically stable when the reproduction number, Ro < 1 and the disease always dies

out. For R0 > 1, the disease-free equilibrium point becomes unstable and the endemic

equilibrium point is globally asymptotically stable.

Keywords: Lassa fever, non-drug compliance, basic reproduction number, compound matrices,

stability.

1 Introduction

Lassa fever is an acute arena viral haemorrhagic fever caused by Lassa virus. It was first found

in a town called Lassa in the Yedseram River Valley in the present Borno State of Northern

Nigeria in 1969 [17]. The first victim is Laura Wine, 65 years old female nurse who works at

Lassa Mission Hospital [9]. Lassa fever is endemic in Nigeria, Liberia, Sierra Leone, Guinea and

other West African countries, affecting 2-3 million people with 5000-10000 fatalities annually

[8]. Since its initial discovery in Lassa-Nigeria, rural and nosocomial outbreaks of Lassa fever

have occurred repeatedly in other parts of Nigeria: Jos, Onitsha, Zorikwa, Ekpoma [18].

Proomed [14] reported outbreaks in some cities of West African countries of Sierra Leone,

Liberia, Guinea. In Cote d’Ivoire, Ghana, Togo and Benin, no outbreak has ever been recorded,

though isolation cases show evidence of viral circulation [2]. However, some Lassa fever cases

have been imported in the U.S and U.K through travellers who acquire the disease elsewhere

[17].

The carrier of Lassa virus is a small rodent (rat), the Multimammate rat of the genus

Mastomys. Transmission occurs when an individual comes in contact directly with the blood,

urine, faeces of rats and other body secretion of an infectious person [1]. Secondary human-

to-human spread within a community may occur through inhalation or ingestion. Victims

can also become infected through skin breaks and through mucous membranes from aerosol

transmission from dust-borne particles. In some areas, the rodents are used as a food source,
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thus providing additional exposure to the infectious rat blood, as well as allowing ingestion of

potentially contaminated meat.

The symptoms of Lassa fever develop 21 days after the infection with acute illness involving

multi organs. Specific symptoms include fever, facial swelling, muscle fatigue, vomiting, cough,

meningitis and hypertension. In some parts, neurological problems, including hearing loss,

which may be transient or permanent, tremors and encephalitis have been described. [10].

Various theoretical studies have been carried out on mathematical modelling of Lassa fever

transmission dynamics, focusing on a number of different issues. Okuonghae et al [11] formu-

lated a SIS model coupled to a population of rat for the transmission of Lassa fever disease.

They calculated the basic reproduction number for their model and gave conditions for disease

outbreak. Ogabi et al. [12] developed a SIR model for controlling Lassa fever transmission

in Northern part of Edo state, Nigeria. They advocated for health policies that will keep the

basic reproduction number, Ro below 1, thereby keeping the transmission of the disease under

control. Bawa et al. [1] developed a mathematical model for Lassa fever where they divided the

human population into susceptible human SH and the infectious human IH and the reservoir

population into infant IR and the adult reservoir AR and represented the virus in the envi-

ronment by V. They explained that the virus compartment is generated from the urine and

faeces of infected human and adult reservoirs. They recommended that effort should be made

to keep the basic reproduction number below one. James et al. [5] developed a mathematical

model of Lassa fever disease dynamics using a set of ordinary differential equations. They

discovered that the zero equilibrium is stable when the birth rate of the human population is

less than the death rate and same when the birth rate of the mastomysnatalensis (reservoir) is

less than the total death rates. Onuorah et al. [13] developed a Lassa fever model using the

sex structure approach. Their model represented the transmission dynamics of the Lassa fever

disease using a set of ordinary differential equations. The total human population at time t

denoted by NH(t) was sub-divided into four mutually exclusive sub-populations of Suscepti-

ble Male S1(t), Infected Male I1(t) Susceptible Female S2(t), Infected Female I2(t), such that

NH(t) = S1(t) + I1(t) +S2(t) + I2(t). Similarly, the total Natural Reservoir/host population at

time t, denoted by NR(t) was into dormant Reservoir host R1(t), active Reservoir host R2(t)

such that NR(t) = R1(t) + R2(t). Their model had the following assumptions: Susceptible

individuals, male/female can be infected through interaction with the active Reservoir (Mas-

tomys Natelensis), and through sexual interaction with opposite sex. Two major controls were

considered, the use of condom to reduce contact through sexual interaction and the use of

pesticide/rat poison to kill the natural Reservoir (Mastomys Natelensis).

The model considered in this paper differs from that of previous work because it incorpo-

rates the rate at which infectious humans do not comply with drug into parameters of human

population. Motivated by the 2017 Lassa fever reoccurrence in Nigeria, a deterministic math-

ematical model is developed and analysed to investigate the impact of non-drug compliance

rate on the spread of Lassa fever in order to model the dynamics of the disease and to make

decisions on controlling it.

The paper is organized as follows: In section 2, compartmental model formulation for the

transmission dynamics of Lassa fever is obtained. Section 3 deals with the qualitative analysis
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of Lassa fever model. Section 4 deals with discussion of results and concludes the modelling

work.

2 Compartmental Model Formulation for the Transmis-

sion Dynamics of Lassa Fever

The model sub-divides the total human population denoted by NH , into sub-populations of

susceptible human hosts (SH), infectious human hosts (IH), and recovered human hosts so that

NH = SH + IH +RH .

The total rodent vector population, denoted by NR, is sub-divided into susceptible rodent

vector (SR) and infected rodent vector (IR) so that NR = SR + IR.

The susceptible human population is generated by the recruitment of individuals into the

population at a rate Λh. The population reduces when the infectious rodent vectors interact

with susceptible human hosts at rates α1 and α2. The population increases when the recovered

human hosts lose immunity at a rate γ. It increases again when the infectious human hosts are

given medication by their doctors but do not comply with drug at a rate τnc. It also reduces

when susceptible human hosts die naturally.

The population of the infectious human hosts is generated by the interaction of the infectious

rodent vectors with the population of susceptible human hosts at rates α1 and α2. It reduces

when the infectious human hosts comply with drug at a rate τc. It also reduces when the

infectious human hosts do not comply with drug at a rate τnc. It reduces again when the

infectious human hosts are educated to comply with drug after being given medication by their

doctors at a rate rc. It moreover reduces when the infectious human hosts die as a result of

Lassa fever at a rate δ. It again reduces due to natural death at a rate µH .

The recovered human hosts are generated by the infectious human hosts who are given

medication by their doctors and comply with drug at a rate τc. It increases when the non-drug

compliant human hosts are educated to comply with drug at a rate rcτ . The population reduces

when the recovered human hosts lose immunity at a rate γ. It also reduces when the recovered

human hosts die naturally at a rate µH .

The susceptible rodent vector population is generated by the recruitment of rodent vectors

into the population at a rate ΛR. The population reduces when the susceptible rodent vectors

interact with infectious rodent vectors at rates α1 and α3. It decreases again due to natural

death at a rate µR.

The population of infectious rodent vector is generated by the interaction of susceptible

rodent vectors with infectious rodent vectors at rates α1 and α3. It decreases due to natural

death at a rate µR.

The model has the following variables and parameters and the unit of time is days:

SH(t) = the number of susceptible human hosts at time t

IH(t) = the number of infectious human hosts at time t

3

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 47 Number 5 July 2017

lalitha
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 307



        
  

 

HUMAN HOST COMPARTMENT 

 

      ΥRH 

      τncIH 

 

 

     
             H      SH                      IH τCIH + rcIH  RH 

 

                                                                                               

                                                                                                

 

 
RODENT VECTOR 

COMPARTMENT 

 

 

     R         sR             
        

  
              IR 

 

                                                 
                
 

Figure 1: Compartmental Diagram for Lassa fever Model Incorporating Non-Drug Compliance

Rate
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RH(t) = the number of recovered human hosts at time t

SR(t) = the number of susceptible rodent vectors at time t

IR(t) = the number of infectious rodent vectors at time t

NH(t) = total human population

m = NR

NH
= the number of infectious rodent vectors per human host

α1 = the rate of transmission resulting from interaction between infectious rodent vectors and

susceptible human hosts

α2 = concentration of Lassa virus that produces infection

α3 = progression rate from susceptible rodent vector to infectious rodent vector

τc = rate at which infectious human hosts comply with drug

τnc = rate at which infectious human hosts do not comply with drug

rc = rate at which infectious human hosts are educated to comply with drug

δ = death rate of infectious human hosts due to the disease

γ = rate of loss of immunity in human hosts

2.1 Assumptions of the Model

The following assumptions were made in order to formulate the equations of the model:

(a). Susceptible human host is infected through interaction with the infectious rodent vector.

(b). Susceptible rodent vector becomes infectious when it comes in contact with infectious

human host.

(c). Some infectious human hosts who are given medication by their doctors and comply with

drug get, treated fully and move to the recovered human host compartment.

(d). Some infectious human hosts who are given medication by their doctors but do not comply

with drug, get treated partially and move to the susceptible human compartment.

(e). Small proportion of active virus are still in the system of partially treated human hosts.

(f). The partially treated infectious human hosts due to non-drug compliance rate do not show

symptoms for some time, but sooner or later, recrudescence occurs, that is, reappearance of

symptoms after a symptom free period.

(g). Susceptible rodent vector is infected through the interaction with the infectious human

host.

(h). Interaction between susceptible rodent vector and infectious rodent vector is ignored.

(i). Human to human spread of the disease is ignored.

(j). Recovered human hosts have temporary immunity that can be lost and are again susceptible

to reinfection.
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Applying the assumptions, variables and parameters above, the Lassa fever model is formulated:

dSH
dt

= ΛH −
α1α2SHIR

NH

+ γRH + τncIH − µHSH (2.1)

dIH
dt

=
α1α2SHIR

NH

− τcIH − rcIH − τncIH − δIH − µHIH (2.2)

RH

dt
= τcIH + rcIH − γRH − µHRH (2.3)

dSR
dt

= ΛR −
α1α3SRIH

NH

− µRSR (2.4)

IR
dt

=
α1α3SRIH

NH

− µRIR (2.5)

3 Qualitative Analysis of Lassa Fever Model

In this section, conditions that guarantee local and global stability of the disease-free equilib-

rium E0 are stated and proved. But before then, the model shall be analysed proportionally.

To do this, the total population sizes NH and NR can be determined by SH + IH + RH = NH

and SR + IR = NR or from the differential equations

dNH

dt
= ΛH − µHNH − δIH (3.1)

dNR

dt
= ΛR − µRNR (3.2)

which are derived by adding Eqs. (2.1)-(2.3) for the human population and (2.4) and (2.5)

for rodent vector population. Now we do the scaling by making the transformation sh =
SH
NH

;

ih =
IH
NH

rh =
RH

NH

; sr =
SR
NR

; ir =
IR
NR

; m =
NR

NH

. This is done by differentiating the fractions

with respect to time t and simplifying as follows:

dsh
dt

=
1

NH

[
dSH
dt
− sh

dNH

dt

]
= λh(1− sh)− α1α2mshir + γrh + τncih + δshih

dih
dt

=
1

NH

[
dIH
dt
− ih

dNH

dt

]
= α1α2mshir − (τc + rc + δ + λh + τnc)ih + δi2h

drh
dt

=
1

NH

[
dRH

dt
− rh

dNH

dt

]
= (τc + rc)ih − (γ + λh)rh + δihrh

dsr
dt

=
1

NH

[
dSR
dt
− sr

dNH

dt

]
= λr − (1− sr)− α1α3msrih

dir
dt

=
1

NH

[
dIR
dt
− ir

dNH

dt

]
= α1α3msrih − λrir
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subject to the restrictions sh + ih + rh = 1 and sr + ir = 1. Using the relations rh = 1− sh− ih
and sr = 1− ir lead to study the system of differential equations

dsh
dt

= λh(1− sh)− α1α2mshir + γ(1− sh − ih) + τnc + δshih (3.3)

dih
dt

= α1α2mshir − (τc + rc + λh + δ + τnc)ih + δi2h (3.4)

dir
dt

= α1α3(1− ir)ih − λrir (3.5)

in the feasible region (i.e. where the model makes biological sense)

T = {(sh, ih, ir) ∈ R3
+ : 0 ≤ sh, 0 ≤ ih, sh + ih ≤ 1, 0 ≤ ir ≤ 1}

Equilibrium points are obtained by setting the right hand-sides of (3.3)-(3.5) to zero and the

system takes the form

λh(1− sh)− α1α2mshir + γ(1− sh − ih) + τnc + δshih = 0 (3.6)

α1α2mshir − (τc + rc + λh + δ + τnc)ih + δi2h = 0 (3.7)

dir
dt

= α1α3(1− ir)ih − λrir = 0 (3.8)

3.1 Local stability of disease-free equilibrium point E0

Lemma 1: The disease-free equilibrium E0 is locally stable if R0 < 1 and unstable if R0 > 1.

Proof : In the absence of infection, the model has a steady state, E0, called the disease-free

equilibrium, where E0 = (1, 0, 0). To establish the local stability of this equilibrium, the Ja-

cobian of (3.6)-(3.8) is computed and evaluated at E0. The local stability of E0 is determined

based on the signs of the eigenvalues of this Jacobian. The equilibrium E0 is locally stable if the

real part of these eigenvalues are all negative. At the steady state of the model, the Jacobian

matrix is given by

JE =

 −(λh + α1α2mir + γ − δih τnc)− γ + δsh −α1α2msh

α1α2mir −AT + 2δih α1α2msh

0 α1α3(1− ir) −λr − α1α3ih

 (3.9)

The Jacobian matrix in (3.9) at E0 gives

JE0 =

 (λh + γ) −τnc − γ + δ −α1α2m

0 −AT α1α2m

0 α1α3 −λr

 (3.10)

where

7

lalitha
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 47 Number 5 July 2017

lalitha
Text Box
ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 311



AT = τc + rc + λh + δ + τnc

Evaluating the eigenvalues at the Jacobian matrix gives

−(λh + γ),
−(AT + λr)±

√
(AT + λr)2 − 4ATλr(1−R0)

2
where

R0 =
α2
1α2α3m

ATλr

We obtain the reproductive number R0 by expressing (3.3)-(3.5) as the difference between

the rate of new infection in each infected compartment A and the rate of transfer between each

infected compartment B

 dih
dt
ir
dt

 = S − T =

[
α1α2mshir

α1α3msrih

]

−

[
(τc + rc + λh + δ + τnc)ih + δi2h

λrir

]
The Jacobian matrices JS and JT of S and T are found about E0.

D = JSJ
−1
T =

 0
α1α3m

λrα1α2m

τc + rc + λh + δ + τnc
0


R0 is the maximum eigenvalue of D given as R0 =

α2
1α2mα3

ATλr
where AT = τc + rc +λh + δ+ τnc

It is easy to see that the two eigenvalues have negative real parts if R0 < 1, therefore, the

disease-free equilibrium E0 is locally asymptotically stable.

3.2 Global Stability of Disease-Free Equilibrium E0

Theorem 1: The disease-free equilibrium E0 = (1, 0, 0) of (3.3)-(3.5) is globally asymptotically

stable in T if R0 ≤ 1 and unstable if R0 > 1.

Proof : Consider the Lyapunov function L = α1α3ih +AT ir where AT = τc + rc + λh + δ+ τnc.

Its derivative along the solutions of (3.3)-(3.5) is

L′ = α1α3
dih
dt

+ AT
ir
dt

= α2
1α2mα3shir − α1α3ih[AT − δih] + AT [α1α3ih(1− ir)− λrir]

= α2
1α2mα3shi− r − ATλrir + α1α3ih(δih − AT ir)

= ATλrir(
α2
1α2mα3sh
ATλr

− 1) + α1α3ih(δih − AT ir)

= ATλrir(R0sh − 1)− α1α3ih(AT ir − δih)
≤ ATλrir(R0sh − 1) ≤ 0 if R0 ≤ 1
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It is shown that L′ ≤ 0 if R0 ≤ 1 and the equality, L′ = 0 holds when R0 = 1 and ih = ir = 0.

If R0 > 1, then L′ > 0 when sh is sufficiently close to 1 except when ih = ir = 0. From

Lyapunov-Lasalle’s Theorem(see[J.K. Hale, 1969]), this implies that all paths in T approach

the largest positive invariant subset of the set where L′ = 0 is (sh, ih, ir) ∈ T . On the boundary

of T where ih = ir = 0 (sh − axis), s′h = (λh + γ)(1 − sh) so that sh = (1 + e−(λh+γ)t) → 1

as t → ∞. Thus all solutions paths in T will approach the disease-free equilibrium point E0.

Hence the disease-free equilibrium point is globally asymptotically stable and this completes

the proof of Theorem 1.

3.3 Global Stability of Endemic Equilibrium E1

We need to establish the global stability of the unique endemic equilibrium point of the disease

when it persists. In order to do that, we shall use the property of competitive systems[15,16,3]

and additive compound matrices and differential equations[7] for the analysis of our system.

The following definitions (see[4]) are used to establish the stability of the orbit:

Definition 1: The orbit Γ is orbitally stable if and only if for each ε > 0, there exists a δ such

that any solution x̃, for which the distance of x̃(0) from Γ is less than δ, remains a distance less

than ε from Γ, for all t ≥ 0.

Definition 2: The orbit Γ is asymptotically orbitally stable, if it is orbitally stable and the

distance of x̃(t) from Γ also tends to zero as t→∞.

Since (3.3)-(3.5) is a 3-dimensional competitive system that is convex in D, the following

theorem stated and proved in [6] for a system of an SEIR model is used to generalize results

of systems that are competitive, persistent and have the property of stability of periodic orbits.

Theorem 1: For n = 3 and D convex and bounded and suppose that (3.3)-(3.5) is com-

petitive, permanent and have the property of stability of periodic orbits. If x̃0 is the only

equilibrium point in intD, and if it is locally asymptotically stable, then it is globally asymp-

totically stable in intD.

Proof : In order to analyze the global stability of the endemic equilibrium, the additive

compound matrices approach as in [6,7] is used. From the Jacobian matrix JE, the second

additive compound matrix is given by

J
[2]
E =

 −(B − 3δih) α1α2msh α1α2msh

α1α3(1− ir) −(C − δih) τnc − γ + δsh

0 α1α2mir −(D − 2δih)

 (3.11)
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where

B = (AT + λh + α1α2mir + γ)

C = λh + λr + α1α3ih + γ + α1α2mir

D = AT + λr + α1α3ih

From the second additive compound matrix above, we have a linear system with respect to the

solutions sh(t), ih(t), ir(t) written as

w′1(t) = −(B − 3δih(t))w1(t)

w′2(t) = α1α3(1− ir(t))w1(t)− (C − δih(t))w2(t) + (τnc − γ + δsh(t))w3(t)

w′3(t) = α1α2mir(t)w2(t)− (D − 2δih(t))w3(t)

In order to prove that the system J
[2]
E is asymptotically stable, we shall use the following Lya-

punov function that is positive but not differentiable everywhere:

V (w1(t), w2(t), w3(t)) = sup{|w1|,
ih(t)

ir(t)
(|w2|+ |w3|)}

Denoting the left- hand side derivative of V(t) by D+V (t), we get the following inequalities:

D+(|w1(t)|) ≤ −(B − δih(t))|w1(t)|+ α1α2msh(|w2(t) + w3(t)|)

≤ −(B − 3δih(t))|w1(t)|+
α1α2msh(t)ir(t)

ih(t)

(
ih(t)

ir(t)
|w2(t)|+ |w3(t)|

)
(3.12)

D+(|w2(t)|) ≤ α1α3(1− ir)|w1(t)| − (C − δih(t))|w2(t)|+ (τnc − γ + δsh(t))|w3(t)|(3.13)

D+(|w3(t)|) ≤ (α1α2mir)|w2(t)| − (D − 2δih(t))|w3(t)| (3.14)

We also have

D+
ih(t)

ir(t)
(|w2(t)|+ |w3(t)|) =

[
i′h(t)

ih(t)
− i′r(t)

ir(t)

]
ih(t)

ir(t)
(|w2(t)|+ |w3(t)|)

+
ih(t)

ir(t)
D+(|w2(t)|+ |w3(t)|) (3.15)

Adding (3.13) and(3.14), we have

D+(|w2(t)|+ |w3(t)|) = α1α3(1− ir(t))|w1(t)| − (C − α1α2mir − δih)|w2(t)|

+(τnc − γ + δsh(t) + 2δih(t)−D)|w3(t)|

= α1α3(1− ir(t))w1(t)− (λh + λr + α1α3ih + γ − δih(t))w2(t)

− (λh + λr + α1α3ih + γ − δih(t) + τnc + τc + rc − δ(1− sh(t)− ih(t)))w3(t)

≤ α1α3(1− ir(t))|w1(t)| − (λh + λr + α1α3ih + γ − δih(t))(|w2(t) + |w3(t)|) (3.16)
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Substituting (3.16) into (3.15) yields

D+
ih(t)

ir(t)
(|w2(t)|+ |w3(t)|)

≤ ih(t)

ir(t)

[
i′h(t)

ih(t)
− i′r(t)

ir(t)

]
(|w2(t)|+ |w3(t)|)

+
ih(t)

ir(t)
(α1α3(1− ir(t)))|w1(t)| [−(λh + λr + α1α3ih + γ − δih(t))(|w2(t)|+ |w3(t)|)]

≤ α1α3(1− ir(t))
ih(t)

ir(t)
(|w1(t)|)

+

[
i′h(t)

ih(t)
− i′r(t)

ir(t)
− λh − λr − α1α3ih − γ + δih(t)

]
ih(t)

ir(t)
(|w2(t) + w3(t)|) (3.17)

From (3.12) and (3.17), we have

D+V (t) ≤ sup(g1(t), g2(t))V (t),

where

g1(t) = −(B − 3δih(t)) +
α1α2msh(t)ir(t)

ih(t)
(3.18)

g2(t) = α1α3(1− ir(t))
ih(t)

ir(t)

+

(
i′h(t)

ih(t)
− i′r(t)

ir(t)
− λh − λr − α1α3ih(t)− γ + δih(t)

)
(3.19)

Using the expressions from (3.7) and (3.8) given by

α1α2msh(t)iv(t)

ih(t)
=

i′h(t)

ih(t)
+ τnc + τc + rc + λh + δ − δih

α1α3(1− ir)
ih(t)

ir(t)
=

i′r(t)

ir(t)
+ λr

(3.18) and (3.19) simplify to

g1(t) =
i′h(t)

ih(t)
+ [2δih(t)− (λh + α1α2mir)] (3.20)

g2(t) =
i′h(t)

ih(t)
+ [δih − (λh + α1α3ir(t) + γ)] (3.21)

so that

sup{g1(t), g2(t)} ≤
i′h(t)

ih(t)
− δ (3.22)
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From (3.22), we have

lim
w→+∞

∫ w

0

sup{g1(t), g2(t)}dt ≤ lim
w→+∞

[ln ih(t)]
w
0

−δw = −δw < 0 (3.23)

This shows that the periodic solution (sh(t), ih(t), ir(t)) is asymptotically stable. This estab-

lishes the fact that the endemic equilibrium point of the disease is globally stable.

4 Discussion

A model with incidence of dynamics of Lassa fever within human hosts and rodent vector is

proposed in which the non-drug compliance rate is incorporated into the system, which is the

rate at which infectious human hosts do not comply with drug. The class of the recovered human

is refilled by the infectious human hosts who comply with drug and infectious humans who are

educated to take their drug. The model was then reformulated in terms of the proportions of

the classes of the respective populations. Model analyses were carried out. Disease-free and

endemic equilibrium solution were obtained and their stability was analysed respectively.

It was established that for the basic reproduction number, R0 < 1, the disease-free equi-

librium solution is globally asymptotically stable so that the disease always dies out, and if

R0 > 1, the disease-free equilibrium is unstable. We observe that in order to reduce the ba-

sic reproduction number below 1, intervention strategies need to be focused on treatment and

reduction on the contact between mosquito vector and human host.

Since the non-drug compliance rate of infectious human hosts causes reappearance of symp-

toms after a symptom free period, there is need to increase the parameter rc which reduces

the number of infectious human hosts who do not comply with drug. There is also need for

isolation of the infectious human hosts in order to reduce the spread of Lassa fever.
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