On Intuitionistic Fuzzy γ* Generalized Closed Mappings

Riya V. M^1 , Jayanthi D^2

¹ Research scholar of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India. ²Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

Abstract: In this paper, we have introduced the notion of intuitionistic fuzzy γ^* generalized closed mappings, intuitionistic fuzzy γ^* generalized open mappings and intuitionistic fuzzy M γ^* generalized closed mappings. Furthermore we have provided some properties of intuitionistic fuzzy γ^* generalized closed mappings and discussed some fascinating theorems.

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy topology, intuitionistic fuzzy γ^* generalized closed sets, intuitionistic fuzzy γ^* generalized closed mappings, intuitionistic fuzzy γ^* generalized open mappings.

Subject classification code: 54A99, 03E99

I. INTRODUCTION

Atanassov [1] introduced the idea of intuitionistic fuzzy sets using the notion of fuzzy sets by Zadeh. Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Later this was followed by the introduction of intuitionistic fuzzy γ^* generalized closed sets by Riya, V. M and Jayanthi, D [7] in 2017 which was simultaneously followed by the introduction of intuitionistic fuzzy γ^* generalized continuous mappings [8] by the same authors. We have now extended our idea towards intuitionistic fuzzy γ^* generalized closed some of their properties.

2. PRELIMINARIES

Definition 2.1: [1] An intuitionistic fuzzy set (IFS for

short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A: X \to [0,1]$ and $\nu_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x)$ $+ \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x , \mu_A, \nu_A \rangle$ instead of denoting $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}.$

Definition 2.2: [1] Let A and B be two IFSs of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

and

$$B = \{ \langle x, \, \mu_B(x), \, \nu_B(x) \rangle : x$$

 $\in X$.

Then,

(a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x)$ $\ge \nu_B(x)$ for all $x \in X$,

(b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,

(c)
$$A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle \colon x \in X \},\$$

(d)
$$A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \}$$

∈ X},

(e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle x, 0, 1 \rangle$ and $1_{\sim} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

(i)
$$0_{\sim}, 1_{\sim} \in \tau$$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,

 $(iii) \qquad \cup \ G_i \in \tau \ \text{for any family} \ \{G_i : i \in J\}$ $\in \tau.$

In this case the pair (X, τ) is called an *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in τ is known as an *intuitionistic fuzzy open set* (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an *intuitionistic fuzzy closed set* (IFCS in short) in X.

Definition 2.4: [11] Two IFSs A and B are said to be *q-coincident* (A q B in short) if and only if there exits an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.5: [11] Two IFSs A and B are said to be **not q-coincident** ($\mathbf{A}_{\overline{\mathbf{q}}}$ B in short) if and only if A \subseteq B^c.

Definition 2.6: [3] An *intuitionistic fuzzy point* (IFP for short), written as $p_{(\alpha, \beta)}$ is defined to be an IFS of X given by

$$p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{if } x = p, \\ (0,1) & \text{otherwise.} \end{cases}$$

An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.7: [4] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy γ closed set (IF γ CS in short) if cl(int(A)) \cap int(cl(A)) \subseteq A

(ii) intuitionistic fuzzy γ open set (IF γ OS in short) if A \subseteq int(cl(A)) \cup cl(int(A))

Definition 2.8: [4] Let A be an IFS in an IFTS (X, τ) . Then the γ -interior and γ -closure of A are defined as

$$\gamma int(A) = \cup \{G \ / \ G \ is \ an \ IF\gamma OS \ in \ X$$
 and $G \subseteq A\}$

$$\gamma cl(A) = \bigcap \{K \mid K \text{ is an } IF\gamma CS \text{ in } X\}$$

Note that for any IFS A in (X, τ) , we have $\gamma cl(A^c) = (\gamma int(A))^c$ and $\gamma int(A)^c = (\gamma cl(A))^c$.

Corollary 2.9: [3] Let A, $A_i(i \in J)$ be intuitionistic fuzzy sets in X and B, $B_j(j \in K)$ be intuitionistic fuzzy sets in Y and f: $X \rightarrow Y$ be a function. Then

 $^{1}(B_{2})$

a)
$$A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$$

b) $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}$

c) $A \subseteq f^{-1}(f(A))$ [If f is injective, then $A = f^{-1}(f(A))$]

d) $f(f^{-1}(B)) \subseteq B$ [If f is surjective, then $B = f(f^{-1}(B))$]

> e) $f^{-1}(\cup B_j) = \cup f^{-1}(B_j)$ f) $f^{-1}(\cap B_j) = \cap f^{-1}(B_j)$ g) $f^{-1}(0_{-}) = 0_{-}$ h) $f^{-1}(1_{-}) = 1_{-}$ i) $f^{-1}(B^c) = (f^{-1}(B))^c$

Definition 2.10: [7] An IFS A of an IFTS (X, τ) is said to be an intuitionistic fuzzy γ^* generalized closed set (briefly IF γ^* GCS) if cl(int(A)) \cap int(cl(A)) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ).

Definition 2.11: [8] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy γ^* generalized continuous (IF γ^* G continuous for short) mapping if f⁻¹ (V) is an IF γ^* GCS in (X, τ) for every IFCS V of (Y, σ).

Definition 2.12: [7] If every IF γ *GCS in (X, τ) is an IF γ CS in (X, τ), then the space can be called as an intuitionistic fuzzy γ * T_{1/2} (IF γ *T_{1/2} in short) space.

Definition 2.13: [7] If every IF γ *GCS in (X, τ) is an IFCS in (X, τ), then the space can be called as an intuitionistic fuzzy γ *c T_{1/2} (IF γ *cT_{1/2} in short) space.

 $A \subset K$

and

III. INTUITIONISTIC FUZZY γ* GENERALIZED CLOSED MAPPINGS AND INTUITIONISTIC FUZZY γ* GENERALIZED OPEN MAPPINGS

In this section we have introduced intuitionistic fuzzy γ^* generalized closed mappings, intuitionistic fuzzy γ^* generalized open mappings, intuitionistic fuzzy M γ^* generalized closed mappings and study some of their properties.

Definition 3.1: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an *intuitionistic fuzzy* γ^* *generalized closed mapping* (IF γ^* G closed mapping for short) if f (V) IF γ^* GCS in Y for every IFCS V of X.

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$, $G_2 = \langle y, (0.5_u, 0.4_v), (0.5_u, 0.6_v) \rangle$. Then $\tau = \{0_{-}, G_1, 1_{-}\}$ and $\sigma = \{0_{-}, G_2, 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. Then,

Now $G_1^c = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFCS in X. Then $f(G_1^c) = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is an IF γ^* GCS in Y as $cl(int(f(G_1^c))) \cap int(cl(f(G_1^c))) = 0_{\sim} \cap G_2 = 0_{\sim} \subseteq G_2$ where $f(G_1^c) \subseteq G_2$. Therefore f is an IF γ^* G closed mapping.

Theorem 3.3: Every IF closed mapping is an IF γ^* G closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF closed mapping [4]. Let A be an IFCS in X. Then f(A) is an IFCS in Y, by hypothesis. Since every IFCS is an IF γ *GCS [6], f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

Example 3.4: In Example 3.2, f is an IF γ *G closed mapping but not an IF closed mapping, since $G_1^c = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFCS in X, but $f(G_1^c) = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is not an IFCS in Y, since $cl(f(G_1^c)) = G_2^c \neq f(G_1^c)$.

Theorem 3.5: Every IF α closed mapping is an IF γ *G closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF α closed mapping [6]. Let A be an IFCS in X. Then f(A) is an IF α CS in Y, by hypothesis. Since every IF α CS is an IF γ *GCS [7], f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

Example 3.6: In example 3.2, f is an IF γ *G closed mapping but not an IF α closed mapping, since $G_1^c = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFCS in X, but $f(G_1^c) = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is not an IF α CS in Y, since $cl(int(cl(f(G_1^c)))) = G_2^c \notin f(G_1^c)$.

Theorem 3.7: Every IF semi closed mapping is an IF γ *G closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF semi closed mapping [6]. Let A be an IFCS in X. Then f(A) is an IFSCS in Y, by hypothesis. Since every IFSCS is an IF γ^* GCS [7], f(A) is an IF γ^* GCS in Y. Hence f is an IF γ^* G closed mapping.

Example 3.8: In Example 3.2, f is an IF γ *G closed mapping but not an IF semi closed mapping, since $G_1^c = \langle x, (0.4_a, 0.3_b), (0.6_a, 0.7_b) \rangle$ is an IFCS in X, but f $(G_1^c) = \langle y, (0.4_u, 0.3_v), (0.6_u, 0.7_v) \rangle$ is not an IFSCS in Y, as $int(cl(f(G_1^c))) = G_2 \not\subseteq f(G_1^c)$.

Theorem 3.9: Every IF pre closed mapping is an $IF\gamma^*G$ closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF pre closed mapping [6]. Let A be an IFCS in X. Then f(A) is an IFPCS in Y, by hypothesis. Since every IFPCS is an IF γ *GCS [7], f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

Example 3.10: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.3_b), (0.5_a, 0.7_b) \rangle$, $G_2 = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$. Then $\tau = \{0_{-}, G_{1}, 1_{-}\}$ and $\sigma = \{0_{-}, G_{2}, 1_{-}\}$ are

IFTs on X and Y respectively. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v. Then,

Now $G_1^c = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ is an IFCS in X. Therefore $f(G_1^c) = \langle y, (0.5_u, 0.7_v), (0.5_u, 0.3_v) \rangle \subseteq 1_{\sim}$ and $int(cl(f(G_1^c))) \cap cl(int(f(G_1^c))) = 1_{\sim} \subseteq 1_{\sim}$. Hence $f(G_1^c)$ is an IF γ *GCS in Y. Thus f is an IF γ *G closed mapping.

We have $G_1^c = \langle x, (0.5_a, 0.7_b), (0.5_a, 0.3_b) \rangle$ is an IFCS in X. But $f(G_1^c) = \langle y, (0.5_u, 0.7_v), (0.5_u, 0.3_v) \rangle$ is not an IFPCS in Y, since $cl(int(f(G_1^c))) = cl(G_2) =$ $1_c \notin f(G_1^c)$. Hence $f(G_1^c)$ is not an IFPCS in Y. Thus f is not an IF pre closed mapping.

Theorem 3.11: Every IF generalized closed mapping is an IF γ *G closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF generalized closed mapping [10]. Let A be an IFCS in X. Then f(A) is an IFGCS in Y, by hypothesis. Since every IFGCS is an IF γ *GCS [7], f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

Example 3.12: In Example 3.2, f is an IF γ *G closed mapping but not an IF generalized closed mapping as $cl(f(G_1^c)) = G_2^c \nsubseteq G_2$, but $f(G_1^c) \subseteq G_2$.

Definition 3.13: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be an *intuitionistic fuzzy* $M \gamma^*$ generalized closed *mapping* (IFM γ^* G closed mapping for short) if f(A) is an IF γ^* GCS in Y for every IF γ^* GCS A in X.

Example 3.14: Let X = {a, b} and Y= {u, v}. Then τ = {0₂, G₁, 1₂} and σ = {0₂, G₂, 1₂} are IFTs on X and Y respectively, where G₁ = $\langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ and G₂ = $\langle y, (0.4_u, 0.4_v), (0.6_u, 0.6_v) \rangle$. Define a mapping f: (X, τ) \rightarrow (Y, σ) by f(a) = u and f(b) = v.

$$\begin{split} IF\gamma^*GC(X) = & \{0_{\text{-}}, \ 1_{\text{-}}, \ \mu_a \in [0,1], \ \mu_b \in [0,1], \ \nu_a \in [0,1], \\ & \nu_b \in & [0,1] \ / \ 0 \leq \mu_{a\,+} \nu_a \leq 1, \ 0 \leq \mu_{b\,+} \nu_b \leq 1 \} \end{split}$$

$$\begin{split} & IF\gamma^*GC(Y) = & \{0_{\text{-}}, \ 1_{\text{-}}, \ \mu_u \in [0,1], \ \mu_v \in [0,1], \ \nu_u \in [0,1], \\ & \nu_v \in & [0,1] \ / \ 0 \leq \mu_{u \ +} \ \nu_u \leq 1, \ 0 \leq \ \mu_{v \ +} \ \nu_v \leq 1 \} \end{split}$$

We have every IF γ^* GCS in X is an IF γ^* GCS in Y. Therefore f is an IFM γ^* G closed mapping.

Theorem 3.15: Every IFM γ *G closed mapping is an IF γ *G closed mapping but not conversely in general.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFM γ *G closed mapping. Let A be an IFCS in X. Then A is an IF γ *GCS in X. By hypothesis f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

Example 3.16: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.6_u, 0.8_v), (0.2_u, 0.1_v) \rangle$ and $G_3 = \langle y, (0.3_u, 0.3_v), (0.2_u, 0.2_v) \rangle$, Then $\tau = \{0_{\sim}, G_{1,} 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2,} G_{3,} 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: (X, $\tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Now $G_1^c = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ is an IFCS in X. We have $f(G_1^c) = \langle y, (0.5_u, 0.4_v), (0.5_u, 0.6_v) \rangle$ is an IF γ *GCS, since $f(G_1^c) \subseteq G_2$ and int(cl(f $(G_1^c))) \cap cl(int(f(G_1^c))) = 1_{\sim} \cap 0_{\sim} = 0_{\sim} \subseteq G_2$, Hence f is an IF γ *G closed mapping.

Now consider, $A = \langle x, (0.3_a, 0.3_b), (0.2_a, 0.2_b) \rangle$ in X. Then $A \subseteq 1_{\sim}$ and $int(cl(A)) \cap cl(int(A)) = 1_{\sim} \cap 0_{\sim} = 0_{\sim} \subseteq 1_{\sim}$. Hence A is an IF γ^* GCS in X. But it is not an IF γ^* GCS in Y, since $f(A) \subseteq G_1, G_2$ but $int(cl(f(A))) \cap cl(int(f(A))) = 1_{\sim} \notin G_1, G_2$. Hence f is not an IFM γ^* G closed mapping.

The relation between various types of intuitionistic fuzzy closed mappings is given in the following diagram.

The reverse implications are not true in general in the above diagram.

Theorem 3.17: Let f: $X \rightarrow Y$ be a bijective mapping. Then the following are equivalent if Y is an $IF\gamma^*T_{1/2}$ space:

(i) f is an IFγ*G closed mapping

 $(ii)\gamma cl(f(A)) \subseteq f(cl(A))$ for each IFS A of X

(iii) $f^{-1}(\gamma cl(B)) \subseteq cl(f^{-1}(B))$ for every IFS B of Y

Proof: (i) \Rightarrow (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. (i) implies that f(cl(A)) is an IF γ *GCS in Y. Since Y is an IF γ *T_{1/2} space, f(cl(A)) is an IF γ CS in Y. Therefore γ cl(f(cl(A))) = f(cl(A)). Now γ cl(f(A)) $\subseteq \gamma$ cl(f(cl(A))) = f(cl(A)). Hence γ cl(f(A)) \subseteq f(cl(A)) for each IFS A of X.

(ii) \Rightarrow (i) Let A be any IFCS in X. Then cl(A) = A. (ii) implies that γ cl(f(A)) \subseteq f(cl(A)) = f(A). But f(A) \subseteq γ cl(f(A)). Therefore γ cl(f(A)) = f(A). This implies f(A) is an IF γ CS in Y. Since every IF γ CS is an IF γ *GCS, f(A) is an IF γ *GCS in Y. Hence f is an IF γ *G closed mapping.

(ii) \Rightarrow (iii) Let B be an IFS in Y. Then f⁻¹(B) is an IFS in X. Since f is onto, $\gamma cl(B) = \gamma cl(f(f^{-1}(B)))$ and (ii) implies $\gamma cl(f(f^{-1}(B))) \subseteq f(cl(f^{-1}(B)))$. Therefore $\gamma cl(B) \subseteq f^{-1}(f(cl(f^{-1}(B)))) = cl(f^{-1}(B))$, since f is one to one. (iii) \Rightarrow (ii) Let A be any IFS of X. Then f(A) is an IFS of Y. Since f is one to one, (iii) implies that f ⁻ (γ cl(f(A))) \subseteq cl(f ⁻¹(f(A))) = cl(A). Therefore f(f ⁻¹(γ cl(f(A)))) \subseteq f(cl(A)). Since f is onto 'cl(f(A)) = f(f ⁻¹(γ cl(f(A)))) \subseteq f(cl(A)).

Theorem 3.18: Let f: $X \to Y$ be an IF γ^*G closed napping. Then for every IFS A of X, f(cl(A)) is an F γ^*GCS in Y.

Proof: Let A be any IFS in X. Then cl(A) is an IFCS in X. By hypothesis f(cl(A)) is an IF γ^* GCS in Y.

Theorem 3.19: Let f: $X \rightarrow Y$ be an IF γ *G closed mapping where Y is an IF γ *T_{1/2} space, then f is an IF closed mapping if every IF γ CS is an IFCS in Y.

Proof: Let f be an IF γ *G closed mapping. Then for every IFCS A in X, f(A) is an IF γ *GCS in Y. Since Y is an IF γ *T_{1/2} space, f(A) is an IF γ CS in Y and by hypothesis f(A) is an IFCS in Y. Hence f is an IF closed mapping.

Theorem 3.20: If every IFS is an IFCS in X, then an IF γ^*G closed mapping f: X \rightarrow Y is an IF γ^*G continuous mapping.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IFS in X. Therefore $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF γ^* GCS [7], $f^{-1}(A)$ is an IF γ^* GCS in X. This implies that f is an IF γ^* G continuous mapping.

Theorem 3.21: A bijective mapping f: $X \rightarrow Y$ is an IF γ *G closed mapping if and only if for every IFS B of Y and for every IFOS U containing f⁻¹(B), there is an IF γ *GOS A of Y such that B \subseteq A and f⁻¹(A) \subseteq U.

Proof: Necessity: Let B be any IFS in Y. Let U be an IFOS in X such that $f^{-1}(B) \subseteq U$, then U^c is an IFCS in X. By hypothesis $f(U^c)$ is an IF γ *GCS in Y. Let A = $(f(U^c))^c$, then A is an IF γ *GOS in Y and B \subseteq A. Now f $^{-1}(A) = f^{-1}(f(U^c))^c = (f^{-1}(f(U^c)))^c \subseteq U$.

Sufficiency: Let A be any IFCS in X, then A^c is an IFOS in X and f⁻¹(f(A^c)) \subseteq A^c. By hypothesis there exists an IF γ^* GOS B in Y such that f(A^c) \subseteq B and f⁻¹(B) \subseteq A^c. Therefore A \subseteq (f⁻¹(B))^c. Hence B^c \subseteq f(A) \subseteq f(f⁻¹(B))^c \subseteq B^c. This implies that f(A) = B^c. Since B^c is an IF γ^* GCS in Y, f(A) is an IF γ^* GCS in Y. Hence f is an IF γ^* G closed mapping.

Theorem 3.22: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF closed mapping and g: $(Y, \sigma) \rightarrow (Z, \delta)$ is an IF γ^*G closed mapping, then g o f : $(X, \tau) \rightarrow (Z, \delta)$ is an IF γ^*G closed mapping.

Proof: Let A be an IFCS in X, then f(A) is an IFCS in Y, since f is an IF closed mapping. Since g is an IF γ^*G closed mapping, g(f(A)) is an IF γ^*GCS in Z. Therefore g o f is an IF γ^*G closed mapping.

Theorem 3.23: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping where Y is an IF $\gamma^* cT_{1/2}$ space. Then the following are equivalent:

(i) f is an IF_γ*G closed mapping

(ii)f(B) is an IF γ *GOS in Y for every IFOS B in X

 $(iii)f(int(B)) \subseteq cl(int(f(B)))$ for every IFS B in X

Proof: (i) \Rightarrow (ii) is obvious as $f(A^c) = (f(A))^c$ for a bijection mapping.

(ii) \Rightarrow (iii) Let B be an IFS in X, then int(B) is an IFOS in X. By hypothesis f(int(B)) is an IF γ *GOS in Y. Since Y is an IF γ *cT_{1/2} space, f(int(B)) is an IFOS in Y. Therefore f(int(B)) = int(f(int(B))) \subseteq cl(int(f(int(B)))) \subseteq cl(int(f(mt(B))).

(iii) \Rightarrow (i) Let A be an IFCS in X. Then A^c is an IFOS in X. By hypothesis, $f(int(A^c)) = f(A^c) \subseteq$ $cl(int(f(A^c)))$. That is $int(cl(f(A))) \subseteq f(A)$. This implies f(A) is an IFSCS in Y and hence an IF γ^* GCS in Y [7]. Therefore f is an IF γ^* G closed mapping. **Theorem 3.24:** Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping where Y is an IF γ *cT_{1/2} space. Then the following are equivalent:

(i) f is an IF γ^*G closed mapping

(ii) f(B) is an IF γ *GCS in Y for every IFCS B in X

 $(iii)f(cl(B)) \supseteq int(cl(f(B)))$ for every IFS B in X

Proof: (i) \Rightarrow (ii) is obvious as $f(A^c) = (f(A))^c$ is a bijection mapping.

(ii) \Rightarrow (iii) Let B be an IFS in X, then cl(B) is an IFCS in X. By hypothesis f(cl(B)) is an IF γ^* GCS in Y. Since Y is an IF γ^* cT_{1/2} space, f(cl(B)) is an IFCS in Y. Therefore f(cl(B)) = cl(f(cl(B))) \supseteq int(cl(f(cl(B)))) \supseteq int(cl(f(B))).

(iii) \Rightarrow (i) Let A be an IFCS in X. By hypothesis, f(cl(A)) = f(A) \supseteq int(cl(f(A))). This implies f(A) is an IFSCS in Y and hence an IF γ^* GCS in Y. Therefore f is an IF γ^* G closed mapping.

Definition 3.25: A mapping f: $X \rightarrow Y$ is said to be an *intuitionistic fuzzy* γ^* *generalized open mapping* (IF γ^* G open mapping for short) if f(A) is an IF γ^* GOS in Y for each IFOS A in X.

Theorem 3.26: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping. Then the following are equivalent if Y is an IF $\gamma^*T_{1/2}$ space:

(i)f is an IF γ *G open mapping

 $(ii)f(int(A)) \subseteq \gamma int(f(A))$ for each IFS A of X

(iii)int($f^{-1}(B)$) $\subseteq f^{-1}(\gamma int(B))$ for every IFS B of Y

Proof: (i) \Rightarrow (ii) Let f be an IF γ *G open mapping. Let A be any IFS in X. Then int(A) is an IFOS in X. (i) implies that f(int(A)) is an IF γ *GOS in Y. Since Y is an IF γ *T_{1/2} space, f(int(A)) is an IF γ OS in Y. Therefore f(int(A)) = γ int(f(int(A))) $\subseteq \gamma$ int(f(A)). (ii) \Rightarrow (iii) Let B be an IFS in Y. Then f⁻¹(B) is an IFS in X. (ii) implies that f(int(f⁻¹(B))) $\subseteq \gamma$ int(f(f⁻¹(B))) \subseteq γ int(B). Now int(f⁻¹(B)) \subseteq f⁻¹(f(int(f⁻¹(B)))) \subseteq f⁻¹(γ int(B)).

(iii) \Rightarrow (i) Let A be an IFOS in X. Then int(A) = A and f(A) is an IFS in Y. (iii) implies that int(f⁻¹(f(A))) \subseteq f⁻¹ (γ int(f(A))). Now A = int(A) \subseteq int (f⁻¹(f(A))) \subseteq f⁻¹(γ int(f(A))). Therefore f(A) \subseteq f(f⁻¹(γ int(f(A)))) \subseteq γ int(f(A)) \subseteq f(A). This implies γ int(f(A)) = f(A). Hence f(A) is an IF γ OS in Y. Since every IF γ OS is an IF γ *GOS, f(A) is an IF γ *GOS in Y. Thus f is an IF γ *G open mapping.

Theorem 3.27: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF γ *G open mapping if $f(\gamma int(A)) \subseteq \gamma int(f(A))$ for every $A \in X$.

Proof: Let A be an IFOS in X. Then int(A) = A. Now $f(A) = f(int(A)) \subseteq f(\gamma int(A)) \subseteq \gamma int(f(A))$, by hypothesis. But $\gamma int(f(A)) \subseteq f(A)$. Therefore f(A) is an IF γ OS in X. That is f(A) is an IF γ *GOS in X. Hence f is an IF γ *G open mapping.

Theorem 3.28: A mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF γ^*G open mapping if and only if $int(f^{-1}(B)) \subseteq f^{-1}(int(B))$ for every $B \in Y$, where Y is an IF $\gamma^*cT_{1/2}$ space.

Proof: Necessity: Let B ∈ Y. Then f⁻¹(B) ⊆ X and int(f⁻¹(B)) is an IFOS in X. By hypothesis, f(int(f⁻¹(B))) is an IFγ*GOS in Y. Since Y is an IFγ*cT_{1/2} space, f(int(f⁻¹(B))) is an IFOS in Y. Therefore f(int(f⁻¹(B))) = int(f(int(f⁻¹(B)))) ⊆ int(f(f⁻¹(B))) ⊆ int(B). This implies int(f⁻¹(B)) ⊆ f⁻¹(f(int(f⁻¹(B)))) ⊆ f⁻¹(int(B)).

Sufficiency: Let A be an IFOS in X. Therefore int(A) = A. Then $f(A) \subseteq Y$. By hypothesis $int(f^{-1}(f(A))) \subseteq f^{-1}(int(f(A)))$. That is $int(A) \subseteq int(f^{-1}(f(A))) \subseteq f^{-1}(int(f(A)))$. Therefore $A \subseteq f^{-1}(int(f(A)))$. This implies $f(A) \subseteq f(f^{-1}(int(f(A)))) \subseteq int(f(A)) \subseteq f(A)$. Hence f(A) is an IFOS in Y and hence an IF γ^* GOS in Y. Thus f is an IF γ^* G open mapping.

Theorem 3.29: Let (X, τ) be an IFTS where X is an IF γ^* c $T_{1/2}$ space. An IFS A is an IF γ^* GOS in X if and only if A is an IFN [9] of $p_{(\alpha, \beta)}$ for each $p_{(\alpha, \beta)} \in A$.

Proof: Necessity: Let $p_{(\alpha, \beta)} \in A$. Let A bean IF γ^* GOS in X. Since X is an IF γ^* cT_{1/2} space, A is an IFOS in X. Then clearly A is an IFN [9] of $p_{(\alpha, \beta)}$ as $p_{(\alpha, \beta)} \in A \subseteq A$.

Sufficiency: Let $p_{(\alpha, \beta)} \in A$. Since A is an IFN of $p_{(\alpha, \beta)}$, there is an IFOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$. Now $A = \bigcup_{p(\alpha, \beta) \in A} p(\alpha, \beta) \subseteq \bigcup_{p(\alpha, \beta) \in A} B \subseteq A$. This implies

A = $\bigcup_{p(\alpha,\beta)\in A} B$. Since each B is an IFOS, A is an IFOS

and hence A is an IF γ^* GOS in X.

Theorem 3.30: For any IFS A in an IFTS (X, τ) where X is an IF γ^* cT_{1/2} space, A \in IF γ^* GO(X) if and only if for every IFP $p_{(\alpha, \beta)} \in A$, there exists an IF γ^* GOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

Proof: Necessity: If $A \in IF\gamma^*GO(X)$, then we can take B = A so that $p_{(\alpha, \beta)} \in B \subseteq A$ for every IFP $p_{(\alpha, \beta)} \in A$.

Sufficiency: Let A be an IFS in X and assume that there exists $B \in IF\gamma^*GO(X)$ such that $p_{(\alpha, \beta)} \in B \subseteq A$. Since X is an IF $\gamma^*cT_{1/2}$ space, B is an IFOS of X. Then $A = \bigcup_{p(\alpha,\beta)\in A} p(\alpha,\beta) \subseteq \bigcup_{p(\alpha,\beta)\in A} B \subseteq A$. Therefore A =

 $\bigcup_{p(\alpha,\beta)\in A} B$ is an IFOS and hence A is an IF γ^* GOS [7],

in X. Thus $A \in IF\gamma^*GO(X)$.

Theorem 3.31: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping where Y is an IF γ^* cT_{1/2} space. Then f is an IF γ^* GOM if and only if for any IFP $p_{(\alpha,\beta)} \in Y$ and for any IFN of $f^{-1}(p_{(\alpha, \beta)})$, there is an IFN A of $p_{(\alpha, \beta)} \in A$ and $f^{-1}(A) \subseteq B$.

Proof: Necessity: Let $p_{(\alpha, \beta)} \in Y$ and B be an IFN of f⁻¹ $(p_{(\alpha, \beta)})$. Then there is an IFOS C in X such that f⁻¹ $(p_{(\alpha, \beta)}) \in C \subseteq B$. Since f is an IF γ^*G open mapping, f(C) is an IF γ^*GOS in Y. Since Y is an IF $\gamma^*cT_{1/2}$ space, f(C) is an IFOS in Y and $p_{(\alpha, \beta)} \in f(f^{-1}(p_{(\alpha, \beta)})) \subseteq f(C) \subseteq f$ (B). Put A = f(C). Then A is an IFN of $p_{(\alpha, \beta)}$ and $p_{(\alpha, \beta)} \in A \subseteq f(B)$. Thus $p_{(\alpha, \beta)} \in A$ and f⁻¹ $(A) \subseteq f^{-1}(f(B)) = B$. That is f⁻¹ $(A) \subseteq B$.

Sufficiency: Let $B \in X$ be an IFOS. If $f(B) = 0_{\sim}$ then there is nothing to prove. Suppose that $p_{(\alpha, \beta)} \in f(B)$. This implies $f^{-1}(p_{(\alpha, \beta)}) \in B$. Then B is an IFN of $f^{-1}(p_{(\alpha, \beta)})$. By hypothesis there is an IFN A of $p_{(\alpha, \beta)}$ such that $p_{(\alpha, \beta)} \in A$ and $f^{-1}(A) \subseteq B$. Therefore there is an IFOS C in Y such that $p_{(\alpha, \beta)} \in C \subseteq A = f(f^{-1}(A)) \subseteq$ f(B).

Hence $f(B) = \bigcup \{ p_{(\alpha, \beta)} / p_{(\alpha, \beta)} \in f(B) \} \subseteq \bigcup \{ C / p_{(\alpha, \beta)} \in f(B) \} \subseteq f(B)$. Thus $f(B) = \bigcup \{ C / p_{(\alpha, \beta)} \in f(B) \}$. Since each C is an IFOS, f(B) is also an IFOS and hence is an IF γ *GOS in Y. Therefore f is an IF γ *G open mapping.

Theorem 3.32: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a bijective mapping, then the following are equivalent:

(i)f is an IFMy*G closed mapping

(ii)f(A) is an IF γ *GCS in Y for every IF γ *GCS A in X

(iii)f(A) is an IF γ^*GOS in Y for every IF γ^*GOS A in X

Proof: (i) \Leftrightarrow (ii) is obvious from the Definition 3.1.

(ii) \Rightarrow (iii) Let A be an IF γ^* GOS in X. Then A^c is an IF γ^* GCS in X. By hypothesis, f(A^c) is an IF γ^* GCS in Y. That is f(A)^c is an IF γ^* GCS in Y and hence f(A) is an IF γ^* GOS in Y as f is a bijective mapping.

(iii) \Rightarrow (i) Let A be an IF γ^* GCS in X. Then A^c is an IF γ^* GOS in X. By hypothesis, f(A^c) is an IF γ^* GOS in Y. That is f(A)^c is an IF γ^* GOS in Y and hence f(A) is an IF γ^* GOS in Y as f(A^c) = (f(A))^c. Hence f is an IFM γ^* G closed mapping.

Theorem 3.33: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a bijective mapping and Y is an IF $\gamma^*T_{1/2}$ space then the following are equivalent:

(i) f is an IFM γ *G closed mapping

(ii)f(A) is an IF γ^* GOS in Y for every IF γ^* GOS A in X

(iii) for every IFP $p_{(\alpha, \beta)} \in Y$ and for every IF γ^* GOS B in X such that $f^{-1}(p_{(\alpha, \beta)}) \subseteq B$, there exists an IF γ^* GOS A in Y such that $p_{(\alpha, \beta)} \in A$ and $f^{-1}(A) \subseteq B$

Proof: (i) \Rightarrow (ii) is obvious by Theorem 3.32.

(ii) \Rightarrow (iii) Let $p_{(\alpha, \beta)} \in Y$ and let B be an IF γ^* GOS in X such that $f^{-1}(p_{(\alpha, \beta)}) \subseteq B$. This implies $p_{(\alpha, \beta)} \in f(B)$. By hypothesis, f(B) is an IF γ^* GOS in Y. Let A = f(B). Therefore $p_{(\alpha, \beta)} \in f(B) = A$ and $f^{-1}(A) = f^{-1}(f(B)) \subseteq B$.

(iii) \Rightarrow (i) Let B be an IF γ^* GCS in X. Then B^c is an IF γ^* GOS in X. Let $p_{(\alpha, \beta)} \in Y$ and $f^{-1}(p_{(\alpha, \beta)}) \subseteq B^c$. This implies $p_{(\alpha, \beta)} \in f(B^c)$. By hypothesis there exists an IF γ^* GOS A in Y such that $p_{(\alpha, \beta)} \in A$ and $f^{-1}(A) \subseteq B^c$, then $A = f(f^{-1}(A)) \subseteq f(B^c)$. Therefore $p_{(\alpha, \beta)} \in f(B^c)$. Hence by [7], $f(B^c)$ is an IF γ^* GOS in Y. As f is a bijective, $f(B^c) = (f(B))^c$. Therefore f(B) is an IF γ^* GCS in Y. Thus f is an IF $M\gamma^*$ G closed mapping.

Theorem 3.34: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a bijective mapping, Where X and Y are $IF\gamma^*T_{1/2}$ spaces then the following are equivalent:

(i) f is an IFMγ*closed mapping

(ii)f(A) is an IF γ *GOS in Y for every IF γ *GOS A in X

 $(iii)f(\gamma int(B)) \subseteq \gamma int(f(B))$ for every IFS B in X

 $(iv)\gamma cl(f(B)) \subseteq f(\gamma cl(B))$ for every IFS B in X

Proof: (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Let B be any IFS in X. Since γ int(B) is an IF γ OS, it is an IF γ *GOS in X. Then by hypothesis, f(γ int(B)) is an IF γ *GOS in Y. Since Y is an IF γ *T_{1/2}

space, $f(\gamma int(B))$ is an IF γOS in Y. Therefore $f(\gamma int(B))$ = $\gamma int(f(\gamma int(B))) \subseteq \gamma int(f(B))$.

(iii) \Rightarrow (iv) can easily proved by taking complement in (iii).

(iv) \Rightarrow (i) Let A be an IF γ *GCS in X. By hypothesis, $\gamma cl(f(A)) \subseteq f(\gamma cl(A))$. Since X is an IF γ *T_{1/2} space, A is an IF γ CS in X. Therefore, $\gamma cl(f(A)) \subseteq f(\gamma cl(A)) =$ $f(A) \subseteq \gamma cl(f(A))$. Hence f(A) is an IF γ CS in Y and hence an IF γ *GCS in Y. Thus f is an IFM γ *G closed mapping.

IV. REFERENCES

- [1] Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
- [2] Coker, D., An introduction to intuitionistic fuzzy topological space, Fuzzy sets and systems, 1997, 81-89.
- [3] Coker, D., and Demirci, M., "On Intuitionistic Fuzzy Points", Notes on intuitionistic fuzzy sets, 1995, 79-84.
- [4] Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Mathematics, 1997, 365-378.
- [5] Hanafy, I. M., "Intuitionistic Fuzzy γ -Continuity", Canad. Math. Bull., 2009, 544–554.
- [6] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 2005, 3091-3101.
- [7] Riya, V. M., and Jayanthi, D., "Intuitionistic fuzzy γ^* generalized closed sets", Advances in fuzzy mathematics, (2017), 389-410.
- [8] Riya, V. M., and Jayanthi, D., "Intuitionistic fuzzy γ* generalized continuous mappings", Global journal of pure and applied mathematics, (2017), 2859-2874.
- [9] Seok Jong Lee and Eun Pyo Lee., "The category of intuitionistic fuzzy topological spaces", Bull. Korean Math. Soc. 2000, 63 – 76.
- [10] Thakur S. S and Jyothi pandey Bajpey., Intuitionistic fuzzy g open and g closed mapping, Vikram mathematical journal, 2007, 35-42.
- [11] Thakur S. S., and Rekha Chaturvedi., "Regular Generalized closed sets in intuitionistic fuzzy topological spaces", Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria, 2006, 257 - 272.