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1. Introduction  

By a conformal string in Euclidean space is meant 

a closed critical curve with non constant conformal 

curvature of the conformal arclength functional. 

The conformal geometry of space curves was 

mainly developed in the first half of the past 

century and later taken up starting from the early 
1980's. This subject has got much attention for its 

many fields of application, including the theory of 

integrable systems [3], [12], [8], topology and 

M•𝑜 bius energy of knots [2], [6], [9], and the 

geometric approach to shape analysis and medical 

imaging [13]. 

Suppose that 𝛾 ⊂ 𝑅𝑛 , 𝑛 ≥ 3, be a smooth curve 

parameterized by arclength s. The conformal 

arclength parameter 𝜁 of 𝛾 is defined by 

𝑑𝜁 =   𝛾 , 𝛾  −  𝛾, 𝛾  2 
1

4  𝑑𝑠 =: 𝜂𝛾 , 

where   ,   is the standard scalar product on 𝑅𝑛  and 

𝛾,  𝛾  stands for double and triple  derivative of 𝛾. 

The 1-form 𝜂𝛾 , the infinitesimal conformal 

arclength of 𝛾, is conformally invariant. If  𝜂𝛾  
𝑠

≠

0, for each 𝑠, the curve is called generic. The 

conformal arclength 𝜁 gives a conformally 

invariant parameterization of a generic curve. We 

consider the conformally invariant variational 
problem on generic curves defined by the 

conformal arclength functional ℒ 𝛾 =  𝜂𝛾𝛾
. 

For 𝑛 = 3 and higher dimensions this variational 

problem was studied in [7], [11]. A generic space 

curve is determined, up to conformal 

transformations, by the conformal arclength and 

two conformal curvatures. As for a closed critical 

curve with constant conformal curvatures, we can 

see that it is conformally equivalent to a closed 

rhumb line (loxodrome) of a torus of revolution. 

1.1. The conformal group 

Let ℝ4,1  denote ℝ5 with the Lorentz scalar product 

 𝑣, 𝑤 = − 𝑣0𝑤4 + 𝑣4𝑤0 +  𝑣𝑗 𝑤𝑗

3

𝑗 =1

=  𝑔𝑎𝑏 𝑣𝑎𝑤𝑏 ,

4

𝑎,𝑏=0

   𝑔𝑎𝑏 = 𝑔𝑏𝑎  

where 𝑣 =  𝑣0 , …… , 𝑣4 , and with the space and 
time orientations defined, respectively, by the 

volume form 𝑑𝑣0 ∧ …∧ 𝑑𝑣4 and the positive light 
cone  

𝐿+ =  𝑣 ∈ ℝ4,1:  𝑣, 𝑣 = 0, 𝑣0 + 𝑣4 > 0  
The conformal space 𝑀3 is the projectivization 

of 𝐿+, endowed with the oriented conformal 

structure induced by the scalar product and the 

space and time orientations. 

If  𝑒0 , … , 𝑒4  is the standard basis of ℝ4,1, the map  

𝐽: 𝑥 =  𝑥1 , 𝑥2 , 𝑥3 ∈ ℝ3

⟼  
𝑡𝑥.𝑥

2
𝑒0 +  𝑥𝑖𝑒𝑗

3

𝑗 =1

+ 𝑒4 

∈ 𝑀3 
is an orientation-preserving conformal 

diffeomorphism of ℝ3 onto the conformal space 

minus the point 𝑃∞ =  𝑒0 . The inverse of 𝐽 is the 

conformal projection 

𝑝:   𝑣𝑎𝑒𝑎

4

𝑎=0

 ∈ 𝑀3 ∖  𝑃∞ ⟼
1

𝑣4
 𝑣1 , 𝑣2 , 𝑣3 ∈ ℝ3 

The conformal group G consists of all pseudo-

orthogonal transformations preserving the volume 

form. It is a 10-dimensional Lie group with two 

connected components. The first component is the 

subgroup 𝐺+ consisting of all 𝑉 ∈ 𝐺 preserving the 

positive light cone and the second one consists of 

all 𝑉 ∈ 𝐺 switching the positive light cone with the 

negative one. The group 𝐺 acts effectively and 

transitively on the left of 𝑀3 preserving the 

conformal structure. The classical Liouville 

theorem [5] asserts that every conformal 

automorphism of 𝑀3 is induced by a unique 

element of G. Consequently, the conformal group 

can be viewed as the pseudo-group of all conformal 
transformations of Euclidean 3-space. The 
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orientation-preserving conformal transformations 

are induced by the elements of 𝐺+, while the 

conformal transformations induced the elements of 

𝐺 are orientation-reversing. ∀ 𝑉 ∈ 𝐺+, we denote 

by 𝑉0 , … , 𝑉4  its column vectors. Then,  𝑉0 , … , 𝑉4  is 

a positive light cone basis of ℝ4,1, that is a positive-

oriented basis such that 
 𝑉𝑎 , 𝑉𝑏  = 𝑔𝑎𝑏 ,    𝑉0 , 𝑉4 ∈ 𝐿+,    𝑎, 𝑏 = 0, … ,4 

Conversely, if  𝑉0 , … , 𝑉4  is a positive light-cone 

basis, then the matrix 𝐹 with column vectors 

𝑉0 , … , 𝑉4  is an element of 𝐺+. The Lie algebra of G 

consists of all skew-adjoint matrices of the scalar 

product, that is 𝑔 =  𝑋 ∈ 𝑔𝑙 5, ℝ :𝑡 𝑋. 𝑔 + 𝑔. 𝑋 =
0 . 
The maximal compact abelian subgroups of 𝐺 are 

conjugate to the 2-dimensional torus 

𝐾 =  𝑅 𝜃1 , 𝜃2 : 𝜃1 , 𝜃2 ∈  0,  2𝜋   
≅ 𝑆𝑂 2 × 𝑆𝑂 2  

Where 

 𝑅 𝜙1 , 𝜙2 =

 

 
 
 
 

1+𝑐𝑜𝑠𝜃2

2
0

0
0

𝑠𝑖𝑛 𝜃2

 2

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1

0
1−𝑐𝑜𝑠𝜃2

2
0

     

0 −
𝑠𝑖𝑛𝜃2

 2

1−𝑐𝑜𝑠 𝜃2

2

−𝑠𝑖𝑛𝜃1

𝑐𝑜𝑠𝜃1

0

0            0
0            0

𝑐𝑜𝑠𝜃2 −
𝑠𝑖𝑛 𝜃2

 2

𝑠𝑖𝑛𝜃2

 2

𝑠𝑖𝑛𝜃2

 2

1+𝑐𝑜𝑠 𝜃2

2  

 
 
 
 

 

Note that 𝑅 𝜃1 , 𝜃2  is the composition of the 

Euclidean rotation of angle 𝜃1 around the 𝑧-axis 

with the toroidal rotation of angle 𝜃2 around the 

Clifford circle 𝐶 =   𝑥, 𝑦, 0 : 𝑥2 + 𝑦2 = 2 . The 𝑧-

axis and the Clifford circle are the rotational axes 

of 𝐾. The rotational axes of any other maximal 

torus 𝑉 ⋅ 𝐾 ⋅ 𝑉−1 are the images under 𝑉 of the 

axes of 𝐾.  

1.2. Conformal geometry of space curve: Let 

𝛾: 𝐼 ⊂ ℝ ⟶ ℝ3 be a smooth curve parameterized 

by arclength 𝑠, 𝐼 an open interval. Points where the 

infinitesimal conformal arclength 𝜂𝛾  vanishes are 

called vertices of 𝛾. Generic curves can be 

parameterized by the conformal arclength 

parameter 𝜁, defined by 𝑑𝜁 = 𝜂𝛾 . If such a 

conformal parametrization is defined for every 

𝜁 ∈ ℝ, the curve is said complete. A frame field 

along 𝛾 is a smooth map 𝑉: 𝐼 ⟶ 𝐺+, such that 

𝒫 ∘ 𝑉4 = 𝛾. 

Proposition 1.1.: For any oriented generic curve  

𝛾: 𝐼 ⟶ ℝ3, there is a unique frame field 𝑉: 𝐼 ⟶ 𝐺+ 
along , the Vessiot frame, such that 

𝑉−1𝑑𝑉 =

 
 
 
 
 

0 1  0   0 0
𝑓2

1
0

0  0   0 
  0   0    𝑓1 

   0 −𝑓1 0   

1
0
0

0 𝑓2  1  0 0 
 
 
 
 

𝜂𝛾 , 

where 𝑓1, 𝑓2 are smooth functions, called the 

conformal curvatures. We call Γ = 𝑉4 : 𝐼 ⟶ ℒ+ the 

canonical null lift of 𝛾. 

1.3. Conformal structure of spacetimes: 
Liouville’s Theorem states that there are some kind 

of rigidity on conformal structures of semi-

Euclidean space ℝ𝑣
𝑛  when 𝑛 ≥ 3. In two-

dimensional Euclidean space, it is known that any 
conformal diffeomorphisms defined on an open 

subset of ℝ2 are homography or anti-homography 
and these can be seen as a conformal map defined 

on Riemann sphere. Though some authors 

introduce conformal compactification of two-

dimensional Minkowski spacetime, if we confine 

the subject to spacetimes with Cauchy surfaces, we 

can explicitly obtain their groups of conformal 

diffeomorphisms without compactifications. It is 

known that the group of conformal 

diffeomorphisms can be obtained by the group of 

causal automorphisms if the dimension of the 

Lorentzian manifold is bigger than two and so, in 

high dimensional Lorentzian manifolds to study 
conformal structures is equivalent to study causal 

structures. 

 

2. Quantization of the conformal 

Arclength functional  

Here we will obtain the proof of our three main 

results.  

Theorem 2.1.: The conformal classes of conformal 
strings are in 1-1 correspondence with the rational 

points of the complex domain 

Ω =  𝑞 ∈ ℂ:
1

2
< 𝑅𝑒 𝑞 <

1

 2
, 𝐼𝑚 𝑞 > 0,  𝑞 <

1

 2
  

The rational points of Ω  are called the moduli of 
conformal strings. 

Proof: Since the periodic map θ =  θ1 , θ2 : Σ ⟶
ℝ2 is a real-analytic diffeomorphism onto the 
domain 

Ω =   𝑥, 𝑦 ∈ ℝ2: −
1

 2
< 𝑥 < −

1

2
, 𝑥2 + 𝑦2

<
1

2
, 𝑦 > 0  

Where 

θ1 𝑎, 𝑏 ∶=
1

2𝜋
 

𝜇 𝑎, 𝑏 

𝜅 𝑎,𝑏  𝑡 2 − 𝜇 𝑎, 𝑏 2
𝑑𝑡

𝜔 𝑎,𝑏 

0

 

θ2 𝑎, 𝑏 ∶=
1

2𝜋
 

𝑣 𝑎, 𝑏 

𝜅 𝑎,𝑏  𝑡 2 − 𝑣 𝑎, 𝑏 2
𝑑𝑡

𝜔 𝑎,𝑏 

0

 

Where 𝜇 𝑎, 𝑏 =
1

 2
 𝑎 + 𝑏 +  4 +  𝑎 − 𝑏 2 ,

 𝑣 𝑎, 𝑏 =
1

 2
 𝑎 + 𝑏 −  4 +  𝑎 − 𝑏 2 

Now by partially differentiating  θ1 , θ2 
 𝜕𝑎θ1  𝑎,𝑏 

=
𝑋11 𝑎, 𝑏 𝐸  

𝑎 − 𝑏
𝑎

 + 𝑌11 𝑎, 𝑏 𝐾  
𝑎 − 𝑏

𝑏
 

𝑍11 𝑎, 𝑏 
 

 𝜕𝑏θ1  𝑎,𝑏 

=
𝑋21 𝑎, 𝑏 𝐸  

𝑎 − 𝑏
𝑎

 + 𝑌21 𝑎, 𝑏 𝐾  
𝑎 − 𝑏

𝑏
 

𝑍21 𝑎, 𝑏 
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 𝜕𝑎θ2  𝑎,𝑏 

=
𝑋12 𝑎, 𝑏 𝐸  

𝑎 − 𝑏
𝑎

 + 𝑌12 𝑎, 𝑏 𝐾  
𝑎 − 𝑏

𝑏
 

𝑍12 𝑎, 𝑏 
 

 𝜕𝑏θ2  𝑎,𝑏 

=
𝑋22 𝑎, 𝑏 𝐸  

𝑎 − 𝑏
𝑎

 + 𝑌22 𝑎, 𝑏 𝐾  
𝑎 − 𝑏

𝑏
 

𝑍22 𝑎, 𝑏 
 

Where the coefficients 𝑋𝑖𝑗  𝑎, 𝑏 , 𝑌𝑖𝑗  𝑎, 𝑏  and 

𝑍𝑖𝑗  𝑎, 𝑏  rae 

𝑋11 𝑎, 𝑏 

=  2 2𝜁 𝑎, 𝑏 − 𝑎2𝑏

+ 𝑎 4 + 𝜁 𝑎, 𝑏 𝑏 

+ 𝑏 4 + 𝜁 𝑎, 𝑏 𝑏   

𝑌11 𝑎, 𝑏 

= −2 2  𝑎 + 𝜁 𝑎, 𝑏 

− 𝑎𝑏2

+ 𝑏 3

+ 𝑏 𝜁 𝑎, 𝑏 + 𝑏    

𝑍11 𝑎, 𝑏 

= 𝜋 𝑎𝜁 𝑎, 𝑏  𝑎 − 𝑏  𝑎

− 𝑏
− 𝜁 𝑎, 𝑏   𝑎 + 𝑏

+ 𝜁 𝑎, 𝑏  
3

2  

𝑋21 𝑎, 𝑏 = 𝑎 2𝑏 + 𝜁 𝑎, 𝑏  , 

𝑌21 𝑎, 𝑏 = −𝑏 𝑎 + 𝑏 + 𝜁 𝑎, 𝑏   

And by 

𝑍21 𝑎, 𝑏 

=  2𝜋𝑏 𝑎 − 𝑏 𝜁 𝑎, 𝑏  𝑎 𝑎 + 𝑏 + 𝜁 𝑎, 𝑏   

𝑋12 𝑎, 𝑏 =  2  2𝜁 𝑎, 𝑏 + 𝑎2𝑏

+ 𝑎 −4 + 𝑏𝜁 𝑎, 𝑏  

− 𝑏 4 − 𝑏𝜁 𝑎, 𝑏 + 𝑏2   

𝑌12 𝑎, 𝑏 = 2 2 𝑎 − 𝜁 𝑎, 𝑏 − 𝑎𝑏2

+ 𝑏 3 − 𝑏𝜁 𝑎, 𝑏 + 𝑏2   

𝑍12 𝑎, 𝑏 = 𝜋 𝑎𝜁 𝑎, 𝑏  𝑎 − 𝑏  𝑎 − 𝑏

+ 𝜁 𝑎, 𝑏   𝑎 + 𝑏

− 𝜁 𝑎, 𝑏  
3

2 
 

𝑋22 𝑎, 𝑏 = 𝑎 𝜁 𝑎, 𝑏 − 2𝑏 , 

𝑌22 𝑎, 𝑏 = 𝑏 𝑎 + 𝑏 − 𝜁 𝑎, 𝑏  ,   

𝑍22 𝑎, 𝑏 

=  2𝜋 𝑎 − 𝑏 𝑏𝜁 𝑎, 𝑏  𝑎 𝑎 + 𝑏 − 𝜁 𝑎, 𝑏   

Where 𝜁 𝑎, 𝑏  stands for  4 +  𝑎 − 𝑏 2. These 

formulae have been derived with the help of the 

software Mathematica.  

Since the partial derivatives of θ1 and θ2 are strictly 

positive on Σ′ =   𝑎, 𝑏 ∶ 𝑎 > 1, 𝑎𝑏 > 1, 𝑏 ≤ 𝑎  
[14]. The Jacobian of θ is strictly positive on Σ. In 

particular, the image θ Σ  is a connected open set 

and θ ∶ Σ ⟶ θ Σ  is a local diffeomorphism. The 

mapping θ is a real-analytic local diffeomorphism 

onto Ω  [14].  

𝛉 is one-one: First order partial derivatives of θ1 

and θ2 are strictly positive on Σ′. Then there is an 

open neighborhood 𝑊 of Σ′ such that the first order 

partial derivatives of θ1 and θ2 are positive on 

𝑊 ′ = 𝑊⋂𝐼𝑛𝑡 Σ  .  on this set we consider the 

nowhere vanishing vector fields 

𝐶1 =  1, −
𝜕𝑎 θ1

𝜕𝑏θ1
  ,  𝐶2 =  1, −

𝜕𝑎 θ2

𝜕𝑏θ2
 . 

The trajectories of the integral curves of 𝐶1 and 𝐶2 

are graphs of strictly decreasing functions and 

hence they intersect 𝜕+Σ in at most one point. 

In addition ∀ 𝑄 =  𝑥, 𝑦 ∈ Ω , we have, the 

connected components of the lavel curve 𝒱1 𝑥 =
Φ1

−1 𝑥 ⋂Σ are contained in the intersection of a 

trajectory of 𝐶1 with Σ. The connected components 

of the lavel curve 𝒱2 𝑦 = Φ2
−1 𝑦 ⋂Σ are 

contained in the intersection of a trajectory of 𝐶2 

with Σ. The level curve 𝒱1 𝑥′  is connected, 

∀ 𝑄′ =  𝑥′, 𝑦′ ∈ Ω . Also the level curves 𝒱2 𝑦′  

are connected, ∀ 𝑄′ =  𝑥′, 𝑦′ ∈ Ω . 

It sufficient to show that  𝒱1 𝑥  ⋂ 𝒱2 𝑦  = 1 

∀  𝑥, 𝑦 ∈ Ω . By contradiction suppose the 

existence of  𝑥, 𝑦 ∈ Ω ,  such that 

 𝒱1 𝑥 ⋂𝒱2 𝑦  > 1. Let  𝑎, 𝑏  and  𝑎1 , 𝑏1  be two 

distinct elements of Σ, such that Φ 𝑎1 , 𝑏1 =
Φ 𝑎, 𝑏 =  𝑥, 𝑦 . From the above discussions, we 

know that the level curves 𝒱1 𝑥  and 𝒱2 𝑦  are 

connected and graphs of two strictly decreasing 

functions, denoted by 𝑢 and 𝑣 respectively. The 

domain of definition is an open interval 𝐼 ⊂
 1, +∞ , containing 𝑎 and 𝑎1. By construction, 

𝑢 𝑎 = 𝑣 𝑎 = 𝑏,   𝑢 𝑎1 == 𝑣 𝑎1 =
𝑏1 ,  with 𝑎 ≠ 𝑎1 . 
On the other hand, 𝒱1 𝑥  and 𝒱2 𝑦  are contained 

in the trajectories of the vector fields 𝐶1 and 𝐶2, 

respectively. From this, we have 

𝑢′ 𝑡 =  −
𝜕𝑎 θ1

𝜕𝑏θ1
 
 𝑡,𝑢 𝑡  

 𝑣 ′ 𝑡 =  −
𝜕𝑎 θ2

𝜕𝑏θ2
 
 𝑡,𝑣 𝑡  

   

∀ 𝑡 ∈ 𝐼 
With Jacobian 

 𝜕𝑎 θ1

𝜕𝑏 θ1
 
 𝛼,𝛽 

 −
𝜕𝑎 θ2

𝜕𝑏θ2
 
 𝛼 ,𝛽 

> 0 ∀ 𝛼, 𝛽 ∈ Σ. 

Then, the function 𝑕 = 𝑣 − 𝑢 satisfies 𝑕 𝑎 =
𝑕 𝑎1 = 0, 𝑕′ 𝑎 > 0 and 𝑕′ 𝑎1 > 0. This implies 

the existence of 𝑎2 ∈ 𝐼, different from 𝑎 and 𝑎1, 

such that 𝑕 𝑎2 = 0 and 𝑕′ 𝑎2 ≤ 0. Consequently, 

the Jacobian of θ is non positive at  𝑎2 , 𝑏2 =
 𝑎2 , 𝑢 𝑎2  =  𝑎2 , 𝑣 𝑎2  ∈ Σ. Hence the required 

result. 

Theorem 2.2: The conformal strings 

corresponding to a modulus 𝑞 ∈ Ω are conformal 

equivalent to a model string 

𝛾𝑞 =  𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  : ℝ ⟶ ℝ3 . 

Proof: Since conformal classes of conformal 

strings are in 1-1 correspondence with the elements 
of the countable set 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 5 July 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 341 

Ω∗ =   𝑞1 , 𝑞2 ∈ ℚ2 ∶
1

2
< 𝑞1 <

1

 2
, 𝑞2 > 0, 𝑞1

2 +

𝑞22<12. 

Then, for every 𝑞 =  𝑞1 , 𝑞2 ∈ Ω∗, there is a unique 
 𝑎, 𝑏 ∈ Σ such that θ1 𝑎, 𝑏 = −𝑞1  and θ2 𝑎, 𝑏 =
𝑞2 . For every  𝑞1 , 𝑞2 ∈ Ω∗, let 

Θ1 𝑡 =  
𝜇

𝜇 2−𝑘 𝑢 2 𝑑𝑢
𝑡

0
, 

Θ2 𝑡 =  
𝑣

𝑣2−𝑘 𝑢 2 𝑑𝑢
𝑡

0
 and 

𝑟 𝑡 =

 𝜇2 − 𝑣2𝑘 𝑡 + 𝑣 𝜇2 − 𝑘 𝑡 2 cos Θ1 t , 

 

 Where 𝑎, 𝑏 are the parameters of 𝑞 and 𝑘, 𝜇, 𝑣 

stand for 𝑘𝑎,𝑏 , 𝜇 𝑎, 𝑏  and 𝑣 𝑎, 𝑏 , respectively. 

Note that  𝑞1 , 𝑞2  and  𝑎, 𝑏  are related by 

𝑞1 =
1

2𝜋
 Θ1

′  𝑡 𝑑𝑡
𝑤

0
, 𝑞2 = −

1

2𝜋
 Θ2

′  𝑡 𝑑𝑡
𝑤

0
. 

where 𝑤 = 𝑤 𝑎, 𝑏  is the minimal period of 𝑘. 

The symmetrical configuration of the conformal 

strings with modulus 𝑞 =  𝑞1 , 𝑞2  is the 

parametrized curve 𝛾𝑞 =  𝑥, 𝑦, 𝑧 : ℝ ⟶ ℝ3 defined 

by 

𝑥 𝑡 =
 2

𝑟 𝑡 
𝜇 𝑘 𝑡 2 − 𝑣2𝑐𝑜𝑠Θ2 𝑡 , 

𝑦 𝑡 =
 2

𝑟 𝑡 
𝜇 𝑘 𝑡 2 − 𝑣2𝑠𝑖𝑛Θ2 𝑡 , 

𝑧 𝑡 =
 2

𝑟 𝑡 
𝑣 𝜇2 − 𝑘 𝑡 2𝑠𝑖𝑛Θ1 𝑡  

We have 𝛾𝑞 =  𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  : ℝ ⟶ ℝ3 . and 

modulus 𝑞 ∈ Ω Where called the symmetrical 

configuration of 𝑞. Here 

𝑘 𝑡 =  
 𝑎𝑐𝑛   𝑎 − 𝑏𝑡,

𝑎

𝑎 − 𝑏
 , 𝑏 < 0

 𝑎𝑑𝑛  𝑎𝑡,
𝑎 − 𝑏

𝑎
 ,          𝑏 > 0

  

𝑟 𝑡 =  𝜇2 − 𝑣2𝑘 𝑡 + 𝑣 𝜇2 − 𝑘 𝑡 2𝑐𝑜𝑠Θ1 𝑡  

Where  

𝜇 =
1

 2
 𝑎 + 𝑏 +  4 +  𝑎 + 𝑏 2 ,    

𝑣 =
1

 2
 𝑎 + 𝑏 +  4 +  𝑎 + 𝑏 2 

Θ1 𝑡 =  
𝜇

𝜇2 − 𝑘 𝑢 2
𝑑𝑢,

𝑡

0

 

Θ2 𝑡 =  
𝑣

𝑣2 − 𝑘 𝑢 2
𝑑𝑢,

𝑡

0

 

And where 𝑎 and 𝑏 are real parameters, uniquely 

defined by q, such that 𝑎 > 0, 𝑎 > 𝑏, 𝑏 ≠
0, 𝑎𝑛𝑑 𝑎𝑏 > 1. 
Consider the unique conformal parametrization 

𝛾 ∶ ℝ ⟶ ℝ3of a conformal string with parameters 

𝑎, 𝑏 whose Vessiot frame 𝐹 satisfies the initial 

condition 𝐹 0 = 𝐼𝑑. It suffices to prove that 𝛾 is 

conformally equivalent to 𝛾𝑞 . Since the canonical 

lift Γ ∶ ℝ ⟶ ℒ+ of 𝛾 takes the form 𝑌 ∙ 𝑊, where 

𝑌 ∈ 𝐺𝐿 5, ℂ  and 𝑊 =  𝑤0 , … , 𝑤4  is the ℂ5-

valued map defined by 

𝑤0 = 𝑘, 

𝑤1 =  𝜇2 − 𝑘2𝑒𝑖Θ1 𝑡 ,  

𝑤2 =  𝜇2 − 𝑘2𝑒−𝑖Θ1 𝑡  

𝑤3 =  𝑣2 − 𝑘2𝑒𝑖Θ2 𝑡  

𝑤4 =  𝑣2 − 𝑘𝑒−𝑖Θ2  𝑡  

On the other hand, the curve Γ =  𝛾 0 , … , 𝛾 4 ∶
ℝ ⟶ ℒ+, defined by 

𝛾 0 𝑡 =
1

 2
  𝜇2 − 𝑣2𝑘 𝑡 

− 𝑣 𝜇2 − 𝑘 𝑡 2𝑐𝑜𝑠Θ1 𝑡   

𝛾 1 𝑡 = 𝜇 𝑘 𝑡 2 − 𝑣2𝑐𝑜𝑠Θ2 𝑡  

𝛾 2 𝑡 = 𝜇 𝑘 𝑡 2 − 𝑣2𝑠𝑖𝑛Θ2 𝑡  

𝛾 3 𝑡 = 𝑣 𝜇2 − 𝑘 𝑡 2𝑠𝑖𝑛Θ1 𝑡  

𝛾 4 𝑡 =
1

 2
  𝜇2 − 𝑣2𝑘 𝑡 

+ 𝑣 𝜇2 − 𝑘 𝑡 2𝑐𝑜𝑠Θ1 𝑡   

is a null lift of 𝛾𝑞 . From above conditions, it 

follows that 𝑊 = 𝑍 ∙ Γ ,  for some 𝑍 ∈ 𝐺𝐿 5, ℂ . 
Consequently, Γ = 𝐿 ∙ Γ ,  for a suitable 𝐿 ∈
𝐺𝐿 5, ℂ . This yields 𝑉 = 𝐿 ∙ 𝑉𝑞 , where 𝑉𝑞  is the 

Vessiot frame along 𝛾𝑞 . Thus 𝐿 ∈ 𝐺+, which 

implies that 𝛾 and 𝛾𝑞  are equivalent to each other.  

Hence the required result. 

Theorem 2.3: Let 𝛾𝑞 : ℝ ⟶ ℝ3 be the symmetrical 

configuration corresponding to the modulus 𝑞 =

𝑞1 + 𝑖𝑞2, where 𝑞1 =
𝑚1

𝑛1
, 𝑞2 =

𝑚2

𝑛2
  the pairs 

 𝑚1 , 𝑛1 ,  𝑚2 , 𝑛2  are coprime integers. Let 𝑛 be 

the least common multiple of 𝑛1 and 𝑛2, and 

consider the coprime integers 𝑕1 =
𝑛

𝑛1
  and 𝑕2 =

𝑛

𝑛2
. 

Then, 

(1) 𝑛 is the order of the symmetry group of 𝛾𝑞 ; 

(2) 𝑚1𝑕1 and 𝑚2𝑕2 are the linking numbers of 

𝛾𝑞  with the Clifford circle and the 𝑧-axis, 

respectively. 

Proof: The curve 𝛾 is a real-analytic closed curve 

with positive chirality. Therefore, its symmetry 

group is generated by the monodromy. By 

construction, the canonical null lift Γ ∶ ℝ ⟶ ℒ+ 

and the first conformal curvature is a strictly 

positive periodic function, with minimal period 𝜔. 

Using Theorem 2.2 We  find Γ𝑞  𝑡 + 𝜔 =

𝑅 2𝜋𝑞2 , 2𝜋𝑞1 ⋅ Γ𝑞 𝑡 , where 𝑅 2𝜋𝑞2 , 2𝜋𝑞1 ∈ 𝐾. 

Then, 𝑅 2𝜋𝑞2 , 2𝜋𝑞1  is the monodromy of 𝛾. This 

implies that the symmetry group of 𝛾 is generated 

by 𝑅 2𝜋𝑞2 , 2𝜋𝑞1 . Let  𝑧  denote the 𝑧-axis with 

the downward orientation induced by the 

parametrization 𝛼 𝑠 =  0,0, −𝑠 , and let  𝐶  be 

the Clifford circle equipped with the orientation 

induced by the rational parametrization 

𝛽 ∶ 𝑡 ∈ ℝ ⟼  
− 2 𝑡2 − 2 

 𝑡2 + 2 
,

4𝑡

 2 + 𝑡2 
, 0 ∈ ℝ3 
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Now we compute the Gauss linking integrals 𝑙𝑘 𝛾,  𝑧   and 𝑙𝑘 𝛾,  𝐶  . If 𝛾 𝑡 =  𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  , the Gauss 

linking integral 𝑙𝑘 𝛾,  𝑧   is given by 

𝑙𝑘 𝛾,  𝑧  =
1

4𝜋
  

𝛾−𝛼

 𝛾−𝛼 3 ⋅ 𝑑𝛾 × 𝑑𝛼
𝑧 𝛾 

 = −
1

4𝜋
    

𝑥 𝑡 𝑦 ′ 𝑡 −𝑥 ′ 𝑡 𝑦 𝑡 

 𝑥 𝑡 2+𝑦 𝑡 2+ 𝑧 𝑡 −𝑠 2 3 2  𝑑𝑠
+∞

−∞
 𝑑𝑡

𝑛𝜔

0
 

= −
1

2𝜋
 

𝑥 𝑡 𝑦 ′ 𝑡 − 𝑥′ 𝑡 𝑦 𝑡 

𝑥 𝑡 2 + 𝑦 𝑡 2
𝑑𝑡

𝑛𝜔

0

= −
𝑛

2𝜋
 Θ2

′  𝑡 𝑑𝑡
𝜔

0

= 𝑛θ2 = 𝑛𝑞2 = 𝑕2𝑚2 

To compute the linking integral of 𝛾  with the Clifford circle we consider the orientation preserving conformal 

involution 

 𝜓 ∶  𝑥, 𝑦, 𝑧 ∈ ℝ3 ⟼
1

𝑥2+𝑦2+𝑧2 +2 2𝑥+2
 𝑥2 + 𝑦2 + 𝑧2 + 2 2, 4𝑧, 4𝑦 ∈ ℝ3.  

This map takes  − 2, 0,0  to the point at infinity 

and exchanges the roles of the 

two axes of symmetry. A direct computation shows 

that the parametric equations of 𝛾∗ = θ ∘ 𝛾 are  

𝑥∗ 𝑡 =
 2

𝑟∗ 𝑡 
𝑣 𝜇2 − 𝑘 𝑡 2𝑐𝑜𝑠Θ1 𝑡  

𝑦∗ 𝑡 =
 2

𝑟∗ 𝑡 
𝑣 𝜇2 − 𝑘 𝑡 2𝑠𝑖𝑛 Θ1 𝑡  

𝑧∗ 𝑡 =
 2

𝑟∗ 𝑡 
𝜇 𝑘 𝑡 2 − 𝑣2𝑠𝑖𝑛 Θ2 𝑡  

Where 𝑟∗ 𝑡 =  𝜇2 − 𝑣2𝑘 𝑡 + 𝜇 𝑘 𝑡 2 − 𝑣𝑐𝑜𝑠Θ2 𝑡 . We then have  

𝑙𝑘 𝛾,  𝐶  = −𝑙𝑘 𝛾∗,  𝑧   

= −
1

4𝜋
  

𝛾∗ − 𝛼

 𝛾∗ − 𝛼 3
⋅ 𝑑𝛾∗ × 𝑑𝛼

𝑧[𝛾∗]

 

=
1

4𝜋
    

𝑥∗ 𝑡 𝑦∗
′ 𝑡 − 𝑥∗

′  𝑡 𝑦∗ 𝑡 

 𝑥∗ 𝑡 
2 + 𝑦∗ 𝑡 

2 +  𝑧∗ 𝑡 − 𝑠 2 3 2  
+∞

−∞

𝑑𝑠 𝑑𝑡
𝑛𝜔

0

 

=
1

2𝜋
 

𝑥∗ 𝑡 𝑦∗
′ 𝑡 − 𝑥∗

′  𝑡 𝑦∗ 𝑡 

𝑥∗ 𝑡 
2 + 𝑦∗ 𝑡 

2
𝑑𝑡

𝑛𝜔

0

 =
𝑛

2𝜋
 Θ1

′  𝑡 𝑑𝑡
𝜔

0

= −𝑛θ1 = 𝑛𝑞1 = 𝑕1𝑚1 

Which the required result. 

3. Conformal Change of Metric 
An interesting kind of metric changes is the 

conformal change, the simplest way to vary a 

metric. Let us first glance at a basic case to 

understand our gluing method for conformal 

change. 

Theorem 3.1.: Suppose  𝑋, 𝑔  is a compact 

Riemannian manifold and 𝑀 is an oriented 

compact connected 𝑚-dimensional submanifold 

representing a nonzero class in 𝐻𝑚 𝑋; 𝑅 . Then for 

any open neighborhood 𝑈 of 𝑀, a new metric 𝑔  

can be constructed by a conformal change of 𝑔 

supported in 𝑈 such that 𝑀 is strongly calibrated 

by some calibration 𝜑  in  𝑋, 𝑔  . 
Proof: Since 𝜑 is pointwise a multiple of 𝜋𝑔

∗𝜔 in 

𝑈3

5
∈  𝑀 ,  Φ 𝑔

∗  is smooth on 𝑈3

5
∈  𝑀 . Let 

𝑔′ =   Φ 𝑔
∗  

2

𝑚 𝑔. Then Φ 
𝑔 ′
∗ = 1 on 𝑈3

5
∈  𝑀 . 

Take 𝑔 = 𝜎
1

𝑚  1 + 𝑑2 𝑔′ + 𝛼 1 − 𝜎 
1

𝑚 𝑔. Set 

𝑔 ≜ 𝛼−1𝑔  and Φ ≜ 𝛼−
𝑚

2 Φ. Then M is strongly 

calibrated by Φ  under 𝑔 . Furthermore, 𝑔  is 

conformal to 𝑔 and 𝑔 = 𝑔  on 𝑋 − 𝑈 ∈  𝑀 . The 

same local gluing ideas and elimination tricks on 
calibrations lead to the following results. 

Theorem 3.2.: Suppose 𝑀 is a finite mutually 

disjoint collection in a compact Riemannian 

manifold  𝑋; 𝑔  and every nonempty level 𝑀𝑘 

satisfy the convex hull condition. Then for any 

open neighborhood 𝑈 of 𝑀, a new metric 𝑔  can be 

constructed by a conformal change of 𝑔 supported 

in 𝑈 such that there exist a family of calibrations 

 Φ 𝑘   in  𝑋; 𝑔   and every nonzero current 𝑇 =

 𝑡𝑖  𝑀𝑖  
𝑟𝑘
𝑖=1  with 𝑀𝑖 ∈ 𝑀𝑘 and 𝑡𝑖 ≥ 0 is calibrated 

by Φ 𝑘 . Consequently T is mass-minimizing in [𝑇] 
with 𝑀(𝑇) =  𝑡𝑖𝑉𝑜𝑙𝑔  𝑀𝑖 

𝑠
𝑖=1  

Corollary 3.3.: Suppose M is a finite mutually 

disjoint collection in a compact Riemannian 

manifold  𝑋; 𝑔  and each component represents a 

nonzero class in the 𝑅-homology of 𝑋. Then for 

any open neighborhood 𝑈 of 𝑀, a new metric 𝑔  can 

be constructed by a conformal change of 𝑔 

supported in 𝑈 such that each 𝑀𝑘 can be tamed 

in  𝑋; 𝑔  . 

Theorem 3.4.: Suppose 𝑀 is a finite mutually 

disjoint collection in  𝑋; 𝑔  and each component 

represents a nonzero class in the 𝑅-homology of 𝑋. 

Then a new metric 𝑔  can be constructed by a 

conformal change of 𝑔 such that every 𝑀𝑘 can be 

tamed in  𝑋; 𝑔  . 

Theorem 3.5.: Suppose 𝑀 is a neat mutually 

disjoint collection in  𝑋; 𝑔  and each component 

represents a nonzero class in the 𝑅-homology of 𝑋. 

In addition, assume every level of M consist of 

finite components except the lowest level. Then a 

new metric 𝑔  can be constructed by a conformal 

change of 𝑔 such that each 𝑀𝑘 can be tamed in 
 𝑋; 𝑔  . 

Remark 3.6.: If  𝑋; 𝑔  is hermitian with an 

(almost) complex 𝐽, so are the resulted metrics. 
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As an application, we strengthen Tasaki’s 

“equivariant” theorem in [4]. 

Theorem 3.7.: (Tasaki) Let 𝐾 be a compact 

connected Lie transformation group of a manifold 

𝑋 and 𝑀 be a (connected) compact oriented 

submanifold in 𝑋. Assume 𝑀 is invariant under the 

action of 𝐾 and it represents a nonzero 𝑅-

homology class of 𝑋. Then there exists a 𝐾-

invariant Riemannian metric 𝑔 on 𝑋 such that 𝑀 is 

mass-minimizing in homology class with respect 

to 𝑔. 

Theorem 3.8.: Let 𝐾 be a compact Lie 

transformation group of a manifold 𝑋 and 𝑀 be a 

compact connected oriented submanifold in 𝑋. 

Assume 𝑀 is invariant under the action of 𝐾 and 

the action is orientation preserving. Then for any 

𝐾-invariant Riemannian metric 𝑔𝐾, there exists a 

𝐾-invariant metric 𝑔 𝐾 conformal to 𝑔𝐾 such that 𝑀 

can be calibrated in  𝑋; 𝑔 𝐾 . 

Theorem 3.9.: Suppose M is a neat mutually 

disjoint collection with only the lowest level 

possibly consisting of infinite components, and that 

each component represents a nonzero class in the 

𝑅-homology of 𝑋. Let 𝐾 be a compact connected 

Lie transformation group of 𝑋. Assume 𝑀 is 

invariant under the action of 𝐾. Then for any K-

invariant Riemannian metric 𝑔𝐾, there exists a 𝐾-

invariant metric 𝑔 𝐾 conformal to 𝑔𝐾 such that 

every 𝑀𝑘 can be tamed in  𝑋; 𝑔 𝐾 . 
Proof: Without loss of generality, one only needs 

to consider the case of a single level. Since 𝐾 is 

compact, there is a Haar-measure 𝑑𝜇 with  𝑑𝜇 =
𝐾

1. One can use 𝑑𝜇 to average for a 𝐾-invariant Φ. 

(Note that 𝜔∗ and 𝑑 are 𝐾-invariant.) Then average 

the corresponding 𝛼. By (2.1) one can get a 𝐾-

invariant calibration pair  Φ, 𝑔 𝐾 . 

3.2.: On Mean Curvature Vector Fields: Let us 

take a short digression about mean curvature vector 

fields. By local calibrations, we have the following. 

Corollary 3.10.: Suppose M is an oriented 

compact submanifold in  𝑋; 𝑔 . Then there exists 𝑔  

conformal to 𝑔 such that 𝑀 is minimal in  𝑋; 𝑔  . 

Remark 3.11.: Since either local orientation of a 

submanifold leads to the same metric by our 

method and being minimal is really a local 

property, the orient ability and compactness 

requirements can be removed. 

What is more, by a direct computation, a concrete 

relation between mean curvature vector fields 

through a conformal change can be given 

explicitly. 

Proposition 3.12.: Let 𝑀 be an 𝑚-dimensional 

submanifold in  𝑋; 𝑔  and 𝑔 = 𝑓. 𝑔 where 𝑓 is a 

positive function. Then at a point 𝑝 ∈ 𝑀, 

𝑓 𝑝 . 𝐻 𝑝 = 𝐻𝑝 −
𝑚

2𝑓 𝑝 
. 𝑔𝑟𝑎𝑑𝑔,𝑝

⊥  𝑓  

Here 𝐻 and 𝐻  are mean vector fields of 𝑀 under 𝑔 

and 𝑔  respectively and 𝑔𝑟𝑎𝑑𝑔
⊥ ∙  stands for the 

normal part of 𝑔𝑟𝑎𝑑𝑔
⊥ ∙   along 𝑀. 

Remark 3.13.: 𝑀 can be realized totally geodesic 

via a conformal change if and only if 𝑀 is 

pointwise totally umbilical. 

Theorem 3.14.: For a submanifold 𝑀 (not 

necessarily oriented or compact) in  𝑋; 𝑔  and any 

(smooth) section 𝜉 of the normal bundle over 𝑀, 

there exists some metric 𝑔  conformal to 𝑔 such that 

𝐻 = 𝜉 
Proof: Suppose the 𝜀-neighborhood 𝑈𝜀  of 𝑀 for 

some suitable positive function 𝜀 on 𝑀 can be 

identified with the normal 𝜀-disc bundle 𝐵 of M via 

the exponential map restricted to normal directions. 

Consider the smooth function 𝑓 on 𝐵 by 𝑓𝑥 𝑦 =

1 −
2

𝑚
< 𝜉𝑥 − 𝐻𝑔 , 𝑦 > 𝑔

1

𝑥   where 𝑥 is a point of 𝑀 

and 𝑦 lies in the 𝜖-disc fiber through 𝑥. Let F be the 

induced positive (shrink 𝜖 if needed) function on 

𝑈𝜖 . Take 𝑔 = 𝐹. 𝑔  . Since the differential of the 

identification map along 𝑀 is identity, by 

(2.2) 𝐻𝑔 = 𝐻𝑔 −
𝑚

2
⋅ 𝑔𝑟𝑎𝑑𝑔

⊥𝐹 = 𝐻𝑔 +
𝑚

2
⋅

2

𝑚
⋅

 𝜉𝑥 − 𝐻𝑔 . 

4. Conformal structure of two-

dimensional spacetimes 

In general, it is well-known that any causal 

isomorphism between two Lorentzian manifolds is 

a smooth conformal diffeomorphism if the 

dimension of manifolds is bigger than two. 

However, this is not the case when the dimension is 

two. Even if a causal automorphism is ℂ∞, it is not 

necessarily a conformal diffeomorphism. For 

example, if we take 𝜙 = 𝜓 = 𝑥3, then the function 

𝑉 defined as ℂ∞[15] and causal automorphism 

on ℝ1
2. However, it is not a conformal 

diffeomorphism since its inverse is not 

differentiable at  0,0 . Therefore, if we want to get 

a conformal diffeomorphism on ℝ1
2 from causal 

automorphism we need one more condition and we 

state the corresponding result in two-dimensional 

spacetimes with non-compact Cauchy surfaces. 

Lemma 4.1: Let M and N be two-dimensional 

spacetimes with non-compact Cauchy surfaces and 

𝑉: 𝑀 → 𝑁 be a causal isomorphism. If both 𝑉 and 

𝑉−1   are ℂ∞, then, 𝑉 is a ℂ∞ conformal 

diffeomorphism. 

Proof: It suffices to show that 𝑉∗ sends null vectors 

to null vectors, by Lemma 2.1 in [1]. Let 𝑣 ∈ 𝑇𝑝𝑀 

be a null vector and let γ be a future-directed null 

geodesic with 𝛾 0 = 𝑝 and 𝛾 ′ 0 = 𝑣. Then, since 

𝑀 has non-compact Cauchy surfaces, 𝛾 has no null 

cut points, and so, for any 𝑡 > 0, we have 𝛾 0 ≤
𝛾 𝑡  but not 𝛾 0 << 𝛾 𝑡 .  Since 𝑉 is a causal 

isomorphism, we have 𝑉 𝛾 0  ≤ 𝑉 𝛾 𝑡   but 

not 𝑉 𝛾 0  << 𝑉 𝛾 𝑡  . Therefore, any future-
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directed causal curve from 𝑉 𝛾 0   to 𝑉 𝛾 𝑡   is a 

null pregeodesic. Since 𝑉 is a ℂ∞ causal 

isomorphism 𝑉 ∘ 𝛾 is a future-directed causal curve 

and thus 𝑉 ∘ 𝛾 is a null pregeodesic. Therefore, 

𝑉∗ 𝑣  is a null vector. Likewise, we can apply the 

same argument to 𝑉−1  to obtain the desired result. 

Let 𝑉: 𝑀 ⟶ 𝑁 be an anti-causal isomorphism. 

When the time-orientation of 𝑁 is given by a vector 

field 𝑋, if we replace the time-orientation of 𝑁 

by −𝑋, the map 𝑉 becomes a causal isomorphism. 

Since conformal map is irrelevant to time-

orientations, we have the following. 

Corollary: Let 𝑀 and 𝑁 be two-dimensional 

spacetimes with non-compact Cauchy surfaces and 

𝑉: 𝑀 → 𝑁 be an anti-causal isomorphism. If both 𝑉 

and 𝑉−1  are ℂ∞, then, 𝑉 is a ℂ∞ conformal 

diffeomorphism. 
If M is a two-dimensional spacetime with a non-

compact Cauchy surface Σ, then Σ is 

homeomorphic to ℝ. If we identify ℝ and ℝ0 =
  𝑥, 0  𝑥 ∈ ℝ   which is a Cauchy surface of ℝ1

2, 

we can choose a homeomorphism 𝑓: Σ → ℝ0 . For 

given 𝑝 ∈ 𝐽+ Σ , let 𝑆𝑝 = 𝐽− 𝑝 ∩ Σ. Then, since 

M is globally hyperbolic, 𝑆𝑝  is compact and 

connected and thus 𝑓 𝑆𝑝  is also compact and 

connected subset of ℝ0 and we can choose unique 

𝑞 ∈ 𝐽+ ℝ0  such that 𝐽− 𝑞 ∩ ℝ0 = 𝑓 𝑆𝑝 . In this 

way, we can extend 𝑓 to a map from 𝐽+ Σ  into 

𝐽+ ℝ0 . Likewise, we can extend 𝑓 from 𝐽− Σ  

into 𝐽− ℝ0  and thus we have a map from 𝑀 into 

ℝ1
2. It can be shown that this extended map is a 

causal isomorphism from 𝑀 into its image in ℝ1
2 

and that ℝ0 is a Cauchy surface of the image of the 

extended map.  

In the above argument, if we take 𝑓 to be a ℂ∞ 

diffeomorphism between 𝚺 and ℝ𝟎, then the 

extended map is a ℂ∞ conformal diffeomorphism. 

Theorem 4.1: Let 𝑀 be a two-dimensional 
spacetime with non-compact Cauchy surfaces. 

Then 𝑀 can be imbedded into ℝ1
2 in such a way 

that the imbedding is a conformal diffeomorphism 

onto a globally hyperbolic subset of ℝ1
2 that 

contains 𝑥-axis as a Cauchy surface. 

Proof: Let Σ be a Cauchy surface of 𝑀 and take a 

ℂ∞ diffeomorphism 𝑓: Σ ⟶ ℝ0. Then, by the 

above argument, 𝑓 can be extended to a causal 

isomorphism 𝑉: 𝑀 ⟶ ℝ1
2 onto an open subset that 

contains ℝ0 as a Cauchy surface, which is a 

topological imbedding. 

By the previous lemma, it is sufficient to show that 

𝑉 and 𝑉−1  are ℂ∞. 

For given 𝑝 ∈ 𝐽+ Σ , since Σ is a non-compact 

smooth one-dimensional manifold, 𝑆𝑝  is uniquely 

determined by two boundary points, say 𝑥 and 𝑦. 

Since there are two unique null geodesics 𝛾1  from 𝑥 

to 𝑝 and 𝛾2  from 𝑦 to 𝑝, the dependence of 𝑝 on 𝑥 

and 𝑦 is ℂ∞. Likewise, the dependence of 𝑉 𝑝  on 

𝑉 𝑥  and 𝑉 𝑦  is also ℂ∞. Therefore, since 𝑓 is ℂ∞, 

𝐹 is ℂ∞. 

By exactly the same manner, we can show that 

𝑉−1  is ℂ∞. 

From the above theorem, we can see that, to 
analyze conformal structure of two-dimensional 

spacetimes with non-compact Cauchy surfaces, it is 

sufficient to study conformal structures of an open 

subset of ℝ1
2 that contains 𝑥-axis as a Cauchy 

surface. 

Lemma 4.2: Let 𝑈 be a globally hyperbolic open 

subset of ℝ1
2 that contains 𝑥-axis as a Cauchy 

surface and let 𝑉: 𝑈 ⟶ 𝑅1
2 be a ℂ∞ conformal 

diffeomorphism into an open subset of 𝑅1
2 that 

contains 𝑥-axis. Then, there exists unique ℂ∞ 

diffeomorphisms 𝜙 and 𝜓 of 𝑅 such that 𝜙 ′𝜓′ > 0 

and 𝑉 is given by one of the following form. 

(1) 𝑉 𝑥, 𝑡 =  𝜙 𝑥 + 𝑡 + 𝜓 𝑥 − 𝑡 , 𝜙 𝑥 + 𝑡 −

𝜓 𝑥 − 𝑡  . 

(2) 𝑉 𝑥, 𝑡 =  𝜙 𝑥 − 𝑡 + 𝜓 𝑥 + 𝑡 , 𝜙 𝑥 − 𝑡 −

𝜓 𝑥 + 𝑡  . 

Proof: We only sketch outlines of the proof since it 

can be obtained from calculations and simple 

arguments. If a map 𝑉: (𝑥, 𝑡)  ↦  𝑋, 𝑇  is a 

conformal map, from the definitions of conformal 

map, we obtain two cases. 

i) 𝑋𝑥
2 < 𝑇𝑥

2 and  𝑋𝑥 = 𝑇𝑡  𝑜𝑟 𝑋𝑡 = 𝑇𝑥  

ii) 𝑋𝑥
2 < 𝑇𝑥

2 and  𝑋𝑥 = −𝑌𝑡  𝑜𝑟 𝑋𝑡 = −𝑇𝑥  
We show the case (i) since the case (ii) can be 

solved by exactly the same manner. 

From 𝑋𝑥 = 𝑇𝑡  and 𝑋𝑡 = 𝑇𝑥 , we can see that both X 

and T satisfies wave equation and thus from the 

general solution of wave equations in one spatial 

coordinate, we have 𝑋 = 𝜙 𝑥 + 𝑡 +  𝜓 𝑥 −
𝑡  and 𝑇 = 𝛼 𝑥 + 𝑡 + 𝛽 𝑥 − 𝑡 . From the system 

of partial differential equations 𝑋𝑥 = 𝑇𝑡  and 𝑋𝑡 =
𝑇𝑥 , we have 𝑋 = 𝜙 𝑥 + 𝑡 + 𝜓 𝑥 − 𝑡  and 

𝑇 = 𝜙 𝑥 + 𝑡 − 𝜓 𝑥 − 𝑡 + 𝑐 for some 𝑐 ∈ 𝑅. 

By replacing 𝜙 by 𝜙 +
𝑐

2
  and 𝜓 𝑏𝑦 𝜓 −

𝑐

2
, we have 

𝑋 = 𝜙 𝑥 + 𝑡 + 𝜓 𝑥 − 𝑡  and 𝑇 = 𝜙 𝑥 + 𝑡 −
𝜓 𝑥 − 𝑡 . From 𝑋𝑥

2 < 𝑇𝑥
2, we obtain 𝜙 ′𝜓 ′ > 0. 

Since the domains of definitions and ranges of 𝑉 

must contain 𝑥-axis, 𝜙 and 𝜓 must be defined on 

the whole of 𝑅 and their ranges are 𝑅. For 𝑉 to be a 

diffeomorphism, 𝜙 and 𝜓 must be 
diffeomorphisms. 

Theorem 4.2: Let M be a two-dimensional 

spacetime with non-compact Cauchy surfaces. 

Then, the group of all conformal diffeomorphisms 

of 𝑀 is isomorphic to a subgroup of 𝐶𝑜𝑛 ℝ1
2 , the 

group of all conformal diffeomorphisms of ℝ1
2. 

Proof: By Theorem 4.1, we only need to study the 

group of all conformal diffeomorphisms of a 

globally hyperbolic open subset 𝑈 of ℝ1
2 that 

contains 𝑥-axis as a Cauchy surface. Then, for any 

conformal diffeomorphism on 𝑈, by the previous 

lemma, we have two unique diffeomorphisms 𝜙 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 47 Number 5 July 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 345 

and 𝜓 defined on ℝ in such a way that 𝑉, defined 

as in the previous lemma, is the conformal 

diffeomorphism of 𝑈. Since 𝜙 and 𝜓 are defined 

on the whole of 𝑅, we can uniquely extend 𝑉 to a 

map 𝑉 defined on ℝ1
2 and the extension is a 

conformal diffeomorphism of ℝ1
2 by the previous 

lemma. Then, the map 𝑉 ↦ 𝑉  is a group 

isomorphism from 𝐶𝑜𝑛 𝑀  into a subgroup of 

𝐶𝑜𝑛 ℝ1
2 . 

Theorem 4.3.: Let 𝑀 be a two-dimensional 

spacetime with compact Cauchy surfaces and 

𝜋: 𝑀 ⟶ 𝑀 be a universal covering map. Then, we 

have the following. 

(1) The group of covering transformation 𝐷 

consists of those functions 𝜙 given by 𝜙 𝑢, 𝑣 =
 𝑢 + 𝑚, 𝑣 + 𝑚  in null coordinates. The group A, 

the normalizer of 𝐷 in 𝐶𝑜𝑛 𝑀  consists of pairs of 

two diffeomorphisms  𝜙, 𝜓 ∈ 𝐴𝑢𝑡 𝑀  on 𝑅 that 

satisfy the condition: for any 𝑛 ∈ 𝑍, there exists 

𝑚 ∈ 𝑍 such that 𝑓 𝑥 + 𝑛 − 𝑓 𝑥 =
𝑚

2
  for all 𝑥. 

(2) The general form of conformal diffeomorphism 

on M is given by 

𝑔 𝑒2𝜋𝑖𝑥 , 𝑡 =  𝑒𝜋𝑖  𝜑 𝑢 +𝜓 𝑣  ,
1

2
 𝜑 𝑢 − 𝜓 𝑣    

Where 𝜙 and 𝜓 are given from (1). 

Theorem 4.4.: Let M be a two-dimensional 

spacetime with compact Cauchy surfaces. Then, 

there exists two-dimensional spacetime 𝑀 with 

non-compact Cauchy surfaces of which the group 

of conformal diffeomorphisms contains 𝐷 as a 

subgroup such that 𝐶𝑜𝑛 𝑀  is isomorphic to 𝐴/𝐷 

where 𝐴 is the normalizer of 𝐷 in 𝐴𝑢𝑡(𝑀). 

Conversely, given two-dimensional spacetime 𝑀 

with non-compact Cauchy surfaces, if the group of 

conformal diffeomorphisms of 𝑀 contains 𝐷 as a 

subgroup, then there exists two-dimensional 

spacetime 𝑀 with compact Cauchy surfaces such 

that 𝐶𝑜𝑛 𝑀  is isomorphic to 𝐴/𝐷. 

Theorem 4.5.: Let 𝑀 be a two-dimensional 

spacetime with compact Cauchy surfaces. Then, 

𝐶𝑜𝑛 𝑀  is isomorphic to a subgroup of 𝐶𝑜𝑛 𝐸 . 
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