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1. Introduction: 

 The Concept of mixed quadrature was first  coined by R.N Das and G.pradhan [15].The method of mixing 

quadrature  rules is based on forming a mixed quadrature rule of higher precision by taking linear/convex 

combination of two quadrature rules of lower precision. Though in literature we find precision enhancement through 

Richardson Extrapolation  and  Kronrod  extension  [11,17,18]  taking respectively trapezoidal rule and Gaussian 

quadrature as base rules, these methods are quite cumbersome. On the other hand, the precision enhancement 

through mixed quadrature method is very simple and easy to handle. Authors [14-16] have also developed mixed 
quadrature rules for approximate evaluation of the integrals of analytic functions following  F .Lether [10]. 

  So far in this  paper in which an anti-Lobatto quadrature rule  has been used to construct a mixed 

quadrature rule by using the concept of anti-Gaussian  quadrature  formula.  

 Dirk P. Laurie [1-3,5]   is first to coin the idea of anti-Gaussian quadrature formula . An anti-Gaussian 

quadrature  formula is an (n+1) point  formula of degree (2n-1) which integrates all polynomials of degree upto 

(2n+1) with an error equal in magnitude but opposite in sign to that of n-point Gaussian formula .If )()1( pH n

  

 1

1

n

i i f ( i ) be (n+1) point anti-Gaussian formula and )()( pG n
  be n  point Gaussian formula then by 

hypothesis , )( pI )()1( pH n
 = - ( )( pI  )()( pG n

), 12  nPp   where p  is a polynomial of degree 

.12  n .  

In this paper we design a five  point anti-Lobatto rule following LAURIE. We mix this anti-Lobatto five point rule 

with Fejer’s five point second  rule to form a mixed quadrature rule.The relative efficiency of the mixed rule has 

been shown by numerically evaluating some test integrals. 

2. Construction of anti-Lobatto  five  point rule  from Lobatto  four point rule.  

 We choose the Lobatto three point rule : 

 )}]
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1
)(4  fffffLobw  ……………… (1)                           

We develop a four point anti-Lobatto rule  fRH w

5
from three point  Lobatto rule  fLobw

4
. 
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Using the principle     pGpIpHpI nn )()1( )()(  
 as adopted in Laurie [1], after  simplification  we 

get 

        
1

1

45 2 fLobdxxffRH ww
.
            (2) 

            
1

1

4

53423121 2)1()(1 fLobdxxffwfwfwfwfw w    (3) 

 Therefore  anti-Lobatto five point rule due to Lobatto four point  rule is   

       )4.....(..........).........1()(1)( 53423121

5 fwfwfwfwfwfRH w    

In order to obtain the unknown weights and nodes, we assume that  

(i) The rule is exact for all polynomial of  degree 4  . 

(ii) The rule integrates all polynomials of degree up to seven  with an error equal in  magnitude and opposite in 

sign to that of Lobatto rule. Thus we obtain following system of eight equations having eight unknowns namely  

5,4,3,2,1, iwi and  3,2,1, ii  

For )(xf = 
ix , 7,6,5,4,3,2,1,0i   

 Solving the system of equation we get
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Putting   the above   value in equation  (4),we have 

 

      )0()}({}11{)( 31121

5 fwffwffwfRH w    

 

      )0(
69

64
)}({

414

245
}11{

18

1
)( 11

5 ffffffRH w    

Therefore  anti-Lobatto five point rule due to Lobatto four point  rule is   
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But the anti-Lobatto five point rule is 
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Hence, by taylors series expansion ,we have 
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By putting  the values of  2121 ,,  and  in the above equation, wehave 
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We have, 
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The error associated with the method is computed as  
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3.  Construction of  mixed  Quadrature rule by using anti-Lobatto five  point rule with Fejers five  point  

second rule. 
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 Hence, by taylors series expansion ,we have 
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The error associated with Fejer’s five point rule is computed as  

  

 

  

 The error associated with the anti-Lobatto five point rule  is  computed as 
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 Eliminating )0(vif  from the equation (9) and (10), we have 
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This is the desired mixed quadrature rule of precision seven for the approximate evaluation of )( fI  . The 

truncation error generated in this approximation is given by. 
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The rule )(5

5 fFjRH w  is called  a mixed type rule of precision seven as it is constructed from two different types 

of the rules of the same precision . 

4. Error analysis: 

 An asymptotic error estimate and an error bound of the rule (11) and (14) are given by. 

Theorem -  4.1 

 Let  )(xf   be sufficiently differentiable function in the closed  interval ]1,1[  . Then the error . 
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5 fFjEH w associated with the rule )(5

5 fFjRH w is given by 
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Proof :The theorem follows from (11) and (12) we have , 
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And the truncation error generated   in this approximation is given by 
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Theorem – 4.2 

 The bound of the truncation error  
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Putting  the value (15)   and   (16)   in equation  (17),we have 

 1,1,,)()(
110775

2
)( 21125

5   vivi

w fffFjEH
 

dxxf vii )(
11075

2 2

1





  

  
110775

2M
| 12    |  

 

 Where 
11

)(max




x

xf
M

vii

 

 Which gives a theoretical error bound as 21 ,  are unknown points in  

]1,1[ . From this theorem it is clear that the error in approximation will be less if points 21 ,  are closer to each 

other. 

 

Corollary – 1 

 

 The error bound for the truncation error )(5

5 fFjEH w is given by 
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Proof : The proof follows from theorem (4.2) 221   . 
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5   Numerical verification by table and graphs 

 

Using the results of the table  and  the  notations  for the  errors  of different methods  given  above  the  table , four  

bar  graphs  for  the  errors  of  the  mixed quadrature rule and  its constituent rules have been constructed in figures  

A,B,C  and  D   correspond  to   



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

1

0

2

2

dxeI x
 , 

1

0

3

2

dxeI x
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( dx
x

x
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respectively. 

 
In the four graphs ,the error  names of the  mixed quadrature rule  and its constituent  rules  have been  embedded 
along  X-axis  and  the respective values of  the errors depicting  heights of the bars are given along Y-axis.The 

graphical representation of these errors is given above in figures:A,B,C,D.From the above four graphs the unit in Y-

axis is : 

TABLE - 1 

Sl 

No 

Integrals Exact Value  fLobw

4
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|E1| 

)(5 fRH w  / 

 |E2| 

/)(5 fFj   
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/)(5
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  | E4 | 
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Where   )()( 4

1 fLobfIE w
,    

)()( 5

2 fRHfIE w ,    )()( 53 fFjfIE  , 

)()( 5

5

4 fFjRHfIE w   are errors of various rules. 

The graphical representation of  these errors is given below in figures  : A,B,C,D. 
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Using the results of the table  and  the  notations  for the  errors  of different methods  given  above  the  table , four  

bar  graphs  for  the  errors  of  the  mixed quadrature rule and  its constituent rules have been constructed in figures  

A,B,C  and  D   correspond  to   



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  , 
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respectively.

 In the four graphs ,the error  names of the  mixed quadrature rule  and its constituent  rules  have been  embedded 

along  X-axis  and  the respective values of  the errors depicting  heights of the bars are given along Y-axis.The 

graphical representation of these errors is given above in figures:A,B,C,D.From the above four graphs the unit in Y-

axis is : 

 
654321 10log6,10log5,10log4,10log3,10log2,10log1  

.
 

Thus from the graphs , we conclude  that larger  the height of  the  bar    the smaller  is the error. Here we derived  
most significant result  that  our mixed  rule is  more accurate than its constituent rules. 

6    Adaptive  quadrature  algorithm 

A simple Adaptive Strategy 

Given a real integrable function f  an interval ],[ ba  and a prescribed tolerance  , it is desired to compute an 

approximation P  to the integral dxxfI

b

a

 )( , So that  IP .This can be done following adaptive 

integration schemes developed in papers [4-7,9,12,13]. In adaptive integration, the points at which the integrand is 

evaluated are chosen in a way that depends on the nature of the integrand. The basic principle of adaptive quadrature 

routines is discussed in the following manner. 

If  c  is any point between a  and  b  then 
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 The idea is that if we can approximate  each of the two integrals on the right to within a specified tolerance, 

then the sum gives us the desired result. If not we can recursively apply the adaptive property to each of the intervals 

],[ ca  and  ],[ bc . Adaptive subdivision of course has geometrical appeal. It seems intuitive that points should  be 

concentrated in regions where the integrand is badly behaved. The whole interval rules can take no direct account of 

this. 

In this paper we design an algorithm for numerical computation of  integrals  in the adaptive quadrature routines 

involving mixed rules. The literature of  the mixed quadrature rule [9,14-16] involves  construction of a symmetric 

quadrature rule of higher precision as a linear/convex combination of  two other rules of  equal  lower precision. 

 

 Algorithm for adaptive  quadrature routines:  

 The input to this schemes is ,,,,, fnba    the output 
b

a

dxxfI )(  with the error hopefully less than   

, n  is the number of intervals initially chosen. A Simple adaptive strategy is out lined in the following step 

algorithm. 

 Step - 1 :An approximation 1I   to 
b

a

dxxfI )(  is computed.   

 Step - 2 :The interval is divided into pieces ],[ ca  and ],[ bc  .  
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  Where  
2
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
   and then 
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 Step - 3 : 32 II   is computed with  to 1I  estimate the error in 32 II 
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 Step - 4 :If | estimated error |
2

   (termination-criterion), then 32 II   is accepted as an approximation 
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05 

0.000048 

1.46265172 

03 

0.000048 

1.462651739 

01 

0.000048 

0.00001 

4 

 









3

1

2

4

sin
dx

x

x
I

 

0.7948251 0.79482521 

03 

0.0000002 

0.79482514 

03 

0.00000014 

0.79482517 

03 

0.00000017 

0.794825183 

01 

0.00000018 

0.00001 

5 

dxxI 
1

0

5

 

0.666666 0.6666642 

15 

0.000017 

0.6666681 

15 

0.0000021 

0.6666692 

11 

0.0000032 

0.6666684 

09 

0.0000024 

0.00001 

 

Adaptive quadrature routines essentially consist of applying the mixed rule )(5

5 fFjRH w  and its constituents rules 

)(4 fLobw  , )(5 fRH w  and )(5 fFj  are to each of the sub intervals covering   until the termination criterion is 

satisfied. If the termination criterion is not satisfied on one or more the sub intervals, then those subintervals must be 
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further sub divided and the entire process repeated. The result obtained by a shorter program in standard CPP which 

should be more transportable and efficient. 

 

7     Observation  

In whole interval routine from the table-1  as well as from the bar graph it  is observed that  the absolute  error 

corresponding  to the mixed rule )(5

5 fFjRH w
 is lesser than those corresponding to its constituent rules  

)(),(),( 5

54 fFjfRHfLob ww  are compared and mixed rule is better than its constituents rules, when the test 

integrals are evaluated .However when these rules  are used in adaptive mode, table-2 depict that  the mixed 

quadrature rule   using anti-Gaussian rule  give very good result and  less number of steps than its constituent rules  

when tested on a number of  integrals.  

8.  Conclusion : 

After observation one can smartly draw conclusion over the efficiency of the   rule formed in this paper as follows:  

(1) The  mixed )(5

5 fFjRH w  rule is more efficient than its constituent rules )(),(),( 5

55 fFjfRHfLob ww   and 
 

previously developed mixed rules. 

(2)    In  this paper we  have concentrated mainly on computation of definite integrals in the adaptive quadrature 

routines involving mixed quadrature rule. We observed that mixed quadrature rule so formed can be very well used 

for evaluating real definite integrals than its constituent rules  in the adaptive quadrature routines. 
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