Discussion on Some Properties of an Infinite Non-abelian Group

Ankur Bala^{#1}, Madhuri Kohli^{#2}

#1 M.Sc., Department of Mathematics, University of Delhi, Delhi

#2 M.Sc., Department of Mathematics, University of Delhi, Delhi

India

Abstract: In this Article, we have discussed some of the properties of the infinite non-abelian group of matrices whose entries from integers with non-zero determinant. Such as the number of elements of order 2, number of subgroups of order 2 in this group. Moreover for every finite group G, there exists $k \in \mathbb{N}$ such that $GL(k, \mathbb{Z})$ has a subgroup isomorphic to the group G.

Keywords: Infinite non-abelian group, $GL(n, \mathbb{Z})$

Notations:
$$GL(n, \mathbf{Z}) = \{ [a_{ij}]_{n \times n} : a_{ij} \in \mathbf{Z}. \&$$

$$\det([a_{ii}]_{n\times n}) = \pm 1$$

Theorem 1: $GL(n,\mathbb{Z})$ can be embedded in $GL(m,\mathbb{Z}) \forall m \geq n$.

Proof: If we prove this theorem for m = n + 1, then we are done.

Let us define a mapping
$$\varphi: GL(n,\mathbb{Z}) \longrightarrow GL(n+1,\mathbb{Z})$$

$$\varphi\begin{pmatrix}\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn}\end{bmatrix}\end{pmatrix}=\begin{bmatrix}a_{11}&\cdots&a_{1n}&0\\\vdots&\ddots&\vdots&\vdots\\a_{n1}&\cdots&a_{nn}&0\\0&\cdots&0&1\end{bmatrix}$$

Let
$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix}$$

Such that determinant of A and B is ± 1 , where a_{ij} , $b_{ij} \in \mathbb{Z}$.

Then
$$A.B$$
 =
$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{bmatrix}$$
Where $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$

$$\Rightarrow \varphi(A.B) = \begin{bmatrix} c_{11} & \cdots & c_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & c_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$(1)$$

$$\varphi(A). \varphi(B) = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} b_{11} & \cdots & b_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ b_{n1} & \cdots & b_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{11} & \cdots & c_{1n} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \cdot \cdots (2)$$

Now from (1) and (2) one can easily say that φ is homomorphism.

Now consider $ker\varphi$,

$$Ker\varphi = \{A \in GL(n, \mathbb{Z}) : \varphi(A) = I_{(n+1)\times(n+1)}\}$$
 where I is identity matrix Clearly $Ker\varphi = \{I_{n\times n}\}$

Hence φ is injective homomorphism.

So, by fundamental theorem of isomorphism one can easily conclude that $GL(n, \mathbb{Z})$ can be embedded in $GL(m, \mathbb{Z})$ for all $m \ge n$.

Theorem 2: $GL(n, \mathbb{Z})$ is non-abelian infinite group $n \geq 2$.

Proof: Consider
$$GL(2,\mathbb{Z}) = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \mathbb{Z} \text{ and } \det(A) = \pm 1 \right\}$$

Consider
$$A_c = \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$$
 such that $c \in \mathbb{Z}$

And let $H = \{A_c : c \in \mathbb{Z}\}$ Clearly H is subset of $GL(2,\mathbb{Z})$.

And H has infinite elements.

Hence $GL(2,\mathbb{Z})$ is infinite group.

Now consider two matrices
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \in GL(2, \mathbb{Z})$$
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} . \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 1 & 3 \end{bmatrix}$$

Hence, $GL(2,\mathbb{Z})$ is non-abelian.

And by a direct application theorem 1, one can conclude that $GL(n, \mathbb{Z})$ is infinite and non-abelian $\forall n \geq 2$

Theorem 3: Number of elements of order 2 in $GL(n, \mathbb{Z})$ is infinite and hence number of subgroups of order 2 is infinite.

Consider

$$\begin{aligned} GL(2,\mathbb{Z}) &= \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \\ \mathbb{Z} \ and \det(A) &= \pm 1 \right\} \end{aligned}$$

Let $\in GL(2,\mathbb{Z})$, and order of A is 2.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ for some } a, b, c, d \in \mathbb{Z} \text{ and } A^2 = I$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a^2 + bc & ab + bd \\ ca + cd & bc + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow a^2 + bc = 1, ab + bd = 0, ca + cd = 0, bc + d^2 = 1$$

$$\Rightarrow a^2 + bc = 1, ab + bd = 0, ca + cd = 0, bc + d^2 =$$

Since $a^2 + bc = 1$, then:

Case (i):
$$a^2 = 1$$
, $bc = 0$

$$\Rightarrow a = \pm 1$$
 and either b or $c = 0$

Subcase (i): If we take a = 1 and b = 0

Then
$$\begin{bmatrix} 1 & 0 \\ c + cd & d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\Rightarrow c + cd = 0$
 $\Rightarrow c(1+d) = 0$
 $\Rightarrow either c = 0 \text{ or } d = -1$

$$\Rightarrow$$
 if $c \neq 0$ then $d = -1$

$$\Rightarrow$$
 if $c \neq 0$ then $a = -1$

Let $c \neq 0$

Then our case is a = 1, b = 0, $c \neq 0$, d = -1

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ c & -1 \end{bmatrix}$$
 has order 2 if $c \neq 0$ and $c \in \mathbb{Z}$

Clearly c has infinite choices.

 \Rightarrow Number of elements of order 2 in $GL(2,\mathbb{Z})$ is

And since number of elements of order 2 = Numberof subgroups of order 2 in any group.

 \Rightarrow Number of subgroups of order 2 in $GL(2,\mathbb{Z})$ is

Also by a direct application of theorem 1, one can easily conclude that this theorem is valid for every

Theorem 4: Every finite group can be embedded in S_n for some $n \in \mathbb{N}$

Proof: Let G be any group and A(G) be the group of all permutations of set G.

For any $a \in G$, define a map $f_a : G \to G$ such that $f_a(x) = ax$

Then as
$$x = y \Rightarrow ax = ay$$

$$\Rightarrow f_a(x) = f_a(y)$$

Hence, f_a is well defined

Clearly f_a is one-one.

Also for any $y \in G$, Since $f_a(a^{-1}y) = y$.

$$\Rightarrow f_a$$
 is onto.

And hence f_a is permutation.

Let K be set of all such permutations

Clearly K is subgroup of A(G).

Now define a mapping $\varphi : G \longrightarrow K$ such that $\varphi(a) = f_a$

Clearly φ is well-defined and one-one map.

And consider the following equation

$$\varphi(a.b) = f_{ab} = f_a \circ f_b = \varphi(a).\varphi(b)$$

Which shows that φ is homomorphism

Obviously, φ is onto homomorphism

 $\Rightarrow \varphi$ is isomorphism.

And hence the theorem.

Theorem 5: S_n is isomorphic to some subgroup of $GL(n, \mathbb{Z})$ for all $n \in \mathbb{N}$.

Proof: Let S_n be the permutation group on n symbols.

Define
$$\varphi: S_n \longrightarrow GL(n, \mathbf{Z})$$
 such that:

$$\varphi(\sigma) = [\sigma]_{n \times n} \, \forall \, \sigma \in S_n$$

Where $|\sigma|_{m \in \mathbb{N}}$ is permutation matrix obtained by σ

i.e. if
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix}$$
 then

$$egin{bmatrix} \left[\sigma
ight]_{\scriptscriptstyle{nxn}} = egin{bmatrix} R_1 \ R_2 \ dots \ R_n \end{pmatrix}$$

Where R_i is $R_{\beta_i}^{th}$ row of identity matrix.

Clearly φ is a homomorphism.

Now consider the kernel of this homomorphism.

$$\ker \varphi = \{ \sigma : \varphi(\sigma) = I_{n \times n} \} \qquad \Rightarrow i = \beta_i \ \forall i$$

 \Rightarrow ker φ is trivial.

Hence the homomorphism is injective.

 \Rightarrow S_n is isomorphic to some subgroup of $GL(n, \mathbf{Z})$ for all $n \in \mathbb{N}$.

Theorem 6: For every finite group G, there exists $k \in \mathbb{N}$ such that $GL(k,\mathbb{Z})$ has a subgroup isomorphic to the group G.

Proof: It is an obvious observation of theorem 4 and theorem 5.

CONCLUSION

 $GL(n,\mathbb{Z})$ is non-abelian infinite group having infinite number of elements of order 2 as well as subgroups of order 2. Also $GL(n,\mathbb{Z})$ can be embedded in $GL(m,\mathbb{Z})$ \forall $m \geq n$, Moreover for every finite group G, there exists $k \in \mathbb{N}$ such that $GL(k,\mathbb{Z})$ has a subgroup isomorphic to the group G.

REFERENCES

- [1] Contemporary Abstract Algebra, J.A. Gallian, Cengage Learning, 2016. ISBN: 1305887859, 9781305887855
- [2] Abstract Algebra (3rd Edition), David S. Dummit , Richard M. Foote, ISBN: 978-0-471-43334-7
- [3] On Embedding of Every Finite Group into a Group of Automorphism IJMTT, Vol.37, Number 2, ISSN: 2231-5373
- [4] A Course in Abstract Algebra, Vijay K. Khanna, S.K. Bhambri, Second Edition, Vikas Publishing House Pvt Limited, 1999, 070698675X, 9780706986754