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I. INTRODUCTION 

 Multiset (bag) is a well established notion 

both in mathematics and in computer science ([9], 

[10], [22]). In mathematics, a multiset is considered to 

be the generalization of a set. In classical set theory, a 

set is a well defined collection of distinct objects. If 

repeated occurrences of any object is allowed in a set, 

then a mathematical structure, that is known as 

multiset (mset, for short), is obtained ([21], [23], [24]). 

In various counting arguments it is convenient to 

distinguish between a set like {𝑎, 𝑏, 𝑐} and a collection 

like {𝑎, 𝑎, 𝑎, 𝑏, 𝑐, 𝑐}.The latter, if viewed as a set, will 

be identical to the former. However, it has some of its 

elements purposely listed several times. We formalize 

it by defining a multiset as a collection of elements, 

each considered with certain multiplicity. For the sake 

of convenience a multiset is written as {𝑘1/𝑥1 , 𝑘2/𝑥2 ,

… . . , 𝑘𝑛/𝑥𝑛} in which the element 𝑥𝑖  occurs 𝑘𝑖  times. 

We observe that each multiplicity 𝑘𝑖  is a positive 

integer. 

 From 1989 to 1991, Wayne D. Blizard made 

a thorough study of multiset theory, real valued 

multisets and negative membership of the elements of 

multisets ([1], [2],[3],[4]). K. P. Girish and S. J. John 

introduced and studied the concepts of multiset 

topologies, multiset relations, multiset functions, 

chains and antichains of partially ordered multisets 

([11], [12],[13],[14],[15]). D. Tokat studied the 

concept of soft multi continuous function 

[25].Concepts of multigroups and soft multigroups are 

found in the studies of Sk. Nazmul and S. K. Samanta 

([17], [18]). Many other authors like Chakrabarty et al. 

([5], [6], [7], [8]), S. P. Jena et al. ([16]), J. L. Peterson 

([19]) also studied various properties and applications 

of multisets. 

 In our previous paper we have introduced the 

notion of Multi metric Space. In this paper we are 

going to introduce a concept of Multi linear space and 

the idea of norm in such spaces. Furthermore we are 

going to investigate some properties of such Multi 

normed linear spaces. 

 

II. PRILIMINARIES 

Definition 2.1. [11] A multi set 𝑀 drawn from the set 

𝑋 is represented by a function 𝐶𝑜𝑢𝑛𝑡𝑀 or 𝐶𝑀  defined 

as    𝐶𝑀 : 𝑋 → 𝑁where 𝑁 represents the set of non 

negative integers. 

Definition 2.2. [11] Let 𝑀 and 𝑁 be two msets drawn 

from a set 𝑋. Then, the following are defined: 

 𝑖  𝑀 =  𝑁 𝑖𝑓 𝐶𝑀 𝑥 =  𝐶𝑁 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋.           

 𝑖𝑖  𝑀 ⊂  𝑁 𝑖𝑓 𝐶𝑀 𝑥 ≤  𝐶𝑁 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋.            

 𝑖𝑖𝑖  𝑃 =  𝑀 ∪  𝑁 𝑖𝑓 𝐶𝑃 𝑥 =  𝑀𝑎𝑥 𝐶𝑀 𝑥 , 𝐶𝑁 𝑥     

    

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋.   𝑖𝑣  𝑃 =  𝑀 ∩

 𝑁 𝑖𝑓 𝐶𝑃   𝑥 =  𝑀𝑖𝑛 𝐶𝑀 𝑥 , 𝐶𝑁 𝑥   

                                                                      

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋.  

 𝑣  𝑃 =  𝑀 ⊕  𝑁 𝑖𝑓 𝐶𝑃   𝑥 =  𝐶𝑀 𝑥 +  𝐶𝑁 𝑥  

                                                                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

∈  𝑋: 

 𝑣𝑖 𝑃 =  𝑀 ⊝  𝑁 𝑖𝑓 𝐶𝑃   𝑥 

=   𝑀𝑎𝑥 𝐶𝑀 𝑥 − 𝐶𝑁 𝑥 , 0  

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋, where ⊕ and ⊝represents mset 

addition and mset subtraction respectively. 

Let 𝑀 be an mset drawn from a set 𝑋. The support set 

of 𝑀 , denoted by 𝑀∗ , is a subset of X and 𝑀∗  =

 {𝑥 ∈  𝑋 ∶  𝐶𝑀(𝑥)  >  0} , i.e., 𝑀∗  is an ordinary set. 

𝑀∗ is also called root set. 

An mset M is said to be an empty mset if for all 

0)(,  xCXx M . The cardinality of an mset 𝑀 

drawn from a set 𝑋  is denoted by  (M) Card  or 

|𝑀| and is given by 𝐶𝑎𝑟𝑑 𝑀 =   𝐶𝑀𝑥∈ 𝑋  . 

Definition 2.3. [20] Multi point: Let M be a multi set 

over a universal set 𝑋, 𝑥 ∈  𝑋  and 𝑘 ∈  𝑵 such that 

𝑘 ≤ 𝐶𝑀 𝑥 . Then a multi point of M is defined by a 

mapping 𝑃𝑥
𝑘 ∶ 𝑋 → 𝑵  such that  𝑃𝑥

𝑘   𝑦  =

 
𝑘 if 𝑦 = 𝑥  

0 , otherwise 
  

x and k will be referred to as the base and the 

multiplicity of the multi point 𝑃𝑥
𝑘 ,  respectively. 

Collection of all multi points of an mset M is denoted 

by 𝑀𝑝𝑡 . 
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Definition 2.4. [20] The mset generated by a 

collection 𝐵 of multi points is denoted by 𝑀𝑆(𝐵) and 

is defined by 𝐶𝑀𝑆 𝐵  𝑥 =  𝑆𝑢𝑝   𝑘 ∶  𝑃𝑘
𝑥   ∈  𝐵  . 

Definition 2.5. [20] Let 𝑚𝑹+ denote the multi set over 

𝑹+  (set of non-negative real numbers) having 

multiplicity of each element equal to 𝑤, 𝑤 ∈  𝑁. The 

members of  𝑚𝑹+ 𝑝𝑡  will be called non-negative 

multi real points. 

Definition 2.6. [20] Let 𝑃𝑖
𝑎  and 𝑃𝑗

𝑏  be two multi real 

points of 𝑚𝑹+. We define 𝑃𝑖
𝑎  > 𝑃𝑗

𝑏   if 𝑎 >  𝑏 or 𝑃𝑖
𝑎  > 

𝑃𝑗
𝑏   if 𝑖 >  𝑗 when 𝑎 =  𝑏. 

Definition 2.7. [20] (Addition of multi real points) 

We define 𝑃𝑖
𝑎 + 𝑃𝑗

𝑏 =  𝑃𝑖+𝑗
𝑘   where 𝑘 =  𝑀𝑎𝑥 𝑖, 𝑗 ,

𝑃𝑖
𝑎 ; 𝑃𝑗

𝑏  ∈   𝑚𝑹+ 𝑝𝑡 . 

Definition 2.8. [20] (Multiplication of multi real 

points) We define multiplication of two multi real 

points in 𝑚𝑹+ as follows: 

 𝑃𝑖
𝑎 ×  𝑃𝑗

𝑏 =  
𝑃0

1   , if either 𝑃𝑖
𝑎  𝑜𝑟 𝑃𝑗

𝑏 =  𝑃0
1

 𝑃𝑎𝑏
𝑘  , otherwise where 𝑘 = 𝑀𝑎𝑥 𝑖, 𝑗 

  

. 

Definition 2.9. [20]  Multi Metric:  

Let 𝑑 ∶  𝑀𝑝𝑡  × 𝑀𝑝𝑡 →   𝑚𝑹+ 𝑝𝑡  (𝑀 being a multi set 

over a Universal set 𝑋  having multiplicity of any 

element at most equal to 𝑤 ) be a mapping which 

satisfy the following: 

 𝑀1  𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   ≥  𝑃0
1  , ∀ 𝑃𝑥

𝑙 , 𝑃𝑦
𝑚  ∈  𝑀𝑝𝑡  

 𝑀2  𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   =  𝑃0
1   𝑖𝑓𝑓  𝑃𝑥

𝑙 , = 𝑃𝑦
𝑚    ∀ 𝑃𝑥

𝑙 , 𝑃𝑦
𝑚  

∈  𝑀𝑝𝑡  . 

 𝑀3  𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚    = 𝑑  𝑃𝑦
𝑚  , 𝑃𝑥

𝑙   ∀ 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈  𝑀𝑝𝑡  . 

 𝑀4  𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   + 𝑑  𝑃𝑦
𝑚  , 𝑃𝑧

𝑛 ≥  𝑑 𝑃𝑥
𝑙 , 𝑃𝑧

𝑛   ,  

                                                                  ∀ 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  , 𝑃𝑧
𝑛  

∈  𝑀𝑝𝑡  . 

 𝑀5  𝐹𝑜𝑟 𝑙 ≠  𝑚,   𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   =  𝑃0
𝑘   ⟺   𝑥 =  𝑦  

         𝑎𝑛𝑑 𝑘 =  𝑀𝑎𝑥 𝑙,𝑚 . 

Then d is said to be a multi metric on M and (𝑀, 𝑑) is 

called a Multi metric (or an M - metric)space. 

Definition 2.10. [20] Let  𝑀, 𝑑  be an M-metric 

space, 𝑟 >  0  and 𝑃𝑎
𝑘  ∈  𝑀𝑝𝑡 . Then the open ball 

with centre 𝑃𝑎
𝑘   and radius 𝑃𝑟

1    𝑟 >  0  is denoted by 

𝐵 𝑃𝑎
𝑘  , 𝑃𝑟

1    and is defined by 𝐵 𝑃𝑎
𝑘  , 𝑃𝑟

1   =

 𝑃𝑥
𝑙 ∶  𝑑 𝑃𝑥

𝑙  , 𝑃𝑎
𝑘   <  𝑃𝑟

1 .  

𝑀𝑆[𝐵 𝑃𝑎
𝑘  , 𝑃𝑟

1   ] will be called a multi open ball with 

centre 𝑃𝑎
𝑘  and radius 𝑃𝑟

1 > 𝑃0
1 . 

Definition 2.11. [20]  𝐵  𝑃𝑎
𝑘  , 𝑃𝑟

1 =  𝑃𝑥
𝑙 ∶

 𝑑 𝑃𝑥
𝑙  , 𝑃𝑎

𝑘   ≤   𝑃𝑟
1    is called the closed ball with 

centre 𝑃𝑎
𝑘   and radius 𝑃𝑟

1    𝑟 > 0 .  𝑀𝑆 𝐵 𝑃𝑎
𝑘  , 𝑃𝑟

1   

will be called a multi closed ball with centre 𝑃𝑎
𝑘  and 

radius 𝑃𝑟
1  𝑟 > 0 .  

Definition 2.12. [20] Let (𝑀, 𝑑)  be an M-metric 

space. Then a collection B of multi points of M is said 

to be open if every multi point of B is an interior point 

of B i.e., for each 𝑃𝑎
𝑘  ∈  𝐵, there esists an open ball 

𝐵(𝑃𝑎
𝑘  , 𝑃𝑟

1  )  with centre at 𝑃𝑎
𝑘   and r > 0 such that 

𝐵(𝑃𝑎
𝑘  , 𝑃𝑟

1  )  ⊂  𝐵. 

 𝜙 is separately considered as an open set. 

Definition 2.13. [20] Let (𝑀, 𝑑)  be an M-metric 

space. Then 𝑁 ⊂  𝑀 is said to be multi open in (𝑀, 𝑑) 

iff there esists a collection B of multi points of N such 

that B is open and MS(B) = N. 

Definition 2.14. [20] A multi set N in an M-metric 

space (𝑀, 𝑑)  is said to be multi closed if its 

complement 𝑁𝑐  is multi open in (𝑀, 𝑑). 

Definition 2.15. [20] Let (𝑀, 𝑑) be an M-metric space 

and B be a collection of multi points of M. Then a 

multi point 𝑃𝑥
𝑙  of M is said to be a limit point of B if 

every open ball 𝐵(𝑃𝑥
𝑙 , 𝑃𝑟

1  ) (𝑟 >  0) containing 𝑃𝑥
𝑙  in 

(𝑀, 𝑑) contains at least one point of B other than 𝑃𝑥
𝑙 . 

The set of all limit points of B is said to be the derived 

set of B and is denoted by 𝐵𝑑 . 

Definition 2.16. [20] Let (𝑀, 𝑑) be an M-metric space 

and 𝑁 ⊂  𝑀 . Then 𝑃𝑥
𝑙  ∈  𝑀𝑝𝑡  is said to be a multi 

limit point of N if it is a limit point of 𝑀𝑝𝑡  ie. if every 

open ball 𝐵(𝑃𝑥
𝑙 , 𝑃𝑟

1  ) (𝑟 >  0) containing 𝑃𝑥
𝑙  in (𝑀, 𝑑) 

contains at least one point of 𝑁𝑝𝑡  other than 𝑃𝑥
𝑙 . 

Definition 2.17. [20] Let (𝑀, 𝑑) be an M-metric space 

and 𝐵 ⊂  𝑀𝑝𝑡 . Then the collection of all points of B 

together with all limit points of B is said to be the 

closure of B in (𝑀, 𝑑) and is denoted by 𝐵 . Thus 

𝐵  =  𝐵 ∪ 𝐵𝑑 . 

Definition 2.18. [20] Let (𝑀, 𝑑) be an M-metric space 

and 𝑁 ⊂  𝑀. Then the multi set generated by all multi 

points and all multi limit points of N is said to be the 

multi closure of N and is denoted by 𝑁 . 

Definition 2.19. [20] A sequence {𝑃𝑥𝑛
𝑙𝑛 } of multi points 

in 𝑚𝑹+  is said to converge to 𝑃0
1  if for any 𝜖 >  0, 

∃  𝑛0  ∈  𝑁 such that 𝑃𝑥𝑛
𝑙𝑛  <  𝑃∈

1    ∀ 𝑛 ≥𝑛 0.  

Since  𝑙𝑛 ≥  1 ∀ 𝑛 ∈  𝑁, 𝑃𝑥𝑛
𝑙𝑛   <  𝑃∈

1  ⟺ 𝑥𝑛 < ∈ .                   

∴  𝑃𝑥𝑛
𝑙𝑛  → 𝑃0

1  ⟺ 𝑥𝑛  →  0 𝑎𝑠 𝑛 →  ∞ in 𝑹+. 

Definition 2.20. [20]  Let {𝑃𝑥𝑛
𝑙𝑛 } be a sequence of multi 

points in an M-metric space (𝑀, 𝑑) . The sequence 

{𝑃𝑥𝑛
𝑙𝑛 }  is said to converge in (𝑀, 𝑑)  if ∃   𝑃𝑥

𝑙 ∈ 𝑀𝑝𝑡  

such that           𝑑 𝑃𝑥𝑛
𝑙𝑛 , 𝑃𝑥

𝑙   → 𝑃0
1   𝑎𝑠  𝑛 →  ∞. 

III. MULTI VECTOR SPACE 

Definition 3.1. Multi vector space : Let V be vector 

space over a field K (to be denoted by 𝑉𝐾). A multiset 

X over V is said to be a multi vector space or a multi 

linear space or Mvector space of V over K if every 
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element of X has the same multiplicity and the support 

𝑋∗ of X is a subspace of V . 

The multiplicity of every element of X will be denoted 

by 𝑤𝑋 . 

Example 3.2. Let 𝑹3 be the Euclidean 3-dimensional 

space over 𝑹 . Let 𝑋 = {5/(𝑎, 𝑏, 0) ∶  𝑎, 𝑏 ∈  𝑹} . 

Then X is a multi vector space of 𝑹3  over 𝑹. 

Definition 3.3. (i) Addition of two multisets over V : 

Let P and Q be two multisets over V . Then P + Q is a 

multiset over V such that 𝐶𝑃+𝑄   𝑥 =  𝑆𝑢𝑝 {𝐶𝑃   𝑢 ∨

 𝐶𝑄(𝑣) ∶  𝑥 = 𝑢 + 𝑣, ∀ 𝑢 ∈  𝑃∗, 𝑣 ∈

𝑄∗}.  Clearly   𝑃 +  𝑄 ∗ = 𝑃∗ + 𝑄∗ = {𝑢 + 𝑣:  𝑢 ∈

 𝑃∗, 𝑣 ∈ 𝑄∗} 

(ii) Let P be a multiset over V and 𝑎 ∈  𝐾, then for 

𝑎 ≠  0, we define 𝑎𝑃 as 𝐶𝑎𝑃  (𝑥)  =  𝐶𝑃  (𝑦) where 

𝑦 ∈  𝑃∗ and 𝑥 =  𝑎𝑦 ie 𝐶𝑎𝑃  (𝑥)  =  𝐶𝑃  (𝑎−1𝑥) and 

for 𝑎 = 0, we define 𝑎𝑃 as     𝐶𝑎𝑃  (𝑥)  =

 
0, if 𝑥 ≠ 𝜃 

 𝐶𝑃 (𝑦)𝑦∈𝑃∗  , 𝑖𝑓 𝑥 = 𝜃 
  

Clearly for 𝑎 ≠  0,  𝑎𝑃 ∗ =  𝑃∗  and for a = 0,  

 𝑎𝑃 ∗  =  𝜃 .  

(iii) If F is a multiset over V and 𝑥 ∈  𝑉 , we define 

𝑥 +  𝐹   to be a multiset over V defined as  𝑥 +

 𝐹 ∗ = 𝑥 + 𝐹∗ = {𝑥 +  𝑓 ∶  𝑓 ∈  𝐹∗}  and 𝐶𝑥+𝐹  (𝑢)  =

 𝐶𝐹  (𝑣) where 𝑣 ∈  𝐹∗ and 𝑢 =  𝑥 +  𝑣. 

(iv) If 𝑈 ⊂ 𝑉 and F is a multiset over V. Then 𝑈 +  𝐹 

is a multiset over 𝑉 defined as 𝑈 + 𝐹 = {𝑚/𝑢 +  𝑓 ∶

 𝑢 ∈  𝑈, 𝑓 ∈  𝐹∗ and 𝑚 =  𝐶𝐹   𝑓 } .   

Clearly 𝑈 +  𝐹 =    (𝑢 +  𝐹)𝑢∈𝑈 . 

 

Theorem 3.4.  If F and G are two multisets over a 

vector space 𝑉𝐾 , then for 𝑎 ∈  𝐾, 𝑎(𝐹 +  𝐺)  =

 𝑎𝐹 +  𝑎𝐺. 

 

Theorem 3.5.  If , 𝐺𝑖 , 𝑖 = 1, 2, 3………… .𝑛, are 

multisets over a vector space 𝑉, 𝐹 =  𝐹1  + 𝐹2 + ⋯+

𝐹𝑛 ,  𝐺 =  𝐺1 + 𝐺2 + ⋯+ 𝐺𝑛  and 𝐻 =  𝐹1  +  𝐹2 +

⋯+ 𝐹𝑛 + 𝐺2 + ⋯+ 𝐺𝑛 , then 𝐻 =  𝐹 +  𝐺. 

 Proof:  The proof is straight forward. 

 

Definition 3.6. Let X be an Mvector space over a 

vector space 𝑉𝐾 . Then 𝐹 ⊂ 𝑋 is said to be a multi 

subspace or Msubspace of X if F is an Mvector space 

over 𝑉𝐾  ie 𝐹∗ is a subspace of 𝑉𝐾  and every element of 

F has the same multiplicity. 

 

Example 3.7. 𝑌 = {4/(𝑎, 0, 0) ∶  𝑎 ∈  𝑹}  is an 

Msubspace of the Mvector space defined in example 

3.2. 

 

Theorem 3.8. Let X be an Mvector space over 𝑉𝐾 . 

Then 𝐹 ⊂  𝑋 is an Msubspace of X iff every element 

of F has the same multiplicity and for any 𝑎, 𝑏  ∈  𝐾,

𝑎𝐹 +  𝑏𝐹 ⊂  𝐹. 

 

Proof.  Let 𝐹 ⊂  𝑋 is an Msubspace of X. Then by 

definition, every element of F has the same 

multiplicity 𝑤𝐹  and 𝐹∗ is a subspace of 𝑉𝐾 . 

Consequently ∀ 𝑎, 𝑏 ∈ 𝐾, (𝑎𝐹 +  𝑏𝐹 ) =  𝐹∗.  Also 

for 𝑥 ∈   𝑎𝐹 +  𝑏𝐹  ∗  =  𝐹∗, 

𝐶𝑎𝐹+𝑏𝐹   𝑥 =  𝑆𝑢𝑝 {𝐶𝑎𝐹   𝑢  𝐶𝑏𝐹 (𝑣) ∶  𝑢 ∈

 𝑎𝐹 ∗, 𝑣 ∈   𝑏𝐹  ∗ 𝑎𝑛𝑑 𝑥 =  𝑢 +  𝑣} . 

= 𝑆𝑢𝑝 {𝐶𝑎𝐹  (𝑎𝑝)   𝐶𝑏𝐹 (𝑏𝑞) ∶  𝑝, 𝑞 ∈  𝐹_ 𝑎𝑛𝑑 𝑥 =

𝑎𝑝 +  𝑏𝑞}  

 = 𝑆𝑢𝑝 {𝐶𝐹   𝑝  𝐶𝐹 (𝑞) ∶  𝑝, 𝑞 ∈  𝐹_ 𝑎𝑛𝑑 𝑥 =  𝑎𝑝 +

 𝑏𝑞} 

= 𝑆𝑢𝑝  𝑤𝐹 𝑤𝐹 =  𝑤𝐹  =  𝐶𝐹   𝑥 . 

 

 Conversely,  let 𝐹 ⊂  𝑋 such that every 

element of F has the same multiplicity and for any 

𝑎, 𝑏 ∈  𝐾, 𝑎𝐹 +  𝑏𝐹 ⊂  𝐹. ⇒  𝑎𝐹 +  𝑏𝐹  ∗  =

 𝑎𝐹∗ + 𝑏𝐹∗  ⊂  𝐹∗ ∀ 𝑎, 𝑏 ∈  𝐾 

⇒  𝑎𝑢 +  𝑏𝑣 ∈  𝐹∗ ∀ 𝑎, 𝑏 ∈  𝐾 𝑎𝑛𝑑 ∀ 𝑢 , 𝑣 ∈  𝑉𝐾  

⇒ 𝐹∗ is a subspace of 𝑉𝐾 . 

Hence F is an Msubspace of X. 

 

Proposition 3.9. (i) If F and G are two Msubspaces of 

an Mvector space X over 𝑉𝐾 , then 𝐹 +  𝐺 and ∀ a ∈ 

K,  𝑎𝐹 are also Msubspaces of X over 𝑉𝐾 : 

(ii) If {𝐹𝑖 ∶  𝑖 ∈ ∆} be a family of Msubspaces of an 

Mvector space X over 𝑉𝐾 , then  𝐹𝑖𝑖∈∆  is also an 

Msubspace of X. 

Proof: The proof is straight forward. 

 

IV. MULTIVECTORS IN MVECTOR SPACE 

 

Definition 4.1. Multivectors: Let X be an Mvector 

space over a vector space 𝑉𝐾 . Then every multi point 

of X ie., every element of 𝑋𝑝𝑡   will be called a 

multivector or Mvector of X. 

 

Definition 4.2. Multi scalar field: Let K be a field. 

Then a multi set L over K is called a multi scalar field 

or Mscalar field if every element of L has the same 

multiplicity (denoted by 𝑤𝐿  ) and the support 𝐿∗ of L 

is a subfield of K. 

Multi points of L will be referred to as multi scalars or 

Mscalars of L. 

Multiplicity of each element of L will be denoted by 

𝑤𝐿 . 

 

Example 4.3. In example 3.2, 

𝑃 1,1,0 
1  , 𝑃 1,1,0 

2 , 𝑃 1,5,0 
4  etc. are Mvectors of the given 

Mvector space. 
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Definition 4.4. Let X be an Mvector space over 𝑉𝐾 . 

Then an Mvector 𝑃𝑥
𝑘  of X will be called a null 

Mvector if its base 𝑥 = 𝜃 (𝜃 being the null vector of 

𝑋∗ ie 𝑉𝐾) and it will be denoted by Θ𝑘 , ie. 𝑃𝑥
𝑘   =  Θ𝑘  

if 𝑥 = 𝜃 . 

An Mvector𝑃𝑥
𝑘  will be called non null if 𝑥 ≠ 𝜃. 

 

Note 4.5. Null Mvector of an Mvecotr space is not 

unique. 

 

Definition 4.6. Let X be an Mvector space over a 

vector space 𝑉𝐾 , L be an Mscalar field over K such 

that 𝑤𝐿 ≤ 𝑤𝑋 , 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡  and 𝑃𝑎
𝑖  ∈  𝐿𝑝𝑡 .Then we 

define  

𝑃𝑥
𝑙  +  𝑃𝑦

𝑚  =  
𝑃𝜃

1    𝑖𝑓𝑓  𝑥 =  − 𝑦 𝑎𝑛𝑑 𝑙 =  𝑚 

𝑃𝑥+𝑦 
𝑙 𝑚    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

    

and   

𝑃𝑎
𝑖  . 𝑃𝑥

𝑙   =  
𝑃𝜃

1   𝑖𝑓𝑓𝑃𝑎
𝑖 =  𝑃0

1  𝑜𝑟 𝑃𝑥
𝑙   =  𝑃𝜃

1

𝑃𝑎𝑥
𝑖∨𝑙  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  ,   

where 0 is the null element of K. 

 

Proposition 4.7. Let X be an Mvector space over a 

vector space 𝑉𝐾  and L be an Mscalar field over K 

such that𝑤𝐿 ≤ 𝑤𝑋 . Then for 𝑃𝑥
𝑙  ∈  𝑋𝑝𝑡  and 𝑃𝑎

𝑖  ∈ 𝐿𝑝𝑡  

with  𝑙, 𝑖 >  1, 

(i) 𝑃𝑎
𝑖 . 𝑃𝑥

𝑙 =  𝛩𝑛  where 𝑛 =  𝑖 ∨  𝑙. 

(ii) 𝑃𝑎
𝑖  . 𝛩𝑙  = 𝛩𝑛   where 𝑛 =  𝑖 ∨  𝑙. 

(iii) 𝑃−1 .
𝑖 𝑃𝑥

𝑙 = . 𝑃−𝑥
𝑛  where 𝑛 =  𝑖 ∨  𝑙. 

(iv)  ∀ 𝑃𝑥
𝑙     ∈ 𝑋𝑝𝑡  and  𝑃𝑎

𝑖    ∈ 𝐿𝑝𝑡   ;  𝑃𝑖𝑎, 𝑃𝑎
𝑖 . 𝑃𝑥

𝑙 =  𝛩𝑛   

      ⇒  𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 =  0 𝑜𝑟 𝑥 =  𝜃. 

Proof:  Proofs are straight forward. 

 

Theorem 4.8. Let X be an Mvector space over a 

vector space 𝑉𝐾 . Then 𝑌 ⊂  𝑋 is an Msubspace of X 

iff every element of Y has the same multiplicity 𝑤𝑌  

and for any Mscalar field L over K with 𝑤𝐿 ≤ 𝑤𝑌 ,  , 

𝑃𝑎
𝑖 . 𝑃𝑥

𝑙 + 𝑃𝑏
𝑗
. 𝑃𝑦

𝑚  ∈  𝑌𝑝𝑡  ∀  𝑃𝑎
𝑖  ;  𝑃𝑏

𝑗
 ∈  𝐿𝑝𝑡  and 

𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈ 𝑌𝑝𝑡  . 

Proof. Let 𝑌 ⊂  𝑋 is an Msubspace of X. Then every 

element of Y has the same multiplicity 𝑤𝑌  and the 

support 𝑌∗ is a subspace of 𝑋∗. Let L be an Mscalar 

field over K such that 

𝑤𝐿 ≤ 𝑤𝑌  . Then ∀ 𝑥, 𝑦 ∈  𝑌∗ and 𝑎, 𝑏 ∈  𝐿∗  ⊂ 𝐾,

𝑎𝑥 +  𝑏𝑦  ∈ 𝑌∗ ⇒ 𝑃𝑎
𝑖 . 𝑃𝑥

𝑙 +  𝑃𝑏
𝑗
. 𝑃𝑦

𝑚  ∈

 𝑌𝑝𝑡  ∀  𝑃𝑎
𝑖  ;  𝑃𝑏

𝑗
 ∈  𝐿𝑝𝑡  and 𝑃𝑥

𝑙 , 𝑃𝑦
𝑚  ∈ 𝑌𝑝𝑡  . 

 

 Conversely let the given conditions hold. 

Then ∀ 𝑥, 𝑦 ∈  𝑌∗ and 𝑎, 𝑏 ∈  𝐿∗   ⊂ 𝐾, 𝑎𝑥 + 𝑏𝑦 ∈

 𝑌∗  ⇒  𝐿∗  is a subspace 𝑋∗_ and since every element 

of Y has the same multiplicity, Y is an Msubspace of 

X. 

 

Definition 4.9.  Multi linear combination: Let X be 

an Mvector space over a vector space 𝑉𝐾  and L be an 

Mscalar field over K such that 𝑤𝐿 ≤ 𝑤𝑋   . Then an 

Mvector 𝑃𝑥
𝑙  ∈  𝑋𝑝𝑡  is said to be a multi linear 

combination or Mlinear combination of the vectors 

𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛  ∈  𝑋𝑝𝑡   over L if 𝑃𝑥
𝑙  can 

be expressed as 

 𝑃𝑥
𝑙  = 𝑃𝑎𝑖

𝑖1 . 𝑃𝑥1

𝑙1 +

 𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 , +⋯………… . +  𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛  for some Mscalars 

𝑃𝑎𝑖
𝑖1  , 𝑃𝑎2

𝑖2 ………………… . . 𝑃𝑎𝑛
𝑖𝑛 ∈  𝐿𝑝𝑡 . 

 

Example 4.10. Let us consider the Mvector space 

given in Example 3.2. Let L be an Mscalar field over 

𝑹 given by 𝐿 = {3/𝑟 ∶  𝑟 ∈  𝑹}.  𝐿𝑒𝑡 𝑥1  =

 (1, 2, 0),  𝑥2  =  (−2, 5, 0), 𝑥3  = (0, 1, 0). Then 

𝑃𝑥1
1 + 𝑐 ,

𝑃𝑥1
1 + 𝑃𝑥2

2  + 𝑃𝑥3
3  , 𝑃2

3 . 𝑃𝑥1
1 + 𝑃5

2  𝑃𝑥2
2  ;  𝑃5

6

3 . 𝑃𝑥2
2 + 𝑃7/8

2 . 𝑃𝑥3
3  

are Mlinear combinations of the Mvectors 

𝑃𝑥1
1 , 𝑃𝑥2

2  , 𝑃𝑥3
3  over L. 

 

Definition 4.11. Multi linearly dependent and multi 

linearly independent: Let X be an Mvector space 

over a vector space 𝑉𝐾 . Then a finite collection of 

Mvectors  𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛    of X is said to 

be multi linearly dependent or Mlinearly dependent or 

ML.D if for some 

Mscalar field L over K with 𝐿∗ ≠ {0} and 𝑤𝐿 ≤ 𝑤𝑋   , 

there exist Mscalars 𝑃𝑎𝑖
𝑖1  , 𝑃𝑎2

𝑖2 ………………… . . 𝑃𝑎𝑛
𝑖𝑛 ∈

 𝐿𝑝𝑡 for some i = 1, 2, ............. ,  n such that 

 𝑃𝑎𝑖
𝑖1 . 𝑃𝑥1

𝑙1 +  𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 + ⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛 =

Θ𝑙 . 

 

 The collection of Mvectors  

 𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛    of X is said to be multi 

linearly independent or Mlinearly independent or 

ML.Id it is not ML.D ie. if for any Mscalar field L 

over K with 𝐿∗ ≠  0  and 𝑤𝐿 ≤ 𝑤𝑋 , a relation 

𝑃𝑎𝑖
𝑖1 . 𝑃𝑥1

𝑙1 +  𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 + ⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛 =

Θ𝑙  where 𝑃𝑎𝑘
𝑖𝑘 ∈ 𝐿𝑝𝑡  , 𝑘 =  1, 2,……… . 𝑛, holds only 

when 𝑎𝑘 =  0   

∀ 𝑘 =  1, 2, . . . . . . . 𝑛. 

 

Note 4.12. (i) Every superset of a finite collection of 

ML.D Mvectors in an Mvector space is ML.D. 
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(ii) Every nonempty subset of a finite collection of 

ML.Id Mvectors in an Mvector space is ML.Id. 

 

Definition 4.13. (i) An infinite collection of Mvectors 

in an Mvector space is ML.D if it has a finite ML.D 

subset. 

(ii) An infinite collection of Mvectors in an Mvector 

space is ML.Id if every nonempty finite subset of it is 

ML.Id. 

 

Theorem 4.14.  Let X be an Mvector space over a 

vector space 𝑉𝐾 . If a collection of Mvectors 

 𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛    of X is ML.Id (or 

ML.D), then  𝑃𝑥1

𝑘1  , 𝑃𝑥2 

𝑘2 , …………… ..  𝑃𝑥𝑛  

𝑘𝑛     is ML.Id 

(or ML.D) 

∀ 𝑘1 , 𝑘2 , ………… . , 𝑘𝑛   ∈  1, 2, ……… . . , 𝑤𝑋 . 

Proof. The proof is straight forward. 

 

Definition 4.15. An arbitrary multiset 𝐺 ⊂ 𝑋 is said 

to be ML.D or ML.Id according as the collection 

{𝑃𝑥
𝑙 ∶  𝑥 ∈ 𝐺∗} 

is ML.D or ML.Id. 

 

Note 4.16. Any collection of Mvectors having at least 

two elements with same base is ML.D. 

 

Theorem 4.17. Let X be an Mvector space over a 

vector space 𝑉𝐾 . Then a finite collection of Mvectors 

 𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛    of X is ML.Id iff 

 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛  is L.Id. 

Proof:  Let  𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛     is ML.Id , 

L be an Mscalar field over 𝑉𝐾  with 𝐿∗  = 𝐾, 𝑤𝐿 ≤ 𝑤𝑋  

and 𝑎1 , 𝑎2 , ……………… 𝑎𝑛  ∈  𝐾 =  𝐿∗  such that 

𝑎1 . 𝑥1  + 𝑎2 . 𝑥2  + ⋯…… . + 𝑎𝑛𝑥𝑛  = 𝜃  ⇒

 𝑃𝑎𝑖
𝑖1 . 𝑃𝑥1

𝑙1 + 𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 + ⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛 =

Θ𝑙   where 𝑃𝑎𝑘
𝑖𝑘 ∈ 𝐿𝑝𝑡  , 𝑘 =  1, 2,……… . 𝑛 ⇒  𝑎1  =

𝑎2  = ⋯………… . =  𝑎𝑛  =  0 ⇒

  𝑥1 , 𝑥2 , …………… . . 𝑥𝑛    is ML.Id. 

 

 Conversely let  𝑥1 , 𝑥2 , …………… . . 𝑥𝑛  is 

L.Id and L be an Mscalar field over 𝑉𝐾  with with 

𝐿∗  = 𝐾, 𝑤𝐿 ≤ 𝑤𝑋 . Now for Mscalars 

𝑃𝑎𝑖
𝑖1  , 𝑃𝑎2

𝑖2 ………………… . . 𝑃𝑎𝑛
𝑖𝑛 ∈  𝐿𝑝𝑡  with 𝑃𝑎𝑖

𝑖1 . 𝑃𝑥1

𝑙1 +

 𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 + ⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛 = Θ𝑙  ⇒

𝑎1 . 𝑥1  + 𝑎2 . 𝑥2  + ⋯…… . + 𝑎𝑛𝑥𝑛  = 𝜃  ⇒  𝑎1  =

𝑎2  = ⋯………… . =  𝑎𝑛  =  0  

⇒  𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛    is ML.Id. 

 

Theorem 4.18. Let X be an Mvector space over a 

vector space 𝑉𝐾  . Then a finite collection of Mvectors 

 𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛   of X is ML.D iff 

 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   is L.D. 

Proof. The proof follows similarly as the previous 

one. 

 

Definition 4.19. Linear span :  Let 𝑋 be an Mvector 

space over a vector space 𝑉𝐾  , L be an Mscalar field 

over K such that 𝑤𝐿 ≤ 𝑤𝑋  and 

𝑆 =   𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛    be a collection of 

Mvectors of 𝑋. Then the linear span of S over L 

denoted by 𝐿𝑆(𝑆, 𝐿) is defined as 𝐿𝑆 𝑆, 𝐿 =

 𝑃𝑎𝑖
𝑖1 . 𝑃𝑥1

𝑙1 +  𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 + ⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛 ∶

 𝑃𝑎𝑖
𝑖1  , 𝑃𝑎2

𝑖2 , ………………… . . 𝑃𝑎𝑛
𝑖𝑛 ∈ 𝐿𝑝𝑡   . 

𝑀𝑆 𝐿𝑆 𝑆, 𝐿   will be referred to as the multi linear 

span or Mlinear span of S over L. 

 

Theorem 4.20. Let X be an Mvector space over a 

vector space 𝑉𝐾 , L be an Mscalar field over K such 

that 𝑤𝐿 ≤ 𝑤𝑋and 𝑆 =   𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛    

be a collection of Mvectors of X. If 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  =

 𝑋 then 𝑋∗  =  𝐿𝑆 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   and either 

𝑤𝐿  =  𝑤𝑋  𝑜𝑟 𝑙𝑘 =  𝑤𝑋  for some 𝑘 =  1, 2, ……… .𝑛 

and conversely. 

Proof:  Let 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  =  𝑋. Then for any 

𝑥 ∈  𝑋∗, 𝐶𝑋 𝑥 = 𝑤𝑋  ⇒ 𝐶𝑀𝑆 𝐿𝑆 𝑆,𝐿   𝑥 =  𝑤𝑋  ⇒

 𝑆𝑢𝑝 {𝑙 ∶ 𝑃𝑥
𝑙  ∈  𝐿𝑆 𝑆, 𝐿 }  = 𝑤𝑋  ⇒ 𝑃𝑥

𝑤𝑋  ∈

 𝐿𝑆(𝑆, 𝐿) ⇒  ∃ 𝑃𝑎𝑖
𝑖1  , 𝑃𝑎2

𝑖2 , ………………… . . 𝑃𝑎𝑛
𝑖𝑛 ∈

 𝐿𝑝𝑡  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑥
𝑤𝑋  =  𝑃𝑎𝑖

𝑖1 . 𝑃𝑥1

𝑙1 +  𝑃𝑎2

𝑖2 . 𝑃𝑥2 

𝑙2 +

⋯……………… . . 𝑃𝑎𝑛
𝑖𝑛 . 𝑃𝑥𝑛  

𝑙𝑛  

⇒  𝑥 =

𝑎1 . 𝑥1  + 𝑎2 . 𝑥2  + ⋯…… . + 𝑎𝑛𝑥𝑛   𝑎𝑛𝑑 𝑤𝑋  =

 𝑆𝑢𝑝 {𝑖𝑘 , 𝑙𝑘 ∶  𝑘 =  1, 2, ………… . , 𝑛}  ⇒  𝑥 ∈

 𝐿𝑆 𝑥1 , 𝑥2 ,…………… . . 𝑥𝑛   and either 𝑖𝑘 =  𝑤𝑋  or 

𝑙𝑘 =  𝑤𝑋  for some 𝑘 =  1, 2, ……… .𝑛. Since 

𝑖𝑘 ≤ 𝑤𝐿 ≤ 𝑤𝑋  ∀ 𝑘 =  1, 2, ……… . 𝑛, so for some 

𝑘 =  1, 2,……… . 𝑛,  𝑖𝑘  =  𝑤𝑋  ⇒  𝑤𝐿  =  𝑤𝑋 . 

Also ∀ 𝑥 ∈  𝑋∗, 𝑥 ∈  𝐿𝑆 𝑥1 , 𝑥2 ,…………… . . 𝑥𝑛   ⇒

 𝑋∗  ⊂ 𝐿𝑆 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   ⊂ 𝑋∗ ⇒ 𝑋∗  =

𝐿𝑆 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛  . 

 

 Conversely let 

𝑋∗ =  𝐿𝑆  𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   𝑎𝑛𝑑 𝑒𝑖𝑡ℎ𝑒𝑟 𝑙𝑘 =

 𝑤𝑋  for some 𝑘 =  1, 2,……… .𝑛 or 𝑤𝐿  =  𝑤𝑋 .  Let 

𝑥 ∈𝑤𝑋   𝑋 ⇒  𝑥 ∈  𝑋∗ =

 𝐿𝑆 𝑥1 , 𝑥2 ,…………… . . 𝑥𝑛    
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⇒ ∃ 𝑎1 , 𝑎2, …… , 𝑎𝑛   ∈  𝐿∗ such that   𝑥 =  𝑎1 . 𝑥1  +

 𝑎2 . 𝑥2  + ⋯…… . + 𝑎𝑛𝑥𝑛  .  If 𝑙𝑘  =  𝑤𝑋  for some  𝑘 =

1, 2, . … . , 𝑛,  then 

 𝑃𝑎𝑖
1 . 𝑃𝑥1

𝑙1 +  𝑃𝑎2
1 . 𝑃𝑥2 

𝑙2 + ⋯…………… . . + 𝑃𝑎𝑛
1 . 𝑃𝑥𝑛  

𝑙𝑛  

= 𝑃𝑎1 .𝑥1  + 𝑎2 .𝑥2  +⋯…….+ 𝑎𝑛 𝑥𝑛

 𝑙𝑘
𝑛
𝑘=1 =  𝑃𝑥

𝑤𝑋  ⇒  𝑃𝑥
𝑤𝑋  

∈  𝐿𝑆 𝑆, 𝐿   

⇒ 𝐶𝑀𝑆 𝐿𝑆 𝑆,𝐿   𝑥 =  𝑤𝑋    [since 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  ⊂  𝑋] 

⇒  𝑋 =  𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]. 

 

Definition 4.21. An Mvector space X over 𝑉𝐾  is said 

to be finite dimensional if there is a finite set of 

ML.Id Mvectors in X that also generates X ie. there 

exists a finite set 

𝑆 =   𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 , …………… ..  𝑃𝑥𝑛  

𝑙𝑛    of Mvectors of X 

which is ML.Id and 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  =  𝑋 for some 

Mscalar field L over K with 𝑤𝐿 ≤ 𝑤𝑋 . 

 The number of elements of such a set S is 

called the dimension of X and is denoted by Dim(X). 

 

Theorem 4.22. Let X be an Mvector space over 𝑉𝐾 . 

Then 𝑑𝑖𝑚(𝑋∗) =  𝑛 iff there exists a collection of n 

ML.Id Mvectors of X generating X. 

 

Proof. Let there is a finite collection 𝑆 =

  𝑃𝑥1

𝑙1  , 𝑃𝑥2 

𝑙2 ,…………… ..  𝑃𝑥𝑛  

𝑙𝑛    of n ML.Id Mvectors 

of 

X such that 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  =  𝑋 for some Mscalar 

field L over K with 𝑤𝐿 ≤ 𝑤𝑋 .  

Now as S is ML.Id,  𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   is L.Id in 

𝑋∗. Also 𝑀𝑆[𝐿𝑆(𝑆, 𝐿)]  =  𝑋 ⇒  𝑋∗  = 

𝐿𝑆 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   ⇒

  𝑥1 , 𝑥2 , …………… . . 𝑥𝑛   is a basis of 𝑋∗ ⇒

 𝐷𝑖𝑚 𝑋∗ =  𝑛. 

Conversely let 𝐷𝑖𝑚 𝑋∗ =  𝑛 and 

 𝑥1 , 𝑥2 , …………… . . 𝑥𝑛  is a basis of 𝑋∗. Then clearly 

𝑆 =  𝑃𝑥
𝑤𝑋 ∶  𝑘 =  1,2,…… . 𝑛 ⊂  𝑋𝑝𝑡  and 

𝑀𝑆[𝐿𝑆(𝑆)]  =  𝑋 where LS(S) can be considered over 

any Mscalar field L over K such that 𝐿∗  =  𝐾  and 

𝑤𝐿 ≤ 𝑤𝑋 . 

 

Note 4.23. Since 𝑑𝑖𝑚 𝑋∗  unique, it follows that 

𝐷𝑖𝑚 𝑋  is also unique and   𝑑𝑖𝑚 𝑋∗  = 𝐷𝑖𝑚 𝑋 . 

 

V. MULTI NORMED LINEAR SPACE 

 

Notation: Throughout this section we shall consider 

V as a vector space over 𝐾 =  𝑹/𝑪, 𝑋 as an Mvector 

space over 𝑉𝐾  with 𝑤𝑋 ≤ 𝑤 (w being the multiplicity 

of every element of 

𝑚𝑹+) and L as an Mscalar field over K with support 

𝐿∗  =  𝐾 and 𝑤𝐿 ≤ 𝑤𝑋 . 

 

Definition 5.1. A mapping   ∶  𝑋𝑝𝑡  →   𝑚𝑹+ 𝑝𝑡  

will be called a multi norm or Mnorm on 𝑋 if it 

satisfies the following: 

 𝑁1  𝑃𝑥
𝑙 ≥  𝑃0

1  ∀ 𝑃𝑥
𝑙  ∈  𝑋𝑝𝑡 . 

 𝑁2  𝑃𝑥
𝑙  =  𝑃0

𝑘  iff 𝑥 = 𝜃  and  𝑙 =  𝑘. 

 𝑁3  𝑃𝑎
𝑖 . 𝑃𝑥

𝑙  =  𝑃|𝑎|
𝑖   𝑃𝑥

𝑙   ∀ 𝑃𝑎
𝑖  ∈  𝐿𝑝𝑡 ,  𝑃𝑥

𝑙  ∈  𝑋𝑝𝑡. 

 𝑁4  𝑃𝑥
𝑙 + 𝑃𝑦

𝑚 ≤   𝑃𝑥
𝑙 +  𝑃𝑦

𝑚   ∀  𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡  . 

 

An Mvector space 𝑋 with an Mnorm    on 𝑋 is 

called a multi normed linear space or Mnormed linear 

space and is denoted by 

(𝑋,   ). (𝑁1), (𝑁2), (𝑁3) and (𝑁4) are called 

norm axioms. 

 

Example 5.2. Let us consider the Mvector space 

𝑚𝑹 = {𝑤/𝑟 ∶  𝑟  ∈ 𝑅} over R and L be an Mscalar 

field over 𝑹. Also let   ∶   𝑚𝑹 𝑝𝑡  →   𝑚𝑹+ 𝑝𝑡  

defined by  𝑃𝑎
𝑖   = 𝑃|𝑎|

𝑖  ∀ 𝑃𝑎
𝑖  ∈  𝑚𝑹 𝑝𝑡  where |  | 

denotes the modulus of real numbers. Then : 

 𝑁1  Clearly ∀ 𝑃𝑎
𝑖  ∈  𝑚𝑹 𝑝𝑡 , 𝑎 ∈  𝑹  and 1 ≤  𝑖 ≤

 𝑤 ⇒   𝑃𝑎
𝑖  =  𝑃 𝑎 

𝑖 ≥ 𝑃0
1  . 

 

(𝑁2) ∀ 𝑃𝑎
𝑖  ∈  𝑚𝑹 𝑝𝑡 ,  𝑃𝑎

𝑖  =  𝑃0
𝑘  ⟺ 𝑃|𝑎|

𝑖 =

 𝑃0
𝑘   ⟺ |𝑎|  =  0 and 𝑖 =  𝑘. 

 

(𝑁3) For 𝑃𝑎
𝑖  ∈  𝑚𝑹 𝑝𝑡 , 𝑃𝛼

𝑚  ∈  𝐿𝑝𝑡  ,  𝑃𝛼
𝑚𝑃𝑎

𝑖 =

 𝑃𝛼𝑎
𝑚 𝑖 = 𝑃 𝛼𝑎  

𝑚 𝑖 =  𝑃 𝛼  𝑎 
𝑚 𝑖 = 𝑃 𝛼 

𝑚 𝑃 𝑎 
𝑖 =  𝑃 𝛼 

𝑚  𝑃𝑎
𝑖 . 

 

(𝑁4) For 𝑃𝑎
𝑖 , 𝑃𝑏

𝑗
 ∈   𝑚𝑹 𝑝𝑡 ,  𝑃𝑎

𝑖 + 𝑃𝑏
𝑗 =  𝑃𝑎+𝑏

𝑖 𝑗  =

𝑃 𝑎+𝑏 
𝑖 𝑗

≤ 𝑃 𝑎 + 𝑏 
𝑖 𝑗

= 𝑃 𝑎 
𝑖 + 𝑃 𝑏 

𝑗
=  𝑃𝑎

𝑖 +  𝑃𝑏
𝑗
 . 

 

Thus (𝑚𝑹,   ) is an Mnormed linear space. 

 

Example 5.3. Let  𝑉,     be a normed linear space 

over 𝐾 = 𝑹/𝑪  and X be an Mvector space over V 

with 𝑤𝑋  =  𝑤. Let   𝑚 ∶  𝑋𝑝𝑡  →   𝑚𝑹+ 𝑝𝑡  such 

that   𝑃𝑥
𝑙 𝑚 =  𝑃 𝑥 

𝑙  ∀  𝑃𝑥
𝑙  ∈ 𝑋𝑝𝑡 . Then   𝑚  is an 

Mnorm over X and (𝑋,   𝑚) is an Mnormed linear 

space. 

 

Note 5.4. Corresponding to every normed linear space, 

there exists an Mnormed linear space. 

 

Theorem 5.5. Let (𝑋,   ) be an Mnormed linear 

space over a vector space 𝑉_𝐾. Then 𝑑 ∶  𝑋𝑝𝑡  ×
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 𝑋𝑝𝑡  →   𝑚𝑹+ 𝑝𝑡  defined by 𝑑(𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  )  =

  𝑃𝑥
𝑙 − 𝑃𝑦

𝑚   ∀  𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡  is a multimetric on 𝑋. 

 

Proof.  𝑀1  Clearly from  𝑁1 , 𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   ≥  𝑃0
1    

∀   𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡 . 

 

(𝑀2) Let  𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡 , then 𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   =  𝑃0
1 ⟺  

 𝑃𝑥
𝑙 − 𝑃𝑦

𝑚 =  𝑃0
1  ⟺ 𝑃𝑥

𝑙 − 𝑃𝑦
𝑚 =

 𝑃𝜃
1    𝐹𝑟𝑜𝑚  𝑁2  ⟺  𝑃𝑥

𝑙 = 𝑃𝑦
𝑚  . 

 

(𝑀3) Let  𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡 . If  𝑃𝑥
𝑙 = 𝑃𝑦

𝑚  , then there is 

nothing to prove. Let  𝑃𝑥
𝑙 ≠ 𝑃𝑦

𝑚  .Then 𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   =

  𝑃𝑥
𝑙 − 𝑃𝑦

𝑚 =  𝑃𝑥−𝑦
𝑙 𝑚 =  𝑃−(𝑦−𝑥)

𝑙 𝑚  =

  𝑃−1
1 . 𝑃𝑦−𝑥

𝑙 𝑚 = 𝑃|−1|
1  𝑃𝑦−𝑥

𝑙 𝑚 = 𝑃|1|
1  𝑃𝑦−𝑥

𝑙 𝑚 =

 𝑃1
1 . 𝑃𝑦−𝑥

𝑙 𝑚 =  𝑃𝑦−𝑥
𝑙 𝑚 =   𝑃𝑦

𝑚 −  𝑃𝑥
𝑙 = 𝑑 𝑃𝑦

𝑚 , 𝑃𝑥
𝑙      . 

 

 𝑀4  Let  𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚 , 𝑃𝑛
𝑧  ∈  𝑋𝑝𝑡 . Then  𝑃𝑥

𝑙 − 𝑃𝑛
𝑧  =

  𝑃𝑥
𝑙 −  𝑃𝑦

𝑚 +  𝑃𝑦
𝑚 − 𝑃𝑧

𝑛 ≤  𝑃𝑥
𝑙 − 𝑃𝑦

𝑚 +

  𝑃𝑦
𝑚 − 𝑃𝑧

𝑛    

[𝐹𝑟𝑜𝑚 (𝑁4)] )   ⇒  𝑑 𝑃𝑥
𝑙 , 𝑃𝑧

𝑛   ≤  𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚    +

 𝑑( 𝑃𝑦
𝑚 , 𝑃𝑧

𝑛  ). 

 

 𝑀5  Let  𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡  with 𝑙 ≠  𝑚. Now 

𝑑 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚   =  𝑝0
𝑘 ⟺  𝑃𝑥

𝑙 − 𝑃𝑦
𝑚  =  𝑝0

𝑘 ⟺

  𝑃𝑥−𝑦
𝑙 𝑚  =  𝑝0

𝑘  [ since 𝑙 ≠  𝑚 ⇒ 𝑃𝑥
𝑙 ≠ 𝑃𝑦

𝑚  ⇒  𝑃𝑥
𝑙 −

𝑃𝑦
𝑚 =  𝑃𝑥

𝑙 + 𝑃−𝑦
𝑚 =  𝑃𝑥−𝑦

𝑙 𝑚  ] 

⟺  𝑥 −  𝑦 =   𝜃  and 𝑙  𝑚  =  𝑘  𝐵𝑦  𝑁2   

⟺  𝑥 =  𝑦 and  𝑙   𝑚 =  𝑘. 

Thus 

if   𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚  ∈  𝑋𝑝𝑡  with 𝑙 ≠  𝑚, then 𝑑  𝑃𝑥
𝑙 ,  𝑃𝑦

𝑚   =

 𝑝0
𝑘 ⟺   𝑥 =  𝑦 and 𝑙   𝑚 =  𝑘. 

∴  d is a multi metric on 𝑋.  

 

Definition 5.6. Mnorm subspace: Let (𝑋,   𝑋)  be 

an Mnormed linear space over 𝑉𝐾  and 𝑌 ⊂ 𝑋 is an 

Msubspace of X. Then   𝑌 ∶  𝑌𝑝𝑡  →   𝑚𝑹+ 𝑝𝑡  

defined by   𝑃𝑥
𝑙 𝑌  =   𝑃𝑥

𝑙 𝑋  ∀  𝑃𝑥
𝑙  ∈  𝑌𝑝𝑡  is an 

Mnorm on Y. This Mnorm is known as the relative 

Mnorm on Y induced by   𝑋 . The Mnormed linear 

space (  𝑌 , 𝑌 ) is called a an Mnorm subspace or 

simply an Msubspace of the Mnormed linear space 

(𝑋,   𝑋)  . 

 

VI. SEQUENCE AND THEIR CONVERGENCE IN AN 

 MNORMED LINEAR SPACE 
 

Definition 6.1. Let (𝑋,   ) be an Mnormed linear 

space over a vector space 𝑉𝐾  and 𝑟 >  0. We define 

the following: 

(i) 𝐵 𝑃𝑥
𝑙 , 𝑃𝑟

1   =  𝑃𝑦
𝑚  ∈  𝑋𝑝𝑡 ∶   𝑃𝑥

𝑙 − 𝑃𝑦
𝑚  <  𝑃𝑟

1  is 

called an open ball with center 𝑃𝑥
𝑙and radius 𝑃𝑟

1. 

(ii) 𝐵  𝑃𝑥
𝑙 , 𝑃𝑟

1   =  𝑃𝑦
𝑚  ∈  𝑋𝑝𝑡 ∶   𝑃𝑥

𝑙 − 𝑃𝑦
𝑚 ≤  𝑃𝑟

1  is 

called a closed ball with center 𝑃𝑥
𝑙and radius 𝑃𝑟

1.  

(iii) 𝑆 𝑃𝑥
𝑙 , 𝑃𝑟

1   =  𝑃𝑦
𝑚  ∈  𝑋𝑝𝑡 ∶   𝑃𝑥

𝑙 − 𝑃𝑦
𝑚 =  𝑃𝑟

1  is 

called a sphere with center 𝑃𝑥
𝑙and radius 𝑃𝑟

1. 

 

𝑀𝑆 𝐵 𝑃𝑥
𝑙 , 𝑃𝑟

1     ,𝑀𝑆[𝐵  𝑃𝑥
𝑙 , 𝑃𝑟

1   ] and 𝑀𝑆[𝑆 𝑃𝑥
𝑙 , 𝑃𝑟

1   ] 

are respectively called an Mopen ball, an Mclosed 

ball and an Msphere with center 𝑃𝑥
𝑙and radius 𝑃𝑟

1 . 

 

Definition 6.2. Convergence of a sequence: A 

sequence  𝑃𝑥𝑛
𝑙𝑛     of Mvectors in an Mnormed linear 

space  𝑋,     over  𝑉𝐾  is said to be convergent and 

converges to an Mvector 𝑃𝑥
𝑙  if  𝑃𝑥𝑛

𝑙𝑛 − 𝑃𝑥
𝑙 →

 𝑃0
1   as 𝑛 → ∞ which means, for any  

𝜖 >  0, ∃ 𝑛0  ∈  𝑵 such thatk   𝑃𝑥𝑛
𝑙𝑛 − 𝑃𝑥

𝑙  <  𝑃𝜖
1 

∀ 𝑛 ≥ 𝑛0  ie. 𝑛 ≥  𝑛0  ⇒  𝑃𝑥𝑛
𝑙𝑛 ∈  𝐵 𝑃𝑥

𝑙  , 𝑃𝜖
1   . We 

denote this by 𝑃𝑥𝑛
𝑙𝑛 → 𝑃𝑥

𝑙  as 𝑛 → ∞  or by 

lim𝑛→∞ 𝑃𝑥𝑛
𝑙𝑛   =  𝑃𝑥

𝑙  .   𝑃𝑥
𝑙  is said to be the limit of 

 𝑃𝑥𝑛
𝑙𝑛   as 𝑛 → ∞  . 

 

Example 6.3. In Example 5.2, let us consider a 

sequence  𝑃𝑥𝑛
𝑙𝑛   of Mvectors in  𝑚𝑹,     where 

𝑥𝑛  =  1/𝑛  and 𝑙𝑛  =  𝑤 ∀ 𝑛  ∈  𝑁. Then for any 

∈ >  0  ∃ 𝑛0  ∈  𝑵 such that  𝑃𝑥𝑛
𝑙𝑛 − 𝑃0

𝑤  <  𝑃𝜖
1 

∀ 𝑛 ≥ 𝑛0  ⇒  𝑃𝑥𝑛
𝑙𝑛  → 𝑃0

𝑤  𝑎𝑠 𝑛 → ∞ . 

 

Note 6.4. All convergent sequences of Mvectors 

having the same base will converge to Mvectors 

having the same base ie. if for a sequence  𝑃𝑥𝑛
𝑙𝑛   of 

Mvectors, 𝑃𝑥𝑛
𝑙𝑛 → 𝑃𝑥

𝑙 , then 

𝑃𝑥𝑛
𝑘𝑛 → 𝑃𝑥

𝑘  for any 1 ≤  𝑘 ≤  𝐶𝑋(𝑥) and for any 

sequence {𝑘𝑛 } of natural numbers with 𝑘𝑛 ≤ 𝐶𝑋(𝑥). 

To prove this, let  𝜖  >  0 be taken arbitrarily. Then as 

𝑃𝑥𝑛
𝑙𝑛 → 𝑃𝑥

𝑙 , ∃ 𝑛0  ∈  𝑵 such that  𝑃𝑥𝑛
𝑙𝑛 − 𝑃𝑥

𝑙  <  𝑃𝜖/3 
1  

∀ 𝑛 ≥ 𝑛0 ⇒ for any sequence {𝑘𝑛 } of natural numbers 

and 𝑘 ∈  𝑵 with 𝑘𝑛 ≤ 𝐶𝑋(𝑥) and 1 ≤  𝑘 ≤  𝐶𝑋 𝑥 , 

  𝑃𝑥𝑛
𝑘𝑛 − 𝑃𝑥

𝑘   =   𝑃𝑥𝑛
𝑘𝑛 − 𝑃𝑥𝑛

𝑙𝑛 + 𝑃𝑥𝑛
𝑙𝑛 − 𝑃𝑥

𝑙 + 𝑃𝑥
𝑙 −

𝑃𝑥
𝑘 ≤   𝑃𝑥𝑛

𝑘𝑛 − 𝑃𝑥𝑛
𝑙𝑛 +  𝑃𝑥𝑛

𝑙𝑛 − 𝑃𝑥
𝑙 +  𝑃𝑥

𝑙 − 𝑃𝑥
𝑘 <

 𝑃𝜖

3

1 + 𝑃𝜖

3

1 + 𝑃𝜖

3

1 = 𝑃𝜖
1   ∀ 𝑛 ≥ 𝑛0  ⇒  𝑃𝑥𝑛

𝑘𝑛 → 𝑃𝑥
𝑘  

𝑛 → ∞. 

Definition 6.6. Boundedness : (i) In an Mnormed 

linear space  𝑋,    , a multi subset 𝑌 ⊂  𝑋 is said 

to be bounded if ∃ 𝑟 >  0 such that  𝑃𝑥
𝑙  <

 𝑃𝑟
1  ∀ 𝑃𝑥

𝑙  ∈  𝑌𝑝𝑡 . 
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(ii) A sequence   𝑃𝑥𝑛
𝑙𝑛     of Mvectors in an Mnormed 

linear space  𝑋,      is bounded if  ∃ 𝑟 >  0 such 

that   

 𝑃𝑥𝑛
𝑙𝑛 − 𝑃𝑥𝑚

𝑙𝑚   <  𝑃𝑟
1   ∀ 𝑚, 𝑛 ∈  𝑵. 

 

Definition 6.7. Cauchy sequence : A sequence  𝑃𝑥𝑛
𝑙𝑛   

of Mvectors in an Mnormed linear space  𝑋,      is 

said to be Cauchy if for any    ∈ >  0, ∃ 𝑛0  ∈  𝑵 such 

that 

  𝑃𝑥𝑛
𝑙𝑛 − 𝑃𝑥𝑚

𝑙𝑚  <  𝑃∈
1   ∀ 𝑚, 𝑛 ≥  𝑛0  𝑖𝑒.  𝑃𝑥𝑛

𝑙𝑛 − 𝑃𝑥𝑚
𝑙𝑚   →

𝑃0
1   

𝑎𝑠 𝑚, 𝑛 → ∞. 

 

Theorem 6.8. Every convergent sequence in an 

Mnormed linear space is Cauchy and every Cauchy 

sequence is bounded. 

Proof. Since Mnorm induces multi metric, the result 

follows obviously. 

 

Definition 6.9. Completeness: An Mnormed linear 

space  𝑋,     is said to be complete if every 

Cauchy sequence of Mvectors in  𝑋,       

converges to an Mvector of X.  

 

Example 6.10. (𝑚𝑹;   ) is complete where 𝑚𝑹 is 

the multiset over 𝑹 having multiplicity of every 

element equal to 𝑤 and  𝑃𝑥
𝑙 =  𝑃|𝑥|

𝑙  ∀ 𝑃𝑥
𝑙  ∈   𝑚𝑹 𝑝𝑡 . 

 

Theorem 6.11. In an Mnormed linear space  𝑋,    , 

if  

𝑃𝑥𝑛
𝑙𝑛 → 𝑃𝑥

𝑙   and 𝑃𝑦𝑛
𝑘𝑛 → 𝑃𝑦

𝑘  , then 𝑃𝑥𝑛
𝑙𝑛  +  𝑃𝑦𝑛

𝑘𝑛 → 𝑃𝑥
𝑙  +

 𝑃𝑦
𝑘 . .  

 

Theorem 6.12. In an Mnormed linear space 

 𝑋,     over a vector space 𝑉𝐾 , if {𝑃𝑥𝑛
𝑙𝑛 }  be a 

sequence of Mvectors such that 𝑃𝑥𝑛
𝑙𝑛 → 𝑃𝑥

𝑙  and {𝑃𝑎𝑛
𝑘𝑛 }   

be a sequence of Mscalars such 

that 𝑃𝑎𝑛
𝑘𝑛 → 𝑃𝑎

𝑘 , then 𝑃𝑎𝑛
𝑘𝑛 . 𝑃𝑥𝑛

𝑙𝑛 → 𝑃𝑎
𝑘 . 𝑃𝑥

𝑙 . 

 

Theorem 6.13. In an Mnormed linear space  𝑋,     

over a vector space 𝑉𝐾 , if  𝑃𝑥𝑛
𝑙𝑛   , {𝑃𝑦𝑛

𝑚𝑛 }   are Cauchy 

sequences of Mvectors and {𝑃𝑎𝑛
𝑘𝑛 } is a Cauchy 

sequence of Mscalars, then  𝑃𝑥𝑛
𝑙𝑛 + 𝑃𝑦𝑛

𝑚𝑛  , {𝑃𝑎𝑛
𝑘𝑛 . 𝑃𝑥𝑛

𝑙𝑛 } 

are Cauchy sequences of Mvectors. 

Proof. The proof is straight forward. 

 

Theorem 6.14. If M be an Msubspace of an Mnormed 

linear space 𝑋,    , then 𝑀  is also an Msubspace of 

 𝑋,    . 

 

Proof. Let 𝑃𝑥
𝑙 , 𝑃𝑦

𝑚  ∈   𝑀  𝑝𝑡  =  𝑀𝑝𝑡
     .  Then 𝑃𝑥

𝑙  , 𝑃𝑦
𝑚  ∈

  𝑀  𝑝𝑡   

∀ 𝑙, 𝑚 ∈  1, 2, ………… . , 𝑤𝑋   ie. every element of M 

has the same multiplicity equal to 𝑤𝑋 . Since 

𝑃𝑥
𝑙  , 𝑃𝑦

𝑚  ∈   𝑀  𝑝𝑡 =  𝑀𝑝𝑡   
       , for any  𝜖 >  0, ∃ 𝑃𝑥1

𝑙1 ,

𝑃𝑦1

𝑚1  ∈ 𝑀𝑝𝑡  such that  

 𝑃𝑥
𝑙 − 𝑃𝑥1

𝑙1  < 𝑃𝜖
1  ,  𝑃𝑦

𝑚 − 𝑃𝑦1

𝑚1  <  𝑃𝜖
1 .   

Let 𝑃𝑎
𝑝

 , 𝑃𝑏
𝑞

  ∈  𝐿𝑝𝑡   [ 𝐿 being an Mscalar field over 𝐾  

with  𝐿∗ =  𝐾 ]. Since M is an Msubspace of 

 𝑋,    , 

𝑃𝑎
𝑝

 . 𝑃𝑥1

𝑙1  + 𝑃𝑏
𝑞

. 𝑃𝑦1

𝑚1  ∈  𝑀𝑝𝑡 .  Now  𝑃𝑎
𝑝

 . 𝑃𝑥1

𝑙1  +

 𝑃𝑏
𝑞

. 𝑃𝑦1

𝑚1 − (𝑃𝑎
𝑝

. 𝑃𝑥
𝑙 + 𝑃𝑏

𝑞
. 𝑃𝑦

𝑚 ) ≤ 𝑃 𝑎 
𝑝
 𝑃𝑥1

𝑙1 − 𝑃𝑥
𝑙 +

 𝑃 𝑏 
𝑞
 𝑃𝑦1

𝑚1 − 𝑃𝑦
𝑚 ≤ 𝑃 𝑎 

𝑝
. 𝑃𝜖

1  +  𝑃 𝑏 
𝑞

. 𝑃𝜖
1  =

 𝑃  𝑎 + 𝑏  𝜖
𝑝 𝑞

 <  𝑃𝜂
1  where  

0 <    𝑎 +  𝑏  𝜖 <  𝜂 . Since  𝜖 >  0 is arbitrary so 

is  𝜂 and hence 𝑃𝑎
𝑝

 𝑃𝑥1

𝑙1 +  𝑃𝑏
𝑞

. 𝑃𝑦1

𝑚1 ∈  𝐵(𝑃𝑎
𝑝

. 𝑃𝑥
𝑙 +

𝑃𝑏
𝑞

. 𝑃𝑦
𝑚 , 𝑃𝜂

1  ) for any arbitrary  𝜂 >  0 ⇒

𝐵 𝑃𝑎
𝑝

. 𝑃𝑥
𝑙 + 𝑃𝑏

𝑞
. 𝑃𝑦

𝑚 , 𝑃𝜂
1 ∩ 𝑀𝑝𝑡  ≠ 𝜙for any 𝜂 >  0 ⇒

 𝑃𝑎
𝑝

. 𝑃𝑥
𝑙 + 𝑃𝑏

𝑞
. 𝑃𝑦

𝑚  ∈  𝑀𝑝𝑡
      =   𝑀  𝑝𝑡 . 

 

VII. CONCLUSIONS 

 

 Functional analysis is an important branch of 
Mathematics and it has many applications in 

Mathematics and Sciences. Metric space is the 

beginning of functional analysis and it has several 

applications in many branch of functional 

analysis. In this paper an extension of the concept 

of metric is made by using multi set and multi 

number instead of crisp set and crisp real number. 

There is an ample scope for further research on 

multi metric space. Research on Multi norm and 

multi inner product can be of special interest. 
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