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1. INTRODUCTION  

Repeated roots of the polynomial equation 

0)3)(2()1( 32  xxx , although identical in all 

respects, are treated as multiplicity ([1], [3]). So, it is 

convenient to accept a collection like }3,3,2,1,1,1{  of 

roots rather than a set like }3,2,1{  of roots. The 

former if viewed as a set, will be identical to the 

latter. In the physical world, it is observed that there 

is enormous repetition ([2], [5], [6], [7], [11]). For 

example, a carbon atom and a hydrogen atom are 

obviously distinct whereas two hydrogen atoms are 

different but identical. So, we can say that two 

physical objects are the same or identical if they are 
indistinguishable, but possibly separate, and 

identical if they physically coincide ([1], [11]). In 

Cantorian classical set theory, a set is well-defined 

collection of distinct objects. If repeated occurrences 

of any object are allowed in a set, then that 

mathematical structure is called a multiset (mset in 

short or bag) ([1], [11]). So, a multiset is a collection 

of objects (called elements) in which elements may 

occur more than once. The number of times an 

element occurs in a multiset is called its multiplicity. 

The cardinality of a multiset is the sum of the 

multiplicities of its elements. For the shake of 
convenience, a multiset is written as 

}/,...,/,/{ 2211 xkxkxk nn  in which the element 1x  

occurs k i  times ([11]). Multisets are now of special 

interest in some area of mathematics, computer 

science, physics and philosophy ([1], [4], [8], [9], 

[15], [17] - [21]). There are many situations in the 

above subjects where it is more convenient to 
consider a collection like multiset. e.g., the repeated 

eigen values of a matrix, prime factors of a positive 

integer, repeated observations in a statistical sample, 

data structure etc. Although the root of the studies in 

multiset is in combinatorics from ancient times ([25], 

[26], [27]), the modern research in this field about 

the structural development in multiset context is a 

relatively new concept. Some research works on the 

relations and functions in multiset context ([13], [14], 

[22]), multiset topology ([1], [11], [12], [18]), 

multiset ordering ([13]), multi group theory ([10], 

[23], [24]) etc. have been done by some researchers. 

In order of develop various structures on multisets 

we start from the beginning viz development of 

multi-number system. In this paper, we introduce a 

concept multi-natural number system from 

axiomatic point of view and study its properties 

related to compositions and order relations.  

2. PRELIMINARIES 

2.1. Definition  

An mset M  drawn from a set X  is represented 

by a function count M  or CM  defined as 

NXCM :  where N  represents the set of  

nonnegative integers ([11]). Let M  be an mset from 

the set },...,,{ 21 nxxxX   with ix  appearing ik  

times in M . It is denoted by Mx ik
i  . The mset 

M  drawn from the set X  is then denoted by 

}/,...,/,/{ 2211 xkxkxk nn  in which the element xi   

occurs k i  times ([11]). Also )(xCM  is the number 

of occurrences of the element x  in the mset M . 

However, those elements which are not include in 

the mset M  have zero count ([11]).  

2.2. Example  

Let },,,,{ edcbaX   be any set. Then 

}/1,/5,/4,/2{ edbaM   is an mset drawn from X  

([11]). 

2.3.  Definition  

Let M  and N  be two msets drawn from a set X . 

Then the following are defined: 

(i) NM   if  )()( xCxC NM  Xx . 

(ii) NM   if )()( xCxC NM   Xx  (then 

we call N  to be a submset of M ). 

(iii) NMP   if   

)(xCP )}(),({ xCxCMax NM  Xx . 

(iv) NMP   if 

 )}(),({)( xCxCMinxC NMP   Xx . 

(v) NMP   if  

 )()()( xCxCxC NMP   Xx . 

(vi) NMP   if  

}0),()({)( xCxCMaxxC NMP  Xx . 
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Where   and   represent mset addition and 

mset subtraction respectively ([11]). 

Let M  be an mset drawn from a set X . The 

support set of M  denoted by M  is a subset of X  

and M }0)(:{  xCXx M . i.e., M  is an 

ordinary set and it is also called the root set. The 

cardinality of an mset  M  drawn from a set X  

denoted by card )(M  or || M  and is given by 

|| M )(xCXx M   ([11]). 

2.4. Definition  

A domain X ,  is defined as a set of elements 

from which msets are constructed. The mset space 
mX ][  is the set of all msets whose elements are in 

X  such that no element in the mset occurs more 

than m  times ([16], [11]). 

The element ][X  is the set of all msets over a 

domain X  such that there is no limit on the number 

of occurrences of an element in an mset ([16], [11]). 

If },...,,{ 21 kxxxX  , 

     then }/,...,/,/{{][ 2211 kk
m xmxmxmX   

: for }},...2,1,0{;,...,2,1 mmki i   ([16], [11]). 

2.5. Definition  

Let X  be a support set and mX ][  be the mset 

space defined over X  , then the complement 
cM  of 

M  in mX ][  is an element of mX ][  such that  

)()( xCmxC M
c
M   Xx  ([16], [11]). 

2.6.   Definition (Different types of Submsets) 

A submset N  of a mset M  (i.e., NM  ) is a 

whole submset of M  with each element in N  

having full multiplicity as in M . i.e., 

)()( xCxC MN   for every x  in N ([11]). 

A submset N  of M  is a partial whole submset of 

M  with at least one element in N  having same 

multiplicity as in M . i.e., )()( xCxC MN   for 

some x  in N  ([11]). 

A submset N  of M  is a full submset of M  if, 

  NM  and )()( xCxC MN   for every x  in N  

([11]). 

2.6.1. Empty set   is a whole submset of every 

mset but it is neither a full submset nor a partial 

whole submset of any nonempty mset M  ([11]). 

2.6.2. Consider the mset }/5,/3,/2{ zyxM  . The 

following are the some of the submsets of M  

which are whole submsets, partial whole 

submsets and full submsets ([11]). 

2.6.3. A submset }/3,/2{ yx  is a whole submset 

and partial whole submset of M  but it is not a 

full submset of M  ([11]). 

2.6.4. A submset }/2,/3,/1{ zyx  is a partial 

whole submset and full submset of M  but it is 

not a whole submset of M  ([11]). 

2.6.5. A submset }/3,/1{ yx  is a partial whole 

submset of  M  which is neither full submset of 

M  nor a whole submset of M  ([11]). 

2.7. The five axioms of Peano ([28], [29], [30]) 

If we assume the existence of a set N with the 

following properties: 

N(i): There exist an element N1  

N(ii): For every Nn , there exist an element 

Nn )(  such that }|))(,{( Nnnn   is a function 

N(iii): )(1 n  

N(iv):   is one to one 

N(v): If P is any subset of N such that P1  and 

Pn )(   Pn , then NP   

then such a set N is defined to be a set of natural 

numbers and the elements of this set to be natural 

numbers. ),1,( N  is called a natural number system 

and   is called successor function. 

2.7.1. Note: Any two natural number systems 

defined by Peano’s axiomatic definition are 

isomorphic ([28], [29], [30]). 

2.8. Iteration theorem ([29], [30]) 

Let ),1,( N  be any natural number system and 

X  be any non-empty set. Given Xx  and a 

function XX : , then   a unique function 

XN :  such that x)1(  and 

))(())(( nn    Nn . 

 

2.9. Theorem: Addition of two natural numbers 

([29], [30]) 

There exists a unique function NNN :  

with the following properties: 

B(i): )()1,( pp    Np . 

B(ii): )),(())(,( npnp    Nnp , . 

2.9.1. Note: ),( np  is denoted by np   and is 

defined as the addition of two natural numbers. 

2.9.2. Note: Nppp  1)( : 

Proof: From B(i) of 2.9, Np , )()1,( pp    

)(1 pp   (by Note 2.9.1) 

2.10.  Theorem: Multiplication of two natural 

numbers ([29], [30]) 

  a unique function NNN :  with the 

following properties: 

M(i): qq )1,(  Nq . 

M(ii): )),(,())(,( mqqmq    Nmq , . 

 

2.10.1. Note: ),( mq  is denoted by  qm and is 

defined as the multiplication of two natural 

numbers. 
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2.11. Lemma: For every natural number p , 

either 1p  or )(qp   for some natural 

number q : 

Proof: Let )(|{}1{ qpNpE  for some 

}Nq . 

Then E1 . 

Let Ep . 

If 1p  then E)1( , by definition of E. 

If 1p  then by definition of E, Nq  such 

that )(qp  . 

Therefore, ))(()( qp   . 

Therefore, Ep )( . 

In either case, Ep )( . 

Therefore, Ep  Ep )( . 

Therefore, by N(v) of 2.7, NE  . 

Hence the lemma. 

2.11.1. Note: So, for any Np  )1( , there 

is Nq  such that pq )( . q  is 

unique since   is one-one. 

We define such 1 pq . 

2.12. Theorem: }1{ Np , )1()1(  pp  . 

Proof: Let )}1(|{}1{ )1(  ppNpT  . 

Then T1 . 

Let Tp . 

If 1p ,  

then )1()1()1()( )1)(()(  ppp   

[since }1{)(1)(1  Nppp  , so by 

lemma 2.11, Np  )1)((  such that 

)()1)(( pp   )(1)( pp   , since   is 

one-one]. 

Therefore, Tp )(  in this case. 

If 1p  then by definition of T,  

)1()1(  pp   

))1(()( )1(  pp  )1()( p )1()1)((  p  

[since )()1)(( pp   pp  1)(  as   is 

one-one]. 

Therefore, Tp )(  in this case too. 

Therefore, Tp )(  in either case. 

Therefore, T(p) Tp , 

Therefore, by N(v) of 2.7, NT  . 

Hence the theorem. 

2.13.  Theorem:   obey commutative property 

on N ([29], [30]). So, 

)(iB : )(),1( pp    Np . 

)(iiB : )),(()),(( pnpn    Nqp  , . 

2.13.1.  Note:   )),1(()),1(( )()( pp nn    

Nn  and Np : 

Proof: The proof is straight forward.  

2.14.   Theorem:   obey commutative property 

on N. ([29], [30]).     

            So, 
M  (i): qq ),1(  Nq . 

M  (ii): )),,(()),(( qmqqm    Nmq , .    

3.      AXIOMATIC DEFINITION OF MULTI-

NATURAL NUMBERS 

Now we shall define here multi-natural numbers 

axiomatically. Our foundation is obviously ordinary 

natural number system ),1,( N  which is defined 

axiomatically by Peano. 

3.1. Definition  

Axiom1: For all Nqp , , there exist a multi-

natural number denoted by N
q
p . 

Axiom 2: Two multi-natural numbers N
q
p  and N

s
r  

are equal iff rp   and sq  . 

Axiom 3: For any multi-natural number N
q
p , 

Nqp , , there exist a multi-natural number N
q

p)(  

(defined to be support successor of N
q
p ) and another 

multi-natural number N
q

p
)(  (defined to be 

multiplicity successor of N
q
p ). 

Axiom 4: N
q
1 , Nq , is not support successor 

of any multi-natural number, also, N p
1 , Np , is 

not multiplicity successor of any multi-natural 

number. 

Axiom 5: Let )(NP q
p  be any proposition 

involving a multi-natural number N
q
p . Suppose that 

)( 1
1NP  is true. Also suppose that whenever )(NP q

p  

is true, then )(
)(NP q

p  and )( )(
NP q

p
  both are also 

true. Then )(NP q
p  is true for every multi-natural 

number N
q
p . 

Let us denote the set of all multi-natural numbers 

as )(Nm . Also, let us define p  N and q  N  as 

respectively the support and the multiplicity of a 

multi-natural number q
pN . 

3.2. Successor Functions 

3.2.1. Support Successor Function: 

)()(: NmNmS   defined 
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by )(NS q
p = N

q
p)(

, )(NmN
q
p is the 

support successor function.  

3.2.2. Multiplicity Successor Function: 

)()(: NmNmM   defined 

by )(NM q
p = N

q
p

)( , )(NmN
q
p  is the 

multiplicity successor function. 

 

3.2.3. Note: S and M both are one to one since   

is one to one. i.e., different multi-natural 

numbers have different multiplicity 

successors as well as different support 
successors. 

3.3. Definition of Multi-natural numbers using 

successor Functions:  

We assume the existence of a set )(Nm  with the 

following properties: 

Axiom 1: For all Nqp , , there exist a member of 

)(Nm , denoted by N
q
p . 

       Axiom 2: Two multi-natural numbers N
q
p  and      

N
s
r  are equal iff rp   and sq  . 

Axiom 3: For every )(NmN
q
p , there exist an 

element )()( NmNS q
p  such that 

)}(:))(,{( NmNNSN
q
p

q
p

q
p   is a function, also 

there exist an element )()( NmNM q
p   such that 

)}(:))(,{( NmNNMN
q
p

q
p

q
p   is a function. 

Axiom 4: NqNmSN
q  ))((1  also 

NpNmMN p  ))((1 . 

Axiom 5: If )(Pm be any subset of )(Nm such that 

)(1
1 PmN   and )()(),( PmNMNS q

p
q
p   for all 

)(PmN
q
p . Then )()( NmPm  . 

3.4. Note: SMMS   :  

Both the functions MS   and SM   are functions 

from )(Nm  into )(Nm . 

Again,  q
pN  )(Nm , )( q

pNMS   

  ))(( q
pNMS  )( )(q

pNS  
)(
)(

q
p

N

  

 )(
)(

q
p

NM   ))(( q
pNSM  )( q

pNSM  . 

Therefore, SMMS   . 

3.5. Note: Define SSSS p  ...)(  ( p  times), 

Np . 

Also, s

r

s
r

p
p

NNS
)(

)(
)(

)(


  (by repeated 

application of 3.2.1). 

3.6. Note: Define MMMM q  ...)(  ( q  

times), Nq . 

Also )()( )(

)( s
r

s
r

q q

NNM   (by repeated 

application of 3.2.2). 

3.7.  Note: )()()()( pqqp SMMS    

 Nqp , : The proof is similar to 3.4. 

 

3.8. Elementary Properties of )(Nm  

3.8.1. )(Nm is infinite:  

Proof: By Note 3.2.3, S is one to one.  

Furthermore, ))((1
1 NmSN   by axiom 4 of 

3.3. 

So, S is onto some proper subset of )(Nm .  

       Hence )(Nm is infinite. 

 

3.8.2. NNS q
p

q
p )(  for all )(NmN

q
p :  

Proof:  

Let })(:)({)( NNSNmNPm q
p

q
p

q
p  .  

Since by axiom 4 of 3.3, ))((1
1

NmSN  ,` 

       so )(1
1

PmN  .  

       Suppose, )(PmN
q
p  . 

       If )())(( NSNSS q
p

q
p  , then NNS q

p
q
p )(  

(since S is   one to one from 3.2.3), 

contradicting )(PmN
q
p .  

         So )())(( NSNSS q
p

q
p   

         consequently, )()( PmNS q
p  whenever 

)(PmN
q
p .  

         Again ))(( q
pNMS  )( q

pNM  

 )( q
pNMS   )( q

pNM  

 )( q
pNSM   )( q

pNM  (by 3.4) 

  ))(( q
pNSM  )( q

pNM  

 )(NS q
p  q

pN  (since M  is one to one from 

3.2.3), contradicting )(PmN
q
p .      

So )())(( NMNMS q
p

q
p  , 

consequently, )()( PmNM q
p  whenever 

)(PmN
q
p .  

   So, by axiom 5 of 3.3, )()( NmPm  . 
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 Therefore, NNS q
p

q
p )(  )(NmN

q
p . 

3.8.3. NNM q
p

q
p )(  for all )(NmN

q
p : 

Proof is similar to 3.8.2. 

 

3.8.4. For all }:{)(
1

NtNNmN
tq

p  , there 

exist )(NmN
q
k
  such that )(NSN

q
k

q
p  : 

Proof:  

Let )(:{}:{)(
1

NmNNNtNPm q
k

q
p

t   

such that )}(NSN
q
k

q
p  .   

Then by definition of )(Pm , NtPmN
t  )(1

,  

so )(1
1 PmN  .  

Suppose, )(PmN
q
p .  

)( q
pNS  is a support successor of )(NmN q

p  . 

Hence, )()( PmNS q
p  whenever )(PmN

q
p .  

Now we shall show that )()( PmNM q
p  . 

In this connection if 1p , 

then )()()(
)(

11 PmNNMNM
qqq

p 


 (since 

by definition of )(Pm , NtPmN
t  )(1  and 

Nq )(  Nq ). 

If 1p  then ))(()(
q
k

q
p NSMNM   

 [since )(PmN
q
p  and 1p  so by 

definition of )(Pm , there exist )(NmN
q
k   such 

that )(
q
k

q
p NSN  ]

))(()()(
q
k

q
k

q
k

NMSNMSNSM   )(Pm . 

Therefore, in either case )()( PmNM q
p   

whenever )(PmN
q
p . 

Therefore, by axiom 5 of 3.3, )()( NmPm  .  

Hence the result. 

 

3.8.5. For all }:{)( 1 NtNNmN t
q
p  , 

there exist )(NmN
k
p such that 

)(NMN
k
p

q
p  :  

The proof is similar to 3.8.4. 

3.8.6. If )(NmN
q
p , then 1p iff 

))(( NmSN
q
p : 

1p ))(( NmSN
q
p follows 

immediately from axiom 4 of 3.3. 

Also, ))(( NmSN
q
p 1 p  

follows from 3.8.4. 

 

3.8.7. If )(NmN
q
p , then 1q iff 

))(( NmMN
q
p : 

1q ))(( NmMN
q
p  follows 

immediately from axiom 4 of 3.3. 

Also, ))(( NmMN
q
p 1 q  

follows from 3.8.5. 

4.    AXIOMATIC DEFINITION OF ADDITION ON 

)(Nm  

4.1.  Definition of Addition:       
A function )()()(: NmNmNmA  with 

the following properties: 

Axiom 1: )(),( 1
1 NSNNA q

p
q
p  , 

Axiom 2: )),(())(,( NNASNSNA m
n

q
p

m
n

q
p  , 

Axiom 3: 

)),(())(,( )(
NNAMNMNA m

n
q
p

qm
n

q
p  ,  

N
q
p , N

m
n )(Nm , is called addition of two 

multi-natural numbers. 

4.2. Theorem (Existence and uniqueness 

theorem of addition): 
There exists a unique addition function. 

Proof: 

 Let any Np  be given. 

By iteration theorem 2.8 with NX   and 

)( px  ,   ,   a unique function 

NNp :  such that )()1( pp    and 

)()( nn pp     Nn . 

 

Similarly, let any Nq  be given.  

By iteration theorem 2.8 with NX   and 

qx  , q  ,   a unique function 

NNq :  such that qq )1(  and 

)()( mm qqq     Nm . 

 

Let us define )()()(: NmNmNmA   by  

)(

)(
),(

m

n
m
n

q
p

q

p
NNNA



 , m

n
q
p NN ,  )(Nm . 

Then immediately )()()(: NmNmNmA   

is a function since NNp :  and 

NNq :  both are functions. 

Now 
)1(

)1(
1
1 ),( q

p
NNNA q

p





q
pN )( )( q

pNS . 

Therefore, A satisfies Axiom 1 of 4.1. 

Also, ))(,( NSNA m
n

q
p  ),( )(NNA m

n
q
p   


)(

))((

m

n
q

p
N





)(

))((

m

n
q

p
N



 


)(

))((

m

n
q

p
N



 )(

)(

)(

m

n
q

p
NS



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 )),(( m
n

q
p NNAS ,  m

nN  )(Nm . 

Therefore, A satisfies Axiom 2of 4.1. 

Also, ))(,( NMNA m
n

q
p  ),( )(

NNA m
n

q
p

  


))((

)(

m

n
q

p
N






)(

)(

m

n
qq

p
N








)(

)(

m

n
qq

p
N






 


))(,(

)(

mq

n
q

p
N




 


















1

1

))(),1((

)(

))(,1(

)(

)1(

ifqN

ifqN

m

n

m

n

q
q

p

q

p








 

(By theorem 2.12) 


















1

1

)))(,1((

)(

))((

)(

)1(

ifqN

ifqN

m

n

m

n

q
q

p

q

p








 

(By Note 2.13.1) 


















1

1

)))(((

)(

))((

)(

)1(

ifqN

ifqN

m

n

m

n

q
q

p

q

p








 

(By )(iB of 2.13) 
















1

1

))((

)(

))((

)(

)(

ifqN

ifqN

m

n

m

n

q
q

p

q

p








 

 














1)(

1)(

)(

)(
)(

)(

)(

ifqNM

ifqNM

m

n
q

m

n

q

p

q

p








 

(By 3.6) 

 )(
)(

)(
)( m

n
q q

p
NM



 

 )),(()( NNAM
m
n

q
p

q ,  m
nN  )(Nm . 

Therefore, A satisfies Axiom 3 of 4.1. 

Therefore, the function A  satisfies all the 

three axioms of the definition given in 4.1. 

Let )()()(: NmNmNmA   be another 

function which also satisfies all the three 

axioms of the definition given in 4.1. 

For any )(NmN q
p  let )(Pm  

)},(),(|)({ m
n

q
p

m
n

q
p

m
n NNANNANmN  . 

Then since ),(),( 1
1

1
1 NNANNA q

p
q
p  ,  

so )(1
1 PmN  . 

Let )(PmN m
n  . 

Then ))(,( m
n

q
p NSNA  )),(( m

n
q
p NNAS  (by 

axiom 2)   )),(( m
n

q
p NNAS   (since 

)(PmN m
n  )  ))(,( m

n
q
p NSNA  (by axiom 

2). 

Therefore, )( m
nNS  )(Pm  whenever 

)(PmN m
n  . 

Again, 

))(,( m
n

q
p NMNA  )),(()( m

n
q
p

q NNAM  (by 

axiom 3)   )),(()( m
n

q
p

q NNAM   (since 

)(PmN m
n  )  ))(,( m

n
q
p NMNA  (by axiom 

3). 

Therefore, )( m
nNM  )(Pm  whenever 

)(PmN m
n  . 

Therefore, by axiom 5 of definition of multi-

natural number (3.1), )()( NmPm  . 

Therefore, ),(),( m
n

q
p

m
n

q
p NNANNA   

 q
pN , m

nN  )(Nm . 

So A  exist is uniquely. 

4.3. Theorem:  

The function )()()(: NmNmNmA   

defined by qm
np

m
n

q
p NNNA ),( , 

)(, NmNN m
n

q
p  , satisfies Axiom 1-3 of 

Addition: 

Proof: 
q
p

q
p NNNA 1

1
1),( 

q
p

N
)(  (From 

2.9.2) )( q
pNS  (From 3.2.1). 

So A  satisfies Axiom 1 of 4.1. 

),())(,( )(
m

n
q
p

m
n

q
p NNANSNA   (From 3.2.1) 

qm
np

N
))((


qm

np
N

)( 
  (By B(ii) of 2.9) 

)( qm
npNS  (From 3.2.1) )),(( m

n
q
p NNAS . 

So A  satisfies Axiom 2 of 4.1. 

Finally, ))(,( m
n

q
p NMNA  ),( )(m

n
q
p NNA   

(From 3.2.2) )(mq
npN 

 qmq
npN 

  (By M(ii) 

of 2.10) 





















1

1

)1(

1

)1(

ifqN

ifqN

qm
np

m
np

q
 

(From theorem 2.12) 





















1

1

)1(

)(

)1(

ifqN

ifqN

qm
np

m
np

q



 

(From )(iB  of 2.13 and 2.13.1) 




















1)(

1)(

1)1( ifqNM

ifqNM

qm
np

q

m
np

 

(From 3.2.2 and 3.6) 
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
















1)(

1)(

)()1(

.1

ifqNM

ifqNM

qm
np

q

m
np


 

(From )(iM   of 2.14 and )(iB  of 2.13) 


















1))((

1)(

)1(

.1

ifqNMM

ifqNM

qm
np

q

m
np

 

(From 3.2.2) 

















1)(

1)(

)(

.1

ifqNM

ifqNM

qm
np

q

m
np

 

(From 3.6) 













1))((

1))((

)( ifqNNAM

ifqNNAM

m
n

q
p

q

m
n

q
p

 

))(()( m
n

q
p

q NNAM  . 

So A  satisfies Axiom 3 of 4.1. 

Hence the theorem. 

4.3.1. Note: The Addition function A 

defined in 4.1. is unique (By theorem 

4.2.), so we can write 
qm

np
m
n

q
p NNNA ),( , )(, NmNN m

n
q
p  . 

4.3.2. Note: According to Note 4.3.1., 

Support of ),( m
n

q
p NNA  is )( mp   

and multiplicity of ),( m
n

q
p NNA is qm . 

4.3.3.  Note: From now on, we will denote 

),( m
n

q
p NNA  as m

n
q
p NN  . 

4.3.4. Note: Combining axiom 2 & 3, we 

can write, 

))(,( NMSNA m
n

q
p 

)),(()(
NNSMS m

n
q
p

q . 

4.4. Properties of Addition: Following properties 

of addition can be deduced: 

4.4.1. Property: NNNS q
p

q
p

1
1

)(  . 

 

4.4.2. Property: 

NNNNNN
t
k

q
p

t
k

q
p

1
1

1
1 )()(   

)(, NmNN
t
k

q
p   

4.4.3. Property: 

)(1
1

1
1

NmNNNNN
q
p

q
p

q
p   

 

 

4.4.4. Property: 

NNNNNN
t
k

q
p

t
k

q
p

1
1

1
1 )()(  , 

)(, NmNN
t
k

q
p  . 

4.4.5. Property: 

)(, NmNNNNNN
t
k

q
p

q
p

t
k

t
k

q
p   

(the commutative law of addition). 

4.4.6. Property:

)()( NNNNNN
n
m

t
k

q
p

n
m

t
k

q
p  , 

)(,, NmNNN
n
m

t
k

q
p  (the 

associative law of addition.) 

4.4.7. Property: 

)(, NmNNNNN
t
k

q
p

t
k

q
p

q
p  : 

Proof follows from 4.2.2. 

4.4.8. Property: 

NNNNNN
n
m

t
k

n
m

q
p

t
k

q
p  , 

)(,, NmNNN
n
m

t
k

q
p   

(the cancellation law for addition). 

  

4.5. Counting 

4.5.1. Examples: We know that the   actual 

essence of natural number is counting. But the 

process of counting of elements of a multiset is 

not a natural process due the presence of the 

copies of the elements. 

If we consider the copies as different from 

original, we must use natural numbers for 

counting, otherwise we must give number of 
distinct elements and number of copies for each. 

But here we introduce a different way to count 

the multi-number of elements of a multiset by 

giving the following examples (definition given 

in 4.3.6): 

 

Example1: The multi-number of elements of the 

multiset },,{ aaaX  is N
3
1 . The multi-number 

of elements of the multiset },{ bbY  is N
2
1 also, 

the multi-number of elements of },{ ccZ   is 

N
2
1 . 

 

Example2: Consider the multiset 

},,,,,,{ ccbbaaaA  which is a multiset with 

},,{ cba as the support set with 12 multiplicity (by 

fundamental law of association). In this 

connection, if we say that the set A has 3 elements 

(discarding the copies) or if we say that the set has 

7 elements (otherwise), then the essence of 

multiset will drive out. 

In this paper, we define the multi-number of 

elements of A is 

NNN
2
1

2
1

3
1 )(  NNN

12
3

2
1

6
2  .  

 
We claim that this type of counting using multi-

natural number preserves the essence of counting 

of the elements of a multiset and is favored by the 

addition of two multi-natural numbers. It’s worth 

noting that the multi-number of elements of 

},,,,,,,,,,,,,{ cbaaaaaaaaaaaaB  is 

NNN
1
1

1
1

12
1  N

12
3 . 
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4.5.2. Full submsets: Again, we know that full 

submsets are very important submsets in 

multiset context. Also, the number of full 

submsets of },,,,,,{ ccbbaaaA   is 12. Also, 

all the full msubsets of A are such msubsets of 

A for which support is },,{ cba . Therefore, the 

multiset A has the support set },,{ cba  and has 

12 full submsets but the converse is not true. 

The support set },,{ cba  generates many 

multisets except A all of which have 12 full 

submsets. Let ),( qp be the number of positive 

integral solutions of the equation 

qxxx p ..... 21 , then ),( qp is the number of 

multisets each having same support set with p 

elements, same number of full submsets and 

sane multi-number of elements. 
4.5.3. Multiple Roots: The list of roots of the 

polynomial equation 0)3()1( 2  xx  is 1,1,3. 

Therefore, the multiset of roots of 

0)3()1( 2  xx  is }3,1,1{ . But the equation 

has two distinct roots 1 and 3 giving the set of 

roots of the equation is }3,1{ . But if about the 

collection of roots of the equation we represent 

the set }3,1{ , then it will be very unjustified and 

the representation will be inadequate. The 

essence of multiness of the multiset }3,1,1{  of the 

roots of the equation 0)3()1( 2  xx  will be 

preserved if we consider the set }3,1{  of the roots 

with multiplicity 2 which in turn support the 

multi-number of the roots of the equation is N
2
2 . 

4.5.4. q
pN -Count Power msets: Let 

kr
k

rr
qqqq ..... 21

21  be the canonical form of 

q where kqqq ,...,, 21  ( kqqq  ...21 ) is the 

complete list of prime factors of q  with 

multiplicities krrr ,...,, 21  respectively.  

Let us consider the equation 

pxxx ..... 21
kr

k
rr

qqq .... 21
21 , where Nxi  . 

  Let us consider the equation 

 pxxx ....21 ir , ki ,...,2,1 , 

}0{Nxi . The number of solutions of the 

second equation is 












1

1

p

pri
, ki ,...,2,1 .  

So, the number of solutions of the first equation 

is  














k

i

i

p

pr

1 1

1
 )( q

pN , say.  

Let ),....,,( 21 p   be one of such solution of 

first equation. Then for each set },...,,{ 21 paaaA  

having p  elements and for each  , there exist a 

multiset )(A  (with A as the support set) for 

which iiA aC  )()( , pi ,....,2,1 . Let us denote 

the set of all such multisets as ))(,( q
pNA  and 

define it as ‘ q
pN -count power mset of A’.  

Also in this case, q
p

p

i

NN i 
1

1


. 

4.5.5. Single Whole Submsets, Single Submsets: 

Let us now define a submset N  of a mset M  

drawn from a set X as a  ‘single whole submset’ if 

)()( xCxC MMN   or 0 Xx  and 

)}()(:{ xCxCXx MMN    is a singleton set, 

say }{n , then let us denote it as }{nM ( N ), i.e., a  

single whole submset is such a submset of a 

multiset for which exactly one element of the 

support set belongs to it with the same count as in 

the mset. 

Let us now define a mset as a single mset if it has a 

singleton support set.  

So immediately, each mset can be expressed as a 
union of all its single whole submsets. Therefore, 


Xn

nMM


 }{ . 

In this connection, we note that single whole 

submsets are pairwise disjoint. 

 

4.5.6. Multi Number of Elements in a Multiset: 

Which we have illustrated in the example1 and 

example2 of 4.3.1, to represent the concept of multi-

number of elements in a multiset, we now defining 

that as follows:  

Let N  be a single mset also let x  is the only 

element of  N  with nxCN )( . 

Let us now define nN1 as the multi-number of 

elements in N . Next let us consider an mset M  

whose support },....,,{ 21 nxxxN   is a finite set 

and multiplicity of each of its elements is finite and 

is given by the count function iiN txC )( , 

ni ,....,2,1 . Then we define the multi number of 

elements in M  as the sum of the multi-numbers of 
the elements in all its single whole submsets i.e., 

t
n

ttt
NNNN n  111 ....21  where ntttt ....21 . 

5. AXIOMATIC DEFINITION OF MULTIPLICATION 

ON )(Nm  

5.1. Definition of Multiplication: 

A function )()()(: NmNmNmP  with the 

following properties: 

Axiom 1: NNNP q
p

q
p ),( 1

1 , 

Axiom 2: )),(())(,( )(
NNPSNSNP m

n
q
p

pm
n

q
p  , 

Axiom3: )),(())(,( )(
NNPMNMNP m

n
q
p

qm
n

q
p  , 

is called multiplication of two multi-natural numbers. 
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5.2. Theorem (Existence and uniqueness 

theorem of multiplication): 

There exists a unique multiplication function. 

Proof: 

Let any Np  be given. 

By iteration theorem 2.8 with NX   and 

)( px  ,   ,   a unique function 

NNp :  such that )()1( pp    and 

)()( nn pp     Nn . 

 

Similarly, let any Nq  be given.  

By iteration theorem 2.8 with NX   and qx  , 

q  ,   a unique function NNq :  such 

that qq )1(  and 

)()( mm qqq     Nm . 

 

Let us define )()()(: NmNmNmP   by 

),( m
n

q
p NNP  

)(

)(

m

n
q

p
N



  , )(, NmNN m

n
q
p  . 

Then immediately )()()(: NmNmNmP   is a 

function since NNp :  and NNq :  

both are functions. 

Then proceeding in the similar argument as in 

theorem 4.2 we can show that P satisfies all the 

three axioms of the definition given in 5.1. also, 
we can show that P exists uniquely.  

5.3. Theorem:  

The function )()()(: NmNmNmP   

defined by qm
pn

m
n

q
p NNNP ),( , 

)(, NmNN m
n

q
p  , satisfies Axiom 1-3 of 

multiplication: 
The proof is similar to the proof of the 

theorem 4.3. 

5.3.1. Note: The multiplication function P 

defined in 5.1. is unique (By theorem 

5.2.), so we can write 

),( m
n

q
p NNP qm

pnN , )(, NmNN m
n

q
p  . 

5.3.2. According to Note 3.3.1., Support of  

),( m
n

q
p NNP  is pn  and multiplicity of 

),( m
n

q
p NNP  is qm . 

5.3.3. Note: From now on, we will denote 

),( m
n

q
p NNP  as m

n
q
p NN . . 

5.3.4. Note: Combining axiom 1 and axiom 

2 of 5.1., we can write  

))(,( NMSNP m
n

q
p 

)),(()()(
NNPMS

m
n

q
p

qp  . 

5.4. Properties of multiplication: Following 
properties of multiplication can be deduced: 

5.4.1. NNNP q
p

q
p ),( 1

1  ),( 1
1NNP q

p . 

5.4.2. ),( m
n

q
p NNP  ),( q

p
m
n NNP (the 

commutative law of multiplication). 

5.4.3. )),(,()),,(( NNPNPNNNPP s
r

q
p

n
m

s
r

q
p

n
m 

(the associative law of multiplication). 

5.4.4. In general, 

)),(,( NNANP s
r

n
m

q
p

)),(),,(( NNPNNPA s
r

q
p

n
m

q
p ,  

(i.e., P do not obey distributive 
property over A). 

5.4.5. Note: But in particular, 

)),(,( 1
NNANP s

r
n
mp

)),(),,(( 11
NNPNNPA s

rp
n
mp . 

 

5.5. Following important results can be deduced: 

1) ..... NN
n
m

n
m (up to k times) N

kn
km . 

2) .......NN
n
m

n
m (up to k factors) N

k

k
n

m
 . 

3) ................... NN
n
m

n
m (up to k times)  

NNNNNN
n

m
n

m
n

m 1
1

1
1

1
1 ........   

       NNNN m
n
k

n
km

kk 11 ..  . 

6. ORDER ON )(Nm  

Our multi-natural number system seems to be 

taking shape very nicely. We can add them, multiply 

them and even take the power of multi-natural 

numbers in some cases. Now we need to order our 

multi-natural numbers. 

6.1. Definition  

We say that for )(, NmNN
n
m

q
p  , NN

n
m

q
p   iff 

mp ( as well as )nq  . Also we say that for 

)(, NmNN
n
m

q
p  , N

q
p is greater than N

n
m  and 

we write NN
n
m

q
p   if  )(NmN

s
r such that 

)( NNNN
ns

rm
s
r

n
m

q
p  , i.e., (if mp   as 

well as qn | ). 

We say that N
q
p  is greater than or equal to N

n
m  

and we write NN
n
m

q
p   if NN

n
m

q
p   or 

NN
n
m

q
p  , i.e., if mp ( as well as )| qn  or if 

mp ( as well as )qn  . 

6.2. Properties of order on )(Nm  

6.2.1. Theorem: the relation   on )(Nm is 

a partial order relation which is not 

total. 

Proof: Reflexivity is clear since 

)(NmNNN
q
p

q
p

q
p  . 
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Suppose for N
q
p , N

n
m )(Nm  NN

n
m

q
p   and 

NN
q
p

n
m  . 

Therefore, mp  as well as qn  . 

Therefore, NN
n
m

q
p  . 

Therefore,   is antisymmetric on )(Nm . 

Finally, for )(,, NmNNN
s
r

n
m

q
p  , let 

NN
n
m

q
p  and NN

s
r

n
m  .  

If at least one of the equality hold then 

immediately NN
s
r

q
p  . Otherwise, mp ( as 

well as )| qn  and rm (  as well as )| ns . Then 

rp ( as well as )| qs . 

Therefore, NN
s
r

q
p  . Therefore,   is a 

transitive relation on )(Nm . Therefore,   is a 

partial order relation on )(Nm .  

To show that the relation   is not total, we 

note that 2
3N is not greater than or equal to 3

2N  

also 3
2N is not greater than or equal to 2

3N . 

Therefore,   is not a total order relation on 

)(Nm . 

6.2.2. Therefore )),(( Nm is a poset but not 

a chain. Immediately )),(( Nm do not 

obey the Law of Trichotomy. 

6.2.3. NN
q
p

q
p  is not true  )(NmN

q
p : 

Proof: Since p is not greater than p so 

the result is immediate. 

6.2.4. 1
1NN q

p   )(NmN q
p  : 

 Proof: Since 1p  and 

q|1 Np so the result follows 

immediately. 

6.2.5. NNN
q
p

n
m

q
p  )(    )(NmN

n
m : 

Proof: From 5.1.3, 

)( NN
n
m

q
p 

qn
pmN which is 

immediately greater than or equal to 
q
pN  since ( ppm  as well as qnq |  

for 1p and 1q ) or ( ppm   as 

well as qnq   for 1p  and 1q ). 

6.2.6. NNNNNN
s
r

n
m

s
r

q
p

n
m

q
p    

  )(NmN
s
r :  

Proof: Let NN
n
m

q
p  . 

Then mp   as well as qn | . 

Now NN
s
r

q
p 

qs
prN  and 

NN
s
r

n
m

ns
mrN . 

Since ( mp   and qn | ) so 

( mrpr  Nr ) as well as 

( qsns | Ns ). 

Therefore, 
qs
prN  ns

mrN  )(NmN
s
r  

i.e., NN
s
r

q
p   NN

s
r

n
m  

 )(NmN
s
r . 

Conversely let, NN
s
r

q
p   NN

s
r

n
m  

 )(NmN
s
r . 

i.e., qs
prN  ns

mrN  )(NmN
s
r . 

Then ( mrpr  Nr ) as well as 

( qsns | Ns ). 

Therefore, ( mp   and qn | ). 

So, NN
n
m

q
p  . 

Hence the result. 

 

6.2.7. NN
n
m

q
p  and u

t
s
r NN   

u
t

n
m

s
r

q
p NNNN   

 )(,, NmNNN n
m

s
r

q
p   : 

                  Proof: Let NN
n
m

q
p  and u

t
s
r NN  . 

              Then ( mp   and qn | ) also ( tr   and  

su | ). 

 Now s
r

q
p NN  qs

rpN   

 and u
t

n
m NN  nu

tmN  . 

Since mp   and tr   so tmrp   

And since qn |  and su |  so qsnu | . 

Therefore, 
qs

rpN   nu
tmN  . 

Consequently, u
t

n
m

s
r

q
p NNNN  . 

 

6.2.8. q
p

n
m

q
p

n
m NNNNN  1

1 , 

   )(, NmNN n
m

q
p  : The proof is 

straight forward. 

6.2.9.   n
mN , )(NmN q

p  , q
p

n
m

q
p NNN  : 

The proof is straight forward. 

6.2.10.  s
r

n
m

s
r

q
p NNNN   

n
m

q
p NN   )(,, NmNNN n

m
s
r

q
p  : 

The proof is straight forward. 

6.2.11. s
r

q
p

s
r

n
m

q
p

n
m NNNNNN ..  , 

)(NmN s
r  : The proof is straight 

forward. 
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6.2.12. NNNNNN
n
m

q
p

s
r

n
m

s
r

q
p  .. , 

)(,, NmNNN n
m

s
r

q
p   

(cancellation law for multiplication): 
The proof is straight forward. 

6.2.13. q
p

n
m

q
p NNN . : The proof is straight 

forward. 

6.2.14. q
p

n
m NN   & s

k
u
t NN   


s
k

q
p

u
t

n
m NNNN ..  : The proof is 

straight forward. 

6.2.15. Intuitively, we realise that for any 

multi-natural number, we can make the product 

‘as big as we please’ by multiplying it with 

another suitable multi-natural number. Like the 

ordinary natural number system, it is also very 

fundamental property of the multi-natural 

number system. In this connection, we give the 

following theorem: 
 

Theorem: For )(, NmNN n
m

q
p  , )(NmN s

r   

such that n
m

s
r

q
p NNN . . 

 Proof: For any )(, NmNN
n
m

q
p  we take                

)()(
NSMN

n
m

ns
r  .  

 Then    

NNNNNSMN
n
m

qn
m

n
m

q
p

n
m

nq
p  

2
)1(

2
)1(

)( .))(.(  , 

(since mmp  )1( and qnn 2| ) 

CONCLUSIONS  

 In this paper, we have defined and studied multi-

natural number system from axiomatic point of 

view. 
There is a lot of scope of future research work in 

the field of multi set. Specially, further study can be 

carried out in the following directions:  

To study the possible extension process of Multi 

Natural Number System towards Multi Integer 

System, Multi Rational Number System, Multi Real 

Number System etc. 

 Also, to study thoroughly the properties of 

algebraic operations and order relations defined on 

them. 
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