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Abstract - The advent of technology that involves the MHD power generators, MHD devices, nuclear engineering 

and the possibility of thermonuclear power has created a great practical need for understanding the dynamics of 

conducting fluids.  The use of liquid metals as heat transfer agents and as a working fluid in MHD power generator 

has created a growing interest in the behavior of liquid metal flows and in particular the nature of interaction with 

magnetic field.  The interaction between the conducting fluid and the magnetic field radically modifies the flow, with 

attendant effects on such important flow properties as pressure drop and heat transfer, the detailed nature of which 

is strongly dependent on the orientation of the magnetic field relative to the field. It is assumed that the fluids in the 

two regions are incompressible, immiscible and electrically conducting, having different viscosities, electrical 

conductivities.  With these assumptions and considering that the magnetic Reynolds number is small the basic 

equations of motion, current, the no-slip boundary conditions at the walls and interface conditions between the two-
fluid regions have been formulated. The resulting governing linear differential equations are solved analytically, 

using the prescribed boundary and interface conditions to obtain the exact solutions for velocity distributions such 

as primary and secondary distributions in both regions. Also, their corresponding numerical results for various sets 

of values of the governing parameters are obtained to represent them graphically and are discussed in detail. 
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Basic governing equations with boundary and interface conditions and mathematical analysis of the 

problem: 

The fundamental equations to be solved are the equations of motion and current for the steady state two-fluid 

flow of neutral fully–ionized gas valid under assumptions given below and simplified as: 

(i)  The ionization is in equilibrium which is not affected by the applied electric and magnetic fields. 

(ii)  The effect of space charge is neglected. 

(iii)  The flow is fully developed and stationary, that is /t = 0 And  /x = 0 except p/x  0.       
(iv)  The magnetic Reynolds number is small [so that the externally applied     magnetic field is undisturbed by the 

fluid, namely the induced magnetic    field     is    small    compared    with    the    applied    field [Shercliff 

(1965)]. Therefore components in the conductivity tensor are expressed in terms of B0. 

(v) The flow is two-dimensional, namely /z = 0. 
With these assumptions, the governing equations of motion and current can be formulated as follows for the two-

dimensional steady state problem of study in two regions.  
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Region – II 
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In the above equations, the subscripts 1 and 2 refer to the quantities for region -I and II respectively, such as u1, 

u2 and w1, w2 known as primary and secondary velocity distributions in the two regions respectively. Ex and Ez, also 

Jx and Jz, are x- and z- components of electric field, also current densities respectively, s = pe/p is the ratio of the 

electron pressure to the total pressure.  The value of s is 1/2 for neutral fully–ionized plasma and approximately zero 

for a weakly–ionized gas. 

 While, 11 , 12  and 21 , 22  are the modified conductivities parallel and normal to the direction of electric 

field respectively  

The boundary condition on velocity requires the no slip condition.  In addition, the fluid velocity and sheer 

stress must be continuous across the interface y=0. The boundary and interface conditions for
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To make equations dimensionless, we use the following non-dimensional variables: 
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In which e is the gyration frequency of electron,  and e are the mean collision time between electron and ion, 
electron and neutral particles respectively. Also, the above expression for Hall parameter ‘m’ which is valid in the 

case of partially–ionized gas agrees with that of fully–ionized gas when e approaches infinity. 

Solutions of the problem 

Exact solutions of the governing differential equations with the help of boundary and interface conditions 

for the primary and secondary velocities u1, u2 and w1, w2 respectively. The numerical values of the expressions 

given at equations and computed for different sets of values of the governing parameters involved in the study and 

these results are presented graphically from figures 1and 2, also discussed in detail. 
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Fig.1 Primary Velocity profiles for different Ha

and  =0.333, 02, 1=1.2, 2=1.5, =1, h=0.8, m=2.
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The effect of varying the Hartmann number aH  on velocity distribution in the two regions is shown in figures 1 

and 2 respectively.  From fig.1, it is observed in both the regions that, an increase in Hartmann number diminishes 

the primary velocity distribution, while it enhances the secondary velocity distribution for lower Hartmann numbers, 

say up to 10 and diminishes beyond this number (fig.2). Also, the maximum velocity in the channel tends to move 
above the channel centerline towards region–I for Hartmann number Ha =2 when all the remaining parameters are 

fixed in the case of primary velocity.  This type of effect can also be observed in case of secondary velocity 

distribution at Ha=10.  
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Fig.2 Secondary Velocity profiles for differet Ha

and α=0.333, 0=2,1=1.2,2=1.5, h=0.8, m=2. 
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