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Abstract—In this paper, we introduce a class Φ and 

define � −contractive type mappings for digital metric 

spaces. We prove a crucial Lemma in digital metric 

spaces. Using this Lemma we prove existence and 

uniqueness of fixed point theorems in digital metric 

spaces. And we obtain Banach contraction principle in 

digital metric spaces as a corollary. We also give exam-

ples to illustrate our result. 
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I. INTRODUCTION 

Fixed point theory plays an important role in functional 

analysis, and it has wider applications in differential and 

integral equations. Fixed point theory, broadly speaking, 

demonstrates the existence, uniquenessand construction 

of fixed points of a function or a family of functions 

under diverse assumptions about the structure of the 

domain , (such as a metric space or normed linear space 

or a topological space) of the concerned functions. 

 

 

 The concept of a metric space was introduced 

by M. Ferchet [18] in 1906. 

Fixed point theory beginning from  Banach contraction 

principle of Banach [1] (1922) with complete metric 

spaces as a background and went back to Brouwer fixed 

point theorem of Brouwer [7, 8] (1910) with  ℝ. as 

background. It begins with some literature in 1960’s 

goes up to 1990’s which includes variants and generali-

zations of Banach contraction principle [9, 13, 20, 21, 

35]. 

Extension and development of this fixed point theory 

other than metric spaces, which are generalizations of 

metric spaces, such as statistical metric spaces, Menger 

spaces, d – complete topological spaces,  F – complete 

metric spaces, G – Metric spaces, Fuzzy Metric spaces 

was carried by several authors [10, 11, 12, 14, 19, 32, 

33, 34]. 

 Digital topology is the study of the topological 

properties of images arrays. The results provide a sound 

mathematical basis for image processing operations such 

as image thinning, border following, contour filling and 

object counting. 

       Digital topology is a developing area on general 

topology and functional analysis which studies feature 

of 2D and 3D digital image. Rosenfeld [24, 25], first to  
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consider digital topology as a tool to study digital imag-

es. Kong [22], then introduced the digital fundamental 

group of a discrete object. The digital version of the 

topological concept was given by Boxer [2, 3, 4]. 

 A. Rosenfeld [25] first studied the almost fixed 

point property of digital images. Ege and Karaca [16, 

17] gave relative and reduced Lefschetz fixed point the-

orem for digital images. They also calculated the degree 

of antipodal map for the sphere like digital images using 

fixed point properties. Ege and Karaca [15] defined a 

digital metric space and proved the famous Banach Con-

traction Principle for digital images. But this paper has 

many slips and was refined and corrected by S. E. Han 

[31]. 

         In this paper, we introduce φ − contractions and  

φ � contractive mappings on digital metric spaces. We 

prove an important Lemma and use it to prove the exist-

ence and uniqueness of fixed points in digital metrics 

spaces.  

 

II. PRELIMINARIES 

Let X be a subset of  3. for a positive integer n where 

3. is the set of lattice points in the n	– 	dimensional	 
Euclidean Space and  ℓ represent an adjacency relation 

for the members of  X. A digital image consists of  

�X, ℓ�. 
 

2.1 Definition (Boxer [3]): Let ℓ, n be positive integers, 

1 : ℓ : n and 	p, q	be two distinct points 
 

p < �p=, p>, … , p.�,			q < �q= , q>, … , q.� ∈ 	3. 
 

p	and	q are  ℓ � adjacent if there are at most  ℓ indices  

i such that  |pC � qC| < 1 and for all other indices  j such 

that  DpE � qED F 1, pE < qE. 
 The following statements can be obtained from 

definition 2.1 

For a given  p ∈ 3., the number of points  q ∈ 3. 

which are  ℓ � adjacenct to  p is denoted by  k�ℓ, n�. It 
may be noted that  k�ℓ, n� is independent of  p.  

 

 

In practice we write k < k�ℓ, n�. 
1. If  p ∈ 3	�i. e. , n < 1� then  ℓ can take only one 

value  ℓ < 1. In this case, 	k�1, 1� < 2, since 

p � 1	&	p J 1 are the only points 1 � adjacent 
to  p	in	3. 

Thus,  k < k�1, 1� < 2 and  q	is	1 � adjacent	 
to	p if and only if  |p � q| < 1. 

 

2. If  p ∈ 3>	�i. e. , n < 2� then  ℓ can take values 

ℓ < 1, 2. 
When 	ℓ < 2, 
the points 2 � adjacent	to	p < �p=, p>� are 
 

�p= K 1, p>�, �p=, p> K 1�, �p= K 1, p> K 1�. 
 

Thus,  

the number of points 	2 � adjacent	to	p	is	8, 
so that  k < k�2, 2� < 8. (fig. (b)) 

When ℓ < 1,  
the points 1 � adjacent		to	p < �p=, p>� are 

�p= K 1, p>�, �p=, p> K 1�. 
 

Thus, the number of points 1 � adjacent	to	p 

is 4, so that  k < k�1, 2� < 4. (fig. (a)) 
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3. If   p ∈ 3N	�i. e. , n < 3� then  ℓ can take values 

	ℓ < 1, 2, 3. 

When  ℓ < 3, 
the points  3 � adjacent	to	p < �p=, p>, pN� are  
 

          �p= K 1, p>, pN�, �p=, p> K 1, pN�, �p=, p>, pN K 1�, 
 

�p= K 1, p> K 1, pN�, �p= K 1, p>, pN K 1�, 
 

�p=, p> K 1, pN K 1�, �p= K 1, p> K 1, pN K 1�. 
Thus, number of points 3 � adjacent	to	p is 

26,  

so that  k < k�3, 3� < 26. (fig. ( c )) 

When ℓ < 2, 
the points  2 � adjacent		to	p < �p=, p>, pN� 
are  
 

        �p= K 1, p>, pN�, �p=, p> K 1, pN�, �p=, p>, pN K 1�, 
 

�p= K 1, p> K 1, pN�, �p= K 1, p>, pN K 1�,	 
 

�p=, p> K 1, pN K 1�. 
Thus, 

number of points  2 � adjacent	to	p is 18,  

so that  k < k�2, 3� < 18. (fig. (b)) 

When  ℓ < 1, 
the points 1 � adjacent	to	p < �p=, p>, pN� are  
 

          �p= K 1, p>, pN�, �p=, p> K 1, pN�, �p=, p>, pN K 1�. 
 

Thus,  

the number of points 1 � adjacent	to	p is 6,  

so that  k < k�1, 3� < 6. (fig. (a)) 

 

 

 

 

 

 

 

In general to study nD digital image, if  

1 : ℓ : n then  k < k�ℓ, n� is given by the following 

formula [28] (see also [29, 30]). 

k�ℓ, n� < Q 2.RCCC.
.R=

CS.Rℓ
� � � �2.1.2� 

where  CC. < .!
�.RC�!C! 

Suppose 	X is a non-empty subset of  3., 1 : ℓ : n, 
k < k�ℓ, n�. Then �X, ℓ� is called a digital image with 

ℓ � adjacency (Rosenfeld [24]). We also say that  �X, ℓ� 
is called  nD digital image [25, 26, 27].  

  Suppose		p ∈ 3.			and			1 : ℓ : n. Then the 

digital  ℓ � neighborhood of 	p		in		3.	(See [24]) is the 

set 
 

Nℓ�p� < W	q	|	q	is	ℓ � adjacent	to	pX 
 

If  q	is	ℓ � adjacent	to	p then we say that  p		and		q are  

ℓ � neighbours. 
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Further, we write (See [15]) 
 

Nℓ
∗(p) = Nℓ(p) ∪ WpX 

 

Suppose  p, q ∈ ℤ  and  p ≤ q. Then the digital interval 

[23] is defined as 
 

[p, q]ℤ = Wr ∈ ℤ	|	p ≤ r ≤ qX 
 

A digital image X ⊂ ℤ. is said to be  ℓ − connected 

[23] if for every two points u, v ∈ X, there is a set  

Wu^, u=, … , u_X of points of digital image X such that  

u = u^, v = u_ and  uC		and		uC`=  are  ℓ − neighbours 

for  i = 0, 1, … , r − 1. 

Suppose  (X, ℓ^)  is a digital image of  ℤ.b, 

(Y, ℓ=)  is digital image of  ℤ.d and  T ∶ X ⟶ Y is a 

function. Then  

 

� T is said to be  (ℓ^, ℓ=) − continuous [3], 

if  ℓ^ − connected subsets E of  X are mapped into 

ℓ − connected subsets of   Y. 

i.e., E is ℓ^ − connected in  X   implies T(E) is 

ℓ= − connected in Y. 

 

� T  is  (ℓ^, ℓ=) − continuous if and only if the image 

of   ℓ^ − adjacent points of  X are either coincident 

or  ℓ= − adjacent	in	Y. 

i.e., u^, u= are  ℓ^ − adjacent  points of  X  then  

either  T(u^) = T(u=)		or		T�u^)	and	T�u=) are  

ℓ= − adjacent  in Y. 

 

� T  is called  (ℓ^, ℓ=) − isomorphism [5], if  T is 

(ℓ^, ℓ=) − continuous, onto and   TR=  is (ℓ=, ℓ^) −

continuous. 

In this case we write	X ≅(ℓb,ℓd) Y. 

2.2 Definition:  

 Suppose  m ∈ ℤ`, (X, ℓ) is a digital image in 

ℤ. and T ∶ [0, m]ℤ ⟶ X			is			�1, ℓ) − continuous.  

 Suppose u, v ∈ ℤ  are such that 	T�0� <
u		and		T�m) = v. Then we say that  T is a digital 

	ℓ − path	[3] from  u		to		v.  

 

 

Suppose m ≥ 4,  T ∶ [0, m − 1]ℤ ⟶ X is a  ℓ − path 

and the sequence Wk(l), k(m), … , k(n − m)X of images 

of the  ℓ − path is such that   T(i)		and		T�j)  are  

ℓ − adjacent if and only if  i = j ± 1(mod	m).  

Then we say that  T is a simple closed  ℓ − curve of  m  

points in the digital image (X, ℓ) [6]. 

 

2.3 Definition (Han [31]): Let  X ⊂ ℤ.,  d  be the Eu-

clidean metric on  ℤ.. (X, d) is a metric space. Suppose 

(X, ℓ) is a digital image with ℓ − adjacency then 

(X, d, ℓ) is called a digital metric space. 

 

2.4 Definition (Han [31]): We say that a sequence  Wx.X 

of points of the digital metric space (X, d, ℓ) is a Cauchy        

sequence if  there  is M ∈ ℕ such that, 

d(x., xq) < 1   for all  n, m > M. 
 

2.5 Note: 

Since  x., xq are lattice points of   ℤ., td(x., xq)u
>
 is a 

positive integer if  x. ≠ xq, and  d(x., xq) = 0 if  

x. = xq.  

Consequently, 
 

 

d(x., xq) < 1 ⟹ d(x., xq) = 0 ⟹ x. = xq. 

 

2.6 Theorem (Han [31]): For a digital metric space 

(X, d, ℓ), if a sequence  Wx.X ⊂ X ⊂ ℤ. is a Cauchy se-

quence, there is  M ∈ ℕ such that for all  n, m > M, we 

have  x. = xq. 

 

2.7 Definition (Han [31]): A sequence Wx.X of points of 

a digital metric space  (X, d, ℓ) converges to a limit 

L ∈ X	 if for all  ϵ > 0, there is  M ∈ ℕ such that  
 

 

d(x., L) < ϵ  for all  n > M, 

 

2.8 Proposition (Han [31]): A sequence  Wx.X of points 

of a digital metric space (X, d, ℓ) converges to a limit 

L ∈ X if there is  M ∈ ℕ  such that  x. = L  for all  

n > M.  

(i. e., x. = x.`= = x.`> = ⋯ = L). 
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2.9 Definition (Han [31]): A digital metric space 

(X	, d	, ℓ)  is complete if any Cauchy sequence  Wx.X 

converges to a point  L of  (X, d, ℓ). 

 

2.10 Theorem (Han [31]): A digital metric space  

(X, d, ℓ) is complete. 

 

2.11 Definition (Han [31]): Let 	�X, d, ℓ) be a digital 

metric space and  T ∶ 	 �X, d, ℓ) ⟶ (X, d, ℓ) be a self-

map. If there exists  λ ∈ [0, 1) such that, 
 

d(Tx, Ty) ≤ λd(x, y)					for	all		x	, y ∈ X	, 
 

then T is called a contraction map. 

 

2.12 Proposition (Han [31]): 

Every digital contraction map  T ∶ 	 �X, d, ℓ) ⟶ (X, d, ℓ) 

is ℓ − continuous	(Digital continuous). 

 

III. MAIN RESULTS 
 

First we introduce a notation. 

3.1 Notation: Let  Φ < Wφ ∶ [0,∞) ⟶	 [0,∞)} be such 
that  φ is increasing, 
     φ(t) < t			for			t > 0				and	φ(t) = 0			iff			t = 0. 
 

Now we prove a Lemma, which plays an important 

role in our further development. 

 

3.2 Lemma: Let  X ⊆ ℤ.  and  (X	, d	, ℓ) be a digital 

metric space. Then there does not exist a sequence {xq} 
of distinct elements in  X, such that  
 d(xq`=, xq) < d(xq, xqR=)			 

for		m = 1, 2, …− − − (3.2.1) 
 

Proof: We know that, 

 d(x=, x^) = √N  for some positive integer N, 

since d is Euclidean metric in X and  X ⊆ ℤ. for some 

positive integer n. 

Further, d(xq`=, xq) ≥ 1		or		0 

Lemma 3.2, (from (3.2.1)) 

 

d(xq`=, xq) < 1	 after N steps,  

so that,  d(xq`=, xq) = 0  for  m > N.  

Thus,   xq`= = xq   for   m > N. 

Consequently, the sequence  {xq}  is a finite sequence. 

 

3.3 Definition: Suppose (X, d, ℓ) is a digital metric 

space,  T ∶ X ⟶ X  and  φ	 ∈ 	Φ. Suppose  
 d(Tx, Ty) ≤ φtd(x, y)u				for	all		x	, y ∈ X. 

 

Then, T is called a digital  φ − contraction. 
 

 Now we prove a fixed point Theorem on  

φ − contraction. 
 

3.4 Theorem: Suppose 	(X, d, ℓ) is a digital metric 

space,  T ∶ 	X ⟶ X  and  φ	 ∈ 	Φ. Suppose  
 d(Tx, Ty) ≤ φtd(x, y)u				for	all		x, y ∈ X. 

 T  is digital  φ − contraction. Then, T has unique fixed 

point. 

Proof: Let x^ ∈ 	X.  

Write  x.`= = Tx.			for		n = 0, 1, 2, …. 
We may suppose that   	x. ≠ x.`=						for		n = 0, 1, 2, …. 
for otherwise  x.  is a fixed point. 

Now,   

d(x.`=, x.) = d(Tx., Tx.R=) 
   ≤ φtd(x., x.R=)u 
   < d(x.R=, x.) 
Therefore,   d(x.`=, x.) < d(x.R=, x.)				(∵ 	 x. ≠ x.R=) 
Therefore, 

 {d(x.`=, x.)}  is a strictly decreasing sequence. 

Therefore ,  x. = x.`= for large  n (by Lemma 3.2) 

Therefore,  x. is a fixed point of  T  for large  n. 

Suppose, 	x		and		y	 are fixed points of   T. 

Then,  

d(x, y) = d(Tx, Ty) ≤ φtd(x, y)u < d(x, y)				if	x ≠ y 
a contradiction.  

Therefore,  x = y. Thus T has unique fixed point. 
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3.5 Corollary: 

 (Banach Contraction Principle in Digital Metric Spaces) 

Let  (X, d, ℓ) be a digital metric space and  T ∶ X ⟶ X be 

such that  

d(Tx, Ty) ≤ λd(x, y)			for	all		x, y ∈ X 
 

and for some  λ ∈ [0, 1).		Then, T has unique fixed 

point. 
 

Proof:  Take  φ(t) = λt	 in the above Theorem 3.4. 

Then we get the result. 

 

3.6 Definition:  

Let  (X	, d	, ℓ) be a digital metric space, T ∶ X ⟶ X  and  

φ	 ∈ 	Φ. We say that  T is  φ − contractive  if   
 φtd(Tx, Ty)u < φtd(x, y)u		for	all			x	, y ∈ X, x ≠ y. 

 

3.7 Theorem: Suppose (X, d, ℓ) is a digital metric space,  

T ∶ X ⟶ X and  φ	 ∈ 	Φ. If  T  is  φ− contractive then 

T has unique fixed point. 
 

Proof: Let x^ ∈ X. 

Write 	x.`= = Tx.			for	n = 0, 1, 2…. 
We may suppose that 	x.`= ≠ x.				for		n = 0, 1, 2….  
for otherwise  x. is a fixed point. 

Now, 

φtd(x.`=, x.)u = φtd(Tx., Tx.R=)u < �td(x., x.R=)u 
    (∵ 	 x. ≠ x.R=) 
Thus,  {d(x.`=, x.)}	 is a strictly decreasing sequence. 

Therefore, x. = x.`= for large  n  (by Lemma 3.2) 

Therefore,  x.  is a fixed point of   T  for large n. 

Suppose, x		and		y		are fixed points  of  T. 

Then,  

φtd(x, y)u = φtd(Tx, Ty)u < φtd(x, y)u				if			x ≠ y 
so that,  d(x, y) < d(x, y)    a contradiction. 

Therefore,  x = y.  

Thus,  T  has unique fixed point. 

 

3.8 Definition: Let  X be a nonempty set, T ∶ X ⟶ X and  

α	 ∶ X	 × X ⟶ [0,∞). We say that  T is α − admissible 
if for all  x, y ∈ X, we have  

α(x, y) ≥ 1				 ⟹ 					α(Tx, Ty) ≥ 1 

 

3.9 Definition: 

Let (X, d, ℓ) be a digital metric space and let  T:	X	 ⟶ 	X 

be a digital − α − ψ − φ −contractive type mapping if 

there exist three functions α ∶ X	 × X ⟶ [0,∞) and  

ψ,φ	 ∈ 	Φ such that 
 α(x, y)ψtd(Tx, Ty)u ≤ ψtd(x, y)u − 	φtd(x, y)u 

    for	all		x	, y	 ∈ X. 

3.10 Theorem:  

Let (X, d, ℓ) be a digital metric space and let  T: X	 ⟶ 	X 

be a digital − α − ψ − φ − contractive type mapping. 

Suppose T satisfies the following conditions 

(i) T is α − admissible; 
(ii)  there exists  x^ ∈ 	X such that  α(x^, Tx^) ≥ 1; 

Then 

       (iii) T has a fixed point. 

        (iv) If further 	u	, v are fixed points of  T with  

α(u, v) ≥ 1 − − − −(3.10.1) 
then  u = v. It is in this sense  T has unique fixed point.  

Proof: Let  x^ ∈ 	X be such that  α(x^, Tx^) ≥ 1. 

Define the sequence  {x.}  in X  by  
 x.`= = Tx. = T.`=x^    for all  n ≥ 0.  

 

Since T is  α − admissible, we have 
 α(x^, x=) = α(x^, Tx^) ≥ 1 
 ⟹ 	α(x=, x>) = α(Tx^, Tx=) ≥ 1 
 
Inductively, we have   
  α(x., x.`=) ≥ 1				for	all		n = 0, 1, 2, …. 
 

If  x^ = x= then  x^ = x= = Tx^ so that  

x^ is a fixed point of  T. 

Hence, we may suppose that  x^ ≠ x=. 
Inductively assume that  

x.R= ≠ x.		for	n = 1, 2, … 

Then, ψtd(x., x.`=)u = ψtd(Tx.R=, Tx.)u 
 
  ≤ α(x.R=, x.)ψtd(Tx.R=, Tx.)u 
 
  ≤ ψtd(x.R=, x.)u − φtd(x.R=, x.)u 
 
  < ψtd(x.R=, x.)u   (∵ 	 x.R= ≠ x.) 
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Thus, 

ψtd(x., x.`=)u < ψtd(x.R=, x.)u						(∵ 	 x.R= ≠ x.) 
Hence, 
 d(x., x.`=) < d(x.R=, x.) − − − −(3.10.2) 
    (∵ 	ψ	is	increasing) 
This is true for  n = 1, 2, … 

Thus, {x.} is a sequence of distinct elements satisfying 

(3.10.2). This contradicts Lemma 3.2.  

Hence  {x.}  is finite sequence, say  x^, x=, … , x�. 
Then, x�`= = x�,   so that  x� is a fixed point. 

Suppose, 

u		and		v	 are fixed points of  	T  with	α(u, v) ≥ 1.  

Suppose 	u ≠ v. 
Then, ψtd(u, v)u = ψtd(Tu, Tv)u 
 

  ≤ α(u, v)	ψtd(Tu, Tv)u 
 

  	≤ ψtd(u, v)u − 	φtd(u, v)u 
 

  < ψtd(u, v)u												if		u ≠ v 
a contradiction. 

Therefore,  u = v. 
Therefore,  T has unique fixed point. 

 

3.11 Example: Let X = [0,∞) be the digital metric 

space with 1 − adjacency,Thus X = {0, 1, 2, … } and 

d(x, y) = |x − y| for all x	, y ∈ X. 

Consider the self mapping 	T ∶ 	X ⟶ X  given 

	T(x) = x(x − 1). 
Define α ∶ X × X ⟶ [0,∞) as  α = �2,			if		x, y	 ∈ [0, 1]	0,										otherwise  

Then T  has  α − admissible. 
Define the mapping   

ψ	, φ ∶ [0,∞) ⟶ [0,∞)			by		ψ(t) = t,			φ(t) = 12 t 
T  is a  α − ψ − φ− 	contractive type mapping with  

ψ(t) = t, φ(t) = =
> t			∀		t ≥ 0	. 

α(x, y)	ψtd(Tx, Ty)u ≤ ψtd(x, y)u − 	φtd(x, y)u 
    for		x, y ∈ X 

Therefore, 	T  has two fixed points 	0		and		2. 

T  Satisfies all the hypothesis of  Theorem 3.10. 

This example shows that,  if  (3.10.1)  is violated. 

 

T  may not have unique fixed point.  

Since in this case  u = 0		and	v = 2 are two fixed points 

of  T, but  α(u, v) ≥ 1. 

 

3.12 Theorem: Let (X, d, ℓ) be a digital metric space, 

T ∶ X ⟶ X  be a mapping and α ∶ [0,∞) ⟶ [0,∞). 
Suppose  

1) T	 is a α − admissible, 
2) there exist  x^ ∈ X such that 	α(x^, Tx^) ≥ 1, 

3) T  is digital contiuous, 

4) α(x, y)	ψtd(Tx, Ty)u ≤ ψtM(x, y)u − φtM(x, y)u 
where M(x, y) = 

max �d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]� 
for	all		x, y ∈ X − − − (3.12.1) 

Then T has a fixed point. If further  u	, v  are two fixed 

points of 	T with α(u, v) ≥ 1 then u = v. It is in this 

sense, T has unique fixed point. 

Proof: Let  x^ ∈ X such that  α(x^, Tx^) ≥ 1. 

Define the sequence  {x.}  in Xby  
 x.`= = Tx. = T.`=x^				for	all	n = 0, 1, 2, … 
 

Since T  is a  α − admissible, we have  
 α(x^, x=) = α(x^, Tx^) ≥ 1	 
 ⟹ 	α(x=, x>) = α(Tx^, Tx=) ≥ 1 
 
Inductively,  we have  
 α(x., x.`=) ≥ 1				for	all		n = 0, 1, 2, …. 
 

If  x^ = x= then  x^ = x= = Tx^ so that 

x^ is a fixed point of  T. 

Hence, we may suppose that  x^ ≠ x=. 
Inductively, assume that  x.R= ≠ x.  for  n = 1, 2, … 

Then,   

 ψtd(x., x.`=)u 		= 	ψtd(Tx.R=, Tx.)u 
  ≤ α(x.R=, x.)	ψtd(Tx.R=, Tx.)u 
  ≤ ψtM(x.R=, x.)u − φtM(x.R=, x.)u 
  ≤ ψ(max{d(x.R=, x.), d(x., x.`=)}) 

	−		φ(max{d(x.R=, x.), d(x., x.`=)}) 
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Let  d(x.R=, x.) = A		and		d(x., x.`=) = B 

Therefore,  ψ(B) ≤ ψ(max{A, B}) − φ(max{A, B}) 
Suppose,  A ≤ B then 

ψ(B) ≤ ψ(B) − φ(B) ⟹ φ(B) ≤ 0 

          ⟹φ(B) = 0 

          ⟹ B = 0 

          ⟹ d(x., x.`=) = 0 

          ⟹	x. = x.`= 
a contradiction. 

Therefore,  B < A 

Therefore,  d(x., x.`=) < d(x.R=, x.).   
This is true for  n = 1, 2, … 

Therefore, by Lemma 3.2,  {x.}  is a finite sequence. 

Thus, there exist N such that   x�`= = x� 

Therefore,  x� is a fixed point of  	T. 

Suppose, 

u		and	v	are fixed points of  	T with  	α(u, v) ≥ 1.  

Suppose 	u ≠ v. 
Then, ψtd(u, v)u = ψtd(Tu, Tv)u 
 

  ≤ α(u, v)	ψtd(Tu, Tv)u 
 

  ≤ ψtM(u, v)u − 	φtM(u, v)u 
 

  ≤ ψtd(u, v)u − φtd(u, v)u		if		u ≠ v 
Therefore, 	ψtd(u, v)u 	≤ 	ψtd(u, v)u − φtd(u, v)u 

 

Therefore,  φtd(u, v)u < 0 

a contradiction.  

Therefore,  u = v. 
Therefore,  T has unique fixed point. 

 

3.13 Theorem: Let 	(X, d, ℓ) be a digital metric space,  

T ∶ X ⟶ X	 such that  
 d(Tx, Ty) < M(x, y)				for	all		x, y ∈ 	X, 

                                        x ≠ y − −(3.13.1) 
 

where M(x, y) = max �d(x, y), d(x, Tx), d(y, Ty),=
> [d(x, Ty) + 	d(y, Tx)] � 

    for	all		x, y ∈ X. 

Then, T has unique fixed point. 

 

 

Proof: Let x^ ∈ 	X. 

Write  x.`= = Tx.			for			n = 0, 1, 2, …. 
We may suppose that  x. ≠ x.`=					for			n = 0, 1, 2, …. 
for otherwise  x. is a fixed point. 

Now,  d(x., x.`=) = d(Tx.R=, Tx.) 
 
       < M(x.R=, x.) 
 
      	= max{d(x.R=, x.), d(x., x.`=)} 
 
Hence,  d(x., x.`=) < d(x.R=, x.)						for	all	n = 1, 2, …. 
Hence, by Lemma 3.2, 

T  has a fixed point. Clearly, fixed point is unique. 

 

3.14 Corollary: Let	(X, d, ℓ) be a digital metric space,  

T ∶ X ⟶ X be a mapping and   φ	 ∈ 	Φ. Suppose 
 

ψtd(Tx, Ty)u < φtM(x, y)u			for	all		x	, y ∈ X,					x ≠ y 
 

M(x, y) = max �d(x, y), d(x, Tx), d(y, Ty),12 [d(x, Ty) + 	d(y, Tx)] � 
   for	all		x	, y ∈ X. 

 

Then, T has unique fixed point. 

 

3.15 Example: Let X = {0, 1, 2, … }, d(x, y) = |y − x| 
and  (X, d, 1) is a digital metric space in ℤ with 1 −
adjacency. DefineT ∶ X ⟶ X		by		Tx = x + 1. Then, 
 

d(Tx, Ty) < max �d(x, y), d(x, Tx), d(y, Ty),	d(x, Ty), d(y, Tx) �	 , x ≠ y 
for	all	x	, y ∈ X − − − (3.14.1) 

 

Solution: Given X = {0, 1, 2, … } with d(x, y) = |y − x| 
(X	, d	, 1)		is a digital metric space in ℤ with 1 −
adjacency and  Tx = x + 1			and			Ty = y + 1 
 

Therefore,     d(Tx, Ty) = |y + 1 − x − 1| = |y − x| 
 max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} 
 

 = max �|y − x|, |x + 1 − x|, |y + 1 − y|,|y + 1 − x|, |x + 1 − y| � 
 = max{|y − x|, 1, 1, |y − x + 1|, |x − y + 1|} 
 

 = y − x + 1					if		x < y 
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Therefore, (3.14.1) holds. 

But, 	T  dose not have any fixed point. 

Note: This example shows that Theorem 3.13 may not 

hold if we replace (3.13.1) by (3.14.1) 
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