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Abstract— In numerical analysis, explicit and implicit 

approaches are used to obtain numerical approximations 

of time dependent ordinary and partial differential 

equations. Fractional order differential equations are 

used widely for finance market analysis. Implicit solution 

methods require more computational efforts and are 

complex to program. In order to overcome these 

difficulties, explicit method for fractional order 

differential equation has been introduced which is one of 

the most recently developed areas in the world of finance. 

The main aim of this paper is to investigate stability of 

Fractional Explicit method for qth order time fractional 

Black-Schols equation by the well known Fourier analysis 

method and a numerical experiment is presented for 

comparison of European call option prices for different 

values of ‘q’.  

 

         Keywords— Fractional calculus; Fractional 

Explicit Method; stability; European call options; time 

fractional Black-Schols equation; Fourier analysis. 

I. INTRODUCTION 

  In Numerical analysis, the use of Fractional 

calculus is increasing day by day. The field of 

fractional calculus is not new for mathematicians. It 

is as old as in the year 1695 , when L‘Hopital sent a 

letter to Leibniz  asking  him  an important question 

about the order of the derivative, ― What would be 

the result if order of derivative is  ½?‖. Leibniz 

replied in a predictive way , ―An apparent paradox, 

from which one day useful consequences will be 

drawn‖. In these words Leibniz was farseeing the 

beginning of the area which is now called as 

Fractional Calculus. Fractional calculus is the branch 

of mathematics which is felicitous for non integer 

powers of the differentiation operator. The arbitrary 

order derivatives are called as differ-integrals. A 

number of textbooks [15], [18], [22] have been 

published in this field with various aspects in various 

ways. The non integer order of differential operator 

was first introduced by [12]. Also, [7], [19],[1], [13], 

made important contributions in the field. They 

defined and developed fractional integral and 

differentiation. Podlubny[18] shows that the 

geometric interpretation of fractional integration is 

―shadows on the walls‖ and its physical 

interpretation is ―shadows of the past.‖ [3]. 

     Numerical approaches to different kinds of 

fractional diffusion models have been increasingly 

noticeable in literature. Huang [10], investigate the 

time fractional diffusion equation in whole space 

and also in half space. Zhuang[30] approximated the 

time fractional diffusion equation by implicit finite 

difference method. Sousa [2] derived a second order 

numerical method for the fractional advection 

diffusion equation which is explicit and also 

analyzed the convergence of the numerical method 

through the consistency and the stability. Meerchaert 

[14] considered the stochastic solution of space-time 

fractional diffusion equation. Acedo [2] and Yuste 

[27] introduced an explicit scheme and weighted 

average finite difference methods for the fractional 

diffusion equation and analyzed these two scheme‘s 

stability by Von Neumann method. Zhuang [30] 

presented a new way for solving sub-diffusion 

equation by integration of the equation on both sides 

to obtain an implicit finite difference method. 

Stability and convergence of the scheme were 

proved by the energy method. Riesz[21], Riesz[20] 

proved the mean value theorem for fractional 

integrals and introduced another formulation that is 

associated with the Fourier transform. Murio [16] 

established implicit finite difference approximation 

for time fractional diffusion equations but in 

showing stability of the method by Fourier method 

he made some aw. The stability of implicit finite 

difference approximation for time fractional 

diffusion equations were shown by Ding[6]. Chen[4] 

constructed the difference scheme for fractional sub 

diffusion equation based on Grunwald-Letnikov 

formula and showed the stability and convergence of 

the difference scheme using the Fourier method. 

Zhang[28]  presented the unconditionally stable 

finite difference method for fractional partial 

differential equation. Chen[5] showed finite 

difference method for the fractional reaction-sub-

diffusion equation. Singh[23] solved the bioheat 

equations by finite difference method and homotopy 

perturbation method. 

    This paper is arranged in different sections. 

After introduction 1, the next section 2, will review 

the working of Fractional Explicit method. Section 3 

is based on the stability analysis of the method. In 

section 4, there is a numerical experiment analyzing 

the performance of Fractional Explicit method for 
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different values of ‗q‘. Data for this experiment is 

taken from historical data section of NSE website of 

jet airways of the period from 1
st
 November 2016 to 

30
th 

November 2016. Graphical representation is 

given for the more precise comparison. Finally in 

section 5 there is concluding remarks for the study. 

 

 

II. FRACTIONAL EXPLICIT METHOD 

 
Fractional Explicit method was proposed by [9]. It is 

observed by adjusting method and Fractional 

Explicit method both agree. Fractional explicit 

method is derived using explicit method which is the 

most popular one within finite difference methods. 

Basic idea behind each finite difference method is to 

replace partial derivatives in the PDE by finite 

difference approximations and solving the resulting 

system of equations from Riez[21], Lateef[11] and 

U𝐺 ur [26]. All finite difference method involves 

similar four step process: 

 Discretize the appropriate differential 

equation. 

 Specify a grid of stock price and time. 

 Calculate the payoff of the option at 

specific boundaries of the grid of 

underlying prices. 

 Iteratively determine the option price at all 

other grid points, including the point for the 

current time and underlying price (i.e. the 

option price today).  

 

Now For Fractional Explicit method consider the q
th 

order time fractional Black Scholes Equation: 

 

𝜕𝑞𝑉

𝜕𝑡𝑞
 +

1

2
𝜍2𝑆2

𝜕2𝑉

𝜕𝑆2
+  𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 

 … (1) 

The boundary conditions for European call option 

can be given as: 

Final condition:    

 V(S, t) = max(S−𝐸, 0), S > 0 

Boundary condition as:       

   V (𝑆𝑚𝑖𝑛  , t) = 0,  

  V (𝑆𝑚𝑎𝑥  , t) = S−E𝑒−𝑟(𝑇−𝑡) , 

Where K is a strike price and 𝑆𝑚𝑖𝑛  and 𝑆𝑚𝑎𝑥  

represents the minimum and maximum values of 

stock price. Now first we will divide the domain S 

and t into N and M parts from [9]. 

 

∆𝑡 =
𝑇−𝑡0

𝑀
                                         for 𝑡0 ≤ 𝑡 ≤ 𝑇   

                                                                                                  

∆𝑆 =
𝑆𝑚𝑎𝑥 −𝑆𝑚𝑖𝑛

𝑁
                     for 𝑆𝑚𝑖𝑛 ≤ 𝑆 ≤ 𝑆𝑚𝑎𝑥  

 

The computational domain is discretized by a 

uniform grid (𝑆𝑘 , 𝑡𝑖), with  𝑆𝑘 = 𝑘( 𝑘 = 0,1, , … , 𝑁)  

and  𝑡𝑖 = 𝑖 𝜏 (𝑖 = 0,1, … . , 𝑀) . On making some 

arrangements S and t are obtained as 

                                                                                                       

𝑡𝑖 = 𝑡0 + 𝑖∆𝑡for 𝑖 = 0,1, … , 𝑀   

𝑆𝑘 = 𝑆𝑚𝑖𝑛 + 𝑘∆𝑆for 𝑘 = 0,1, … , 𝑁 
 
For the notation of points (𝑆𝐾 , 𝑡𝑖 ), we denote the 

approximation of option price as 

 

V (𝑆𝐾 , 𝑡𝑖) ≈ 𝜔𝑘
𝑖  

 
Also the final and boundary conditions for European 

call option in terms of  𝜔𝑘 ,𝑖 , M and N are given by 

[9], 

 
𝜔𝑘

𝑀 ≈ max (𝑆𝑘 − 𝐸, 0), S > 0     𝜔0
𝑖   ≈ 0         …(2)                                                                                                      

                                                                                                                                                                                                                                                        

𝜔𝑁
𝑖  ≈ 𝑆𝑁 −E𝑒−𝑟 𝑡𝑀−𝑡𝑖  

Next we have to discretize the q
th 

order time 

fractional Black Scholes Equation. For which we 

have to replace all the partial derivatives as follows: 

 

𝜕𝑉(𝑆𝐾 , 𝑡𝑖)

𝜕𝑆𝑘

≈
𝜔𝑘+1

𝑖 − 𝜔𝑘−1
𝑖

2∆𝑆
 

𝜕2𝑉(𝑆𝐾 , 𝑡𝑖)

𝜕𝑆𝑘
2 ≈

𝜔𝑘+1
𝑖 − 2𝜔𝑘

𝑖 + 𝜔𝑘+1
𝑖

(∆𝑆)2
 

The approximation for q-th order time fractional 

derivative of V (𝑆𝐾 , 𝑡𝑖)  can be stated as the sum 

differences with the coefficients 𝑔𝑗   as given in [9]. 

 

𝜕𝑞𝑉

𝜕𝑡𝑞 =
1

 ∆𝑡 𝑞
 𝑔𝑗 𝜔𝑘

𝑖−𝑗𝑖
𝑗 =0                                   ...(3) 

 

Where 𝑔𝑗  is the function of gamma functions of q 

and j, 

𝑔𝑗 =
 (𝑗 − 𝑞) 

 (−𝑞) (𝑗 + 1)   
= (−1)𝑗  

𝑞

𝑗
 ,     𝑗 = 0,1,2, .. 
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On substituting all the derivatives in (1) and making 

some arrangements and simplification we will get, 

 

 𝑔𝑗 𝜔𝑘
𝑖−𝑗

=𝑖
𝑗 =1 ∝𝑘 𝜔𝑘−1

𝑖 + 𝛽𝑘𝜔𝑘
𝑖 + 𝛾𝑘𝜔𝑘+1

𝑖      ...(4) 

 

for i = M, M-1,.....,1 and k = 1,.....N-1 and  the terms  

∝𝑘  𝛽𝑘  and 𝛾𝑘  

are as follows:   

∝𝑘= −
1

2
 ∆𝑡 𝑞  𝜍2  

𝑆𝑘

∆𝑆
 

2

− 𝑟
𝑆𝑘

∆𝑆
  

𝛽𝑘 =  ∆𝑡 𝑞  𝜍2  
𝑆𝑘

∆𝑆
 

2

+ 𝑟 − 1 

               𝛾𝑘 = −
1

2
 ∆𝑡 𝑞  𝑟

𝑆𝑘

∆𝑆
+ 𝜍2  

𝑆𝑘

∆𝑆
 

2

       ...(5) 

 

For q =1, it can be recursively evaluated from [8] 

𝑔0 = 1,     𝑔𝑗 =  1 −
𝑞 + 1

𝑗
 𝑔𝑗−1, 𝑗 = 1,2, .. 

Consequently  𝑔1 = −1   and  𝑔𝑗 = 0   for  𝑗 =

2,3, …                                                                  ...(6)   

 Now for i =1, equation (4) can be written as, 

𝑔1𝜔𝑘
0 =∝𝑘 𝜔𝑘−1

1 + 𝛽𝑘𝜔𝑘
1 + 𝛾𝑘𝜔𝑘+1

1  

For i≥ 2, 

 𝑔𝑗 𝜔𝑘
𝑖−𝑗

=𝑖
𝑗 =1 ∝𝑘 𝜔𝑘−1

𝑖 + 𝛽𝑘𝜔𝑘
𝑖 + 𝛾𝑘𝜔𝑘+1

𝑖                                                

                                                                    …(7) 

Now we are going to check the stability and 

convergence of these two equations in the next 

sections from [9] and [24]. 

 
III. STABILITY ANALYSIS 

 

A finite difference approximation is said to be stable 

if the errors (truncation, round-off etc) decay as the 

computation proceeds from one marching step to the 

next. Stability of a finite difference approximation is 

assessed using Von-Neumann stability analysis. To 

analyse stability, first we have to analyse a generic 

component of the solution. For this, let  𝜇𝑘
𝑖   is the 

approximate solution of (7), then we define the 

round off error as defined in [24]. 

 

∈𝑘
𝑖 = 𝜔𝑘

𝑖 −𝜇𝑘
𝑖  

Which satisfies  (7) as follows, 

 

𝑔1𝜖𝑘
0 =∝𝑘 𝜖𝑘−1

1 + 𝛽𝑘𝜖𝑘
1 + 𝛾𝑘𝜖𝑘+1

1  

 𝑔𝑗 𝜖𝑘
𝑖−𝑗

 =

𝑖

𝑗 =1

∝𝑘 𝜖𝑘−1
𝑖 + 𝛽𝑘𝜖𝑘

𝑖 + 𝛾𝑘𝜖𝑘+1
𝑖  

                   ….(8) 

Where ∝𝑘  𝛽𝑘  and 𝛾𝑘  are given in (5) 

 

𝑖 = 𝑀, 𝑀 − 1, . . ,1   𝑘 = 1,2, … . , 𝑁 − 1 
 

𝜖0
𝑖 = 𝜖𝑁

𝑖 = 0,        𝑖 = 0, … , 𝑀 
 
Now we define grid function as, in [24] 

 

𝜖𝑖 𝑆 

=  
𝜖𝑘

𝑖     𝑤𝑒𝑛 𝑠𝑘 −


2
< 𝑆 ≤ 𝑆𝑘 +



2
,   𝑘 = 1, … , 𝑁 − 1

0             𝑤𝑒𝑛 0 ≤ 𝑆 ≤


2
 𝑜𝑟 𝑆𝑚𝑎𝑥 −



2
< 𝑆 ≤ 𝑆𝑚𝑎𝑥

  

 

Then we can define 𝜖𝑖 𝑆  in a fourier series as: 

 

𝜖𝑖 𝑆 =  𝜌𝑖(𝑙)
𝑙=∞
𝑙=−∞ 𝑒𝐼2𝜋𝑙𝑆 /𝑆𝑚𝑎𝑥  , i= 1, 2, ...., M 

 
 

Where 𝜌𝑖 𝑙 =
1

𝑆𝑚𝑎𝑥
 𝜖𝑖(𝑆)

𝑆𝑚𝑎𝑥

0
𝑒−𝐼2𝜋𝑙𝑆 /𝑆𝑚𝑎𝑥 ds 

 

Let ,             𝜖𝑖 =  𝜖1
𝑖 , 𝜖2

𝑖 , … , 𝜖𝑁−1
𝑖  

𝑇
 

 

 𝜖𝑖 
2

=    𝜖𝑘
𝑖  

2
𝑁−1

𝑘=1

 

1/2

=    𝜖𝑖(𝑆) 
2
𝑑𝑆

𝑆𝑚𝑎𝑥

0

 

1/2

 

 

Using Parseval‘s equality: 

 

  𝜖𝑖 𝑆  
2
𝑑𝑆 =   𝜌𝑖 𝑙  

2,

∞

𝑙=−∞

𝑆𝑚𝑎𝑥

0

 

 
From above results we can write, 

 𝜖𝑖 
2

2
=   𝜌𝑖(𝑙) 

2∞
𝑙=−∞               ….(9) 

 

Based on the above analysis, we can suppose that the 

solution has the following form: 

 

𝜖𝑘
𝑖 = 𝜌𝑖𝑒

𝐼𝜗𝑘 , 

where 𝜗 = 2𝜋𝑙/𝑆𝑚𝑎𝑥 , I=  −1 

 

on substituting above result in (8), 

 

𝑔1𝜌0𝑒𝐼𝜗𝑘 =∝𝑘 𝜌1𝑒𝐼𝜗(𝑘−1) + 𝛽𝑘𝜌1𝑒𝐼𝜗𝑘

+ 𝛾𝑘𝜌1𝑒𝐼𝜗(𝑘+1)  

 𝑔𝑗 𝜌𝑖−𝑗 𝑒
𝐼𝜗𝑘  =

𝑖

𝑗 =1

∝𝑘 𝜌𝑖𝑒
𝐼𝜗(𝑘−1) + 𝛽𝑘𝜌𝑖𝑒

𝐼𝜗𝑘

+ 𝛾𝑘𝜌𝑖𝑒
𝐼𝜗(𝑘+1)  

 On simplifying above equations we obtain, 

𝑔1𝜌0 = 𝜌1𝜑𝑘 ,1 
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 𝑔𝑗 𝜌𝑖−𝑗 =𝑖
𝑗 =1 𝜌𝑖𝜑𝑘 ,𝑖            ….(10) 

Where 

𝜑𝑘 ,1 = −1 + (∆𝑡)𝑞  𝜍2  
𝑆𝑘

∆𝑆
 

2

 1 − cos(𝜗 

+ 𝑟  1 −  
𝑆𝑘

∆𝑆
 𝐼𝑠𝑖𝑛(𝜗   

𝜑𝑘 ,𝑖 = −1 + (∆𝑡)𝑞  𝜍2  
𝑆𝑘

∆𝑆
 

2

 1 − cos(𝜗 

+ 𝑟  1 −  
𝑆𝑘

∆𝑆
 𝐼𝑠𝑖𝑛(𝜗   

 

Proposition 1: Supposing that 𝜌𝑖  (𝑖 = 1,2 … . . , 𝑀) 

be the solution of (8) then we have  𝜌𝑖 ≤  𝜌0  (i = 

1,2,…,M). 

Proof : .  We will use mathematical induction to 

complete the proof. 

 For k=1, using results given in (6) from first 

equality of (10) gives  

 𝜌1 =
 𝑔1 

 𝜑𝑘 ,𝑖 
 𝜌0  

                                     ≤  𝜌0                                                               

[Using (6)] 

If                            𝜌𝑖−1 ≤  𝜌𝑖  , 

Then from the second equality of (8), we obtain      

 

 𝜌𝑖 ≤  
  𝑔𝑗

𝑖
𝑗 =1  

 𝜑𝑘 ,𝑖 
 𝜌𝑖−𝑗   

                                 ≤  
 𝑔1𝜌0 +  𝑔𝑗 𝜌𝑖−𝑗

𝑖
𝑗 =2  

 𝜑𝑘 ,𝑖 
 

                                  ≤  𝜌0         

                                                                            

[Again using (6)]     

This completes the proof.                                                                            

. 

Theorem 1: The fractional explicit scheme given in 

(4) is unconditionally stable. 

 

Proof: . By applying proposition 1 and observing (9), 

we obtain 

 𝜖𝑖 
2

≤  𝜖0 2      i= 1, 2...  M 

which proves that Fractional Explicit scheme is 

unconditionally stable. 

 

 

 

 

IV.  NUMERICAL EXPERIMENT 

 
In this section we are going to compare European 

call option prices for different values of ―q‖ by 

fractional explicit method and Black schols method. 

Results are compared with the help of graphs. For 

this comparison we have taken real market data of 

jet airways from 1
st
 November 2016 to 30

th
 

November 2016 of National Stock Exchange 

(NSE).We have chosen data in such a way that the 

number of contracts at each point are near to 100 or 

more than 100 from [17].We have consider a 

European call option with exercise price E= 500, 

risk free rate =0.1, volatility= 0.18.Variation of 

Stock price and time to maturity is given above each 

table. 

TABLE 1 

     Results for different values of q for Stock price 

S=456.7 & time to maturity t =0.055556 by Fractional 

Explicit Method 

 

Fig 1: Representation of Table 1 

 

 

 

 

 

 

 

q Fractional Explicit 

Method 

1.05 1.5835 

1.1 1.5808 

1.15 1.5787 

1.2 1.5770 

1.25 1.5756 

1.3 1.5746 

1.35 1.5738 

1.4 1.5731 

1.45 1.5726 

1.5 1.5722 
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TABLE  2 

         Results for different values of q  for Stock price 

S=435.8 & time to maturity t =0.05158 by Fractional 

Explicit Method 

   

                         Fig 2: Representation of Table 2 

TABLE  3 
 

Results for different values of q for Stock price 

S=435.15 & time to maturity t =0.04761 by Fractional 

Explicit Method 

 

Fig 3: Representation of Table 3 

TABLE 4 

 
       Results for different values of q  for Stock price 

S=437.2 & time to maturity t =0.043651 by Fractional 

Explicit Method 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig 4: Representation of Table 4 

 

 

 

 

 

 

  q Fractional Explicit 

Method 

1.05 0.9374 

1.1 0.9339 

               1.15 0.9312 

1.2 0.9290 

1.25 0.9273 

1.3 0.9260 

1.35 0.9249 

1.4 0.9241 

1.45 0.9234 

1.5 0.9229 

Q Fractional Explicit 

Method 

1.05 0.8490 

1.1 0.8459 

1.15 0.8435 

1.2 0.8417 

1.25 0.8402 

1.3 0.8391 

1.35 0.8382 

1.4 0.8375 

1.45 0.8369 

1.5 0.8365 

q Fractional Explicit 

Method 

1.05 0.8215 

1.1 0.8190 

1.15 0.8171 

1.2 0.8155 

1.25 0.8144 

1.3 0.8134 

1.35 0.8127 

1.4 0.8121 

1.45 0.8117 

1.5 0.8114 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 3 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 173 

TABLE 5 

 
Results for different values of q for Stock price 

S=424.95 & time to maturity t =0.031746 by Fractional 

Explicit Method 

 

 

Fig 5: Representation of Table 5 

 

     Discussion of results:   
    In this experimental study we have taken real 

market data of  jet airways from 1
st
 November to 30

th
 

November 2016 from NSE website[17].We have 

five stock prices and for each stock price, we have 

ten different values of q. We have calculated 

european call option prices with the help of  the 

software MATLAB for Fractional Explicit Method. 

Results are given in following tables .Graphical 

representation of each table is given in opposite 

space of each table. 

 

V. CONCLUSION 

 

       Stability of Fractional Explicit method is 

investigated in this study.
 

Several authors have 

discussed about the stability of implicit finite 

difference method. But due to huge amount of 

computation and complex coding, interest is moving 

towards explicit method. Fourier analysis is 

employed to investigate the stability of Fractional 

Explicit method and we found that the method is 

unconditionally stable. Also, we have taken a 

numerical data from NSE to compare the European 

call option prices for different values of q and found 

that there is not much difference in the results by 

change in q. Comparison is shown with the help of 

graph .For more precise comparison ,we can make a 

single graph for the data then we found that there is 

no difference among all the values due to 

overlapping in the graph. Also in future fractional 

explicit method may be applied to other fractional 

PDEs and can be used to find solutions of other 

problems. Also one can derive fractional version of 

Implicit and Crank Nicolson method for pricing 

Option. 
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