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Abstract: If R is a commutative ring, 𝑍(𝑅) is the set 

of zero-divisor of 𝑅 and 𝑍∗(𝑅) = 𝑍(𝑅) − {0}, then the 

zero-divisor graph of R, Γ (Z*(𝑅)) usually written as 

𝛤(𝑅), is the graph in which each element of Z*(𝑅) is 

a vertex and two distinct vertices x and y are adjacent 

if and only if 𝑥𝑦 = 0. In this paper we present a 

construction of zero divisor graphs of rings. In 

particular we consider ring of Gaussian integers 

modulo n, i.e. 𝛤 ℤ𝑛  [𝑖]. 

Keywords: Bipartite graph, Complete bipartite 

graph, Girth of a graph, Ring of Gaussian integers 

modulo n, Zero-divisor.  

I. Introduction 

The zero-divisor graph was first introduced 

by Beck (1988)[1] in the study of commutative rings. 

According to him, given a ring 𝑅, 𝐺(𝑅) denote the 

graph whose vertex set is 𝑅, such that distinct vertices 

𝑟 and 𝑠 are adjacent provided that 𝑟𝑠 = 0. By Beck’s 

definition, the zero vertex is adjacent to every other 

element of the ring, so the graph 𝐺(𝑅) is connected 
with diameter at most 2. He conjectured that the 

chromatic number of a ring i.e., the minimal number 

of colours necessary to colour the ring’s graph such 

that no two adjacent elements have the same colour, is 

equal to the size of the largest complete subgraph of 

the graph i.e., the largest subgraph G such that for all 

vertices a, b in G, a is adjacent to b.  

After that Anderson and Livingston (1999) 

[2] studied on zero divisor graphs on commutative 

ring. According to them, the vertices of zero divisor 
graph are the non-zero zero-divisor of the ring. That is 

if R is a commutative ring, 𝑍 𝑅  is the set of zero-

divisor of 𝑅 and Z* 𝑅 = 𝑍 𝑅 −  0 , then the zero-

divisor graph of R, Γ(Z*(R)), usually written as Γ(R), 

is the graph in which each element of Z* 𝑅  is a 

vertex and two distinct vertices x and y are adjacent if 

and only if 𝑥𝑦 = 0. They prove that if R is a 

commutative ring, then the zero divisor graph,  𝛤 𝑅  

is connected and diam 𝛤 𝑅  ≤ 3, where 

𝑑𝑖𝑎𝑚 𝛤 𝑅  = 𝑠𝑢𝑝{𝑑(𝑥, 𝑦): 𝑥, 𝑦 𝑎𝑟𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝛤} 

is the diameter of a graph G and 𝑑(𝑥, 𝑦) is the length 

of the shortest path from 𝑥 to 𝑦.  

S. Akbari, H.R. Maimani and S. Yassemi [3] 

conducted a study “When a zero-divisor graph is 

planar or a complete r-partite graph” (An r-partite 

graph is one whose vertex set can be partitioned into r 

subsets so that no edge has both ends in any one 

subset). They give a result that if R is a local ring with 

at least 33 elements and 𝛤(𝑅) ≠ ∅, then 𝛤(𝑅) is not 

planar. 

J. Warfel (2004) [4] conducted study on zero 

divisor graphs for direct products of commutative 

rings. In his study, he examines the preservation of the 

diameter of the zero divisor graph of polynomial and 

power series rings. 

F. DeMeyer, L. DeMeyer (2004) [5] studied 

on the zero divisor graph of a commutative semigroup 

with zero is a graph whose vertices are the non-zero 

zero divisors of the semigroup, with two distinct 

vertices joined by an edge if their product in the 

semigroup is zero.  

S. Akbari, A. Mohammadian (2007) [6] gave 
a simple proof of the statement that for any finite ring 

R, Γ(R) has an even number of edges. They also gave 

some properties of zero divisor graphs of matrix rings 

and group rings.  

E. A. Osba, S. Al-Addasi and N. A. Jaradeh 

(2008) [7] conducted a study on “Zero divisor graph 

for the ring of Gaussian integers modulo n”. They give 

the number of vertices, the diameter, the girth of zero 

divisor graph for each positive integer n.  

L. Demeyer, L. Greve, A. Sabbaghi and J. 

Wang [8] conducted a study on “The zero-divisor 
graph associated to a semigroup”. They give the 

lowest bound on the number of edges necessary to a 

graph is a zero-divisor graph. They give the result that 

all graphs in 𝐾𝑛,𝑝  for  𝑝 ≤  𝑛/2 + 1 are zero-divisor 

graphs.  

      J. Coykendall, S. Sather-Wagstaff, L. 

Sheppardson, S. Spiroff (2012) [9] survey the research 

conducted on zero divisor graphs. They also 
introduced a graph for modules that is useful for 

studying zero divisor graphs of trivial extensions. 

    In this paper we present the basic properties 

of the zero-divisor graph for the ring of Gaussian 

integers modulo n, i.e. 𝛤 ℤ𝑛  [𝑖]. 

The rest of this paper is organized as follows. 

In section II, we present the concept of ring of 

Gausssian integer. In section III, we present few 

definitions related to this study. In section IV, we 

study Zero-divisor graph for ℤ𝑡𝑛 [𝑖]. Zero divisor 

graphs for ℤ𝑛 [𝑖] is presented in section V. 

Conclusions are made in section VI. 
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II. Ring of Gaussian integer modulo n, 

ℤ𝒏[𝒊] 

     Ring of Gaussian integers is a set of 
complex numbers whose real and imaginary parts are 

both integer, written as ℤ 𝑖 = {𝑎 + 𝑖𝑏: 𝑎, 𝑏 ∈ ℤ} and 

it’s norm is 𝑁 𝑎 + 𝑖𝑏 = 𝑎2 + 𝑏2. In ℤ 𝑖 , an element 

𝑎 + 𝑖𝑏 is said to be a unit if and only if 𝑁(𝑎 + 𝑖𝑏) =

1. So the only units of ℤ 𝑖  are 1, −1, 𝑖 and – 𝑖. 

The prime elements of ℤ 𝑖  are known as 

Gaussian primes. Gaussian primes can be described as 

follows: 

1. 1 + 𝑖 and 1 − 𝑖 are Gaussian primes. 

2. If 𝑞 is a prime integer with 𝑞 ≡ 3(𝑚𝑜𝑑4), 

then 𝑞 is a Gaussian prime. 

3. If 𝑝 is a prime integer with 𝑝 ≡ 1(𝑚𝑜𝑑4) 

and 𝑝 = 𝑎2 + 𝑏2 for some integer 𝑎 and 𝑏, 

then 𝑎 + 𝑖𝑏 and 𝑎 − 𝑖𝑏 are Gaussian primes. 

      Let 𝑛 be a natural number and let  𝑛  be the 

principal ideal generated by n in ℤ 𝑖   and let  ℤ𝑛 =
{0 , 1 , 2 , … , 𝑛 − 1       } be the ring of integers modulo n. 

Then the factor ring ℤ 𝑖 / 𝑛   is isomorphic 

to ℤ𝑛  𝑖 = {𝑎 + 𝑖𝑏 : 𝑎 , 𝑏 ∈ ℤ𝑛 }, i.e. ℤ𝑛  𝑖  is a principal 

ideal ring [10]. The ring ℤ𝑛  𝑖  is called the ring of 

Gaussian integers modulo n. 

      𝑎 + 𝑖𝑏  is a unit in ℤ𝑛  𝑖  if and only if 

𝑎 2 + 𝑏 2 is a unit in ℤ𝑛 . If  𝑛 =  𝑎
𝑗

𝑘𝑗𝑠
𝑗=1  is the prime 

power decomposition of the positive integer n, then 

ℤ𝑛  𝑖  is the direct product of the rings ℤ
𝑎

𝑗

𝑘𝑗  𝑖 . [7]    

III. Some Definitions 

Definition 1 [7]: If R is a commutative ring, 𝑍(𝑅) is 

the set of zero-divisor of 𝑅 and 𝑍∗(𝑅) = 𝑍(𝑅) − {0}, 
then the zero-divisor graph of R, Γ (Z*(R)) usually 

written as 𝛤(𝑅), is the graph in which each element of 

Z*(𝑅) is a vertex and two distinct vertices x and y are 

adjacent if and only if 𝑥𝑦 = 0.  

Definition 2 [7]: The diameter of 𝛤 is defined 

as 𝑑𝑖𝑎𝑚(𝛤) = 𝑠𝑢𝑝{𝑑(𝑥, 𝑦): 𝑥, 𝑦 𝑎𝑟𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝛤}, 

where 𝑑(𝑥, 𝑦) is the length of the shortest path from 𝑥 

to 𝑦.  

 
Fig 1: Beck’s zero divisor graph of ℤ6 

 

 
Fig 2: Anderson and Livingston’s zero divisor graph 

of ℤ6 

Definition 3 [7]: The girth of Γ, denoted by g(Γ), is 

the length of a shortest cycle in Γ. If Γ contains no 

cycle, then g(Γ)=∞.  

Definition 4 [7]: If the vertex set of a graph Γ can be 

split into two disjoint sets A and B so that each edge 

of Γ joins a vertex of A to a vertex of B, then Γ is 

called a bipartite graph. If each vertex in A is joined 

to each vertex in B by a edge, then the graph is called 

a complete bipartite graph. If A contains n vertices 

and B contains m vertices, then Γ is denoted by 𝐾𝑛,𝑚 .  

IV. Zero-divisor graph for ℤ𝒕𝒏[𝒊] 

    Here we consider three cases: 𝑡 = 2, 𝑡 ≡
3 𝑚𝑜𝑑4 𝑜𝑟 𝑡 ≡ 1(𝑚𝑜𝑑4). 

4.1. Zero-divisor graph for ℤ𝟐𝒏[𝒊] 

Since 2 =  1 +  𝑖 (1 –  𝑖), so 2 is not a 

Gaussian prime. Again 2 = −𝑖(1 +  𝑖)2, so ℤ2 i  is 

isomorphic to the local ring ℤ 𝑖 / (1 + 𝑖)2  with its 

only maximal ideal {0 , 1 + 𝑖1 }.  

Moreover, in ℤ2 i  we have 1 + 𝑖1 = 1 − 𝑖1 .  

Thus we have 𝑉 𝛤 ℤ2 i   = {1 + 𝑖1 }, 

which implies that 𝛤 ℤ2 i   is the null graph 𝑁1, i.e., a 
graph with one vertex and no edges. 

      Now let 𝑛 be an integer greater than 

1.Then 2𝑛  = (−𝑖)𝑛 (1 +  𝑖)2𝑛  and so  ℤ2𝑛 [𝑖] ≅
ℤ 𝑖 

 2𝑛  
=

ℤ 𝑖 

  1+𝑖 2𝑛  
.  

      Hence  ℤ2𝑛 [𝑖] is local with its only maximal 

ideal 𝑀 =  1 + 𝑖1   and so 𝑉 𝛤 ℤ2n  i   =
 1 + 𝑖1  \{0 }. 

Lemma 4.1.1 [7]: The only maximal ideal in  ℤ2n  i   
is {𝑎 + 𝑖𝑏 : 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑏𝑜𝑡𝑕 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑 }. 

Theorem 4.1.1 [7]: Let 𝑛 > 1. Then for all α ∈ ℤ2n  i , 
𝛼2 𝑛−1 1 + 𝑖1  = 0  or 𝛼2 𝑛−1 1 + 𝑖1  =
2 𝑛−1 1 + 𝑖1  . 
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Proof: If 𝛼 is not a unit, then  𝛼 =  𝑎 + 𝑖𝑏   1 +

𝑖1  ∈  1 + 𝑖1   

            ⇒ 𝛼2 𝑛−1 1 + 𝑖1  =  𝑎 + 𝑖𝑏   1 +

𝑖1  2 𝑛−1 1 + 𝑖1   

                                                      =  𝑎 +

𝑖𝑏   1 + 𝑖1  22 𝑛−1 = 0  

If 𝛼 is a unit, then 𝛼 = 𝑎 + 𝑖𝑏 , where a and b 
are neither both even nor odd. 

So, 2 𝑛−1 1 + 𝑖1   𝛼 − 1  = 2 𝑛−1 1 + 𝑖1  (𝑎 + 𝑖𝑏 −
1 ) 

Since in this case 𝑎 − 1 and 𝑏 are both even 

or both odd, and so in this case 𝛼 − 1 ∈  1 + 𝑖1   and 

so  2 𝑛−1 1 + 𝑖1   𝛼 − 1  = 0 

                                 ⇒ 𝛼2 𝑛−1 1 + 𝑖1  =
2 𝑛−1 1 + 𝑖1  .∎ 

Theorem 4.1.2: For 𝑛 ≥ 1,  𝑉(𝛤  ℤ2n  i  ) =
22𝑛−1 − 1. 

Proof: The total number of elements in  ℤ2n  =2n , 

where the number of even elements =2n /2 and the 

number of odd elements=2n/2. 

Since the only maximal ideal in  ℤ2n  i   
is {𝑎 + 𝑖𝑏 : 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑏𝑜𝑡𝑕 𝑒𝑣𝑒𝑛 𝑜𝑟 𝑜𝑑𝑑, 𝑎, 𝑏 ∈
 ℤ2n }, so the number of elements in the maximal ideal 

of  ℤ2n [i] is = 
2n

2
×

2n

2
+

2n

2
×

2n

2
 = 

22n +22n

4
 = 2.22n/4 

=22n−1. 

Since, 𝑉 𝛤 ℤ2n  i   =  1 + 𝑖1  −  0  , 

so  𝑉(𝛤  ℤ2n  i  ) = 22𝑛−1 − 1, for 𝑛 ≥ 1. ∎ 

Theorem 4.1.3 [7]: For 𝑛 ≥ 1, 𝑑𝑖𝑎𝑚(𝛤  ℤ2n  i  ) = 2. 

Proof: The graph 𝛤  ℤ2n  i   is not complete, since 2  

and 1 + 𝑖1  are vertices in 𝛤  ℤ2n  i   but 2  (1 + 𝑖1 )≠
0. 

So, let 𝛼(1 + 𝑖1 ) and 𝛽(1 + 𝑖1 ) be vertices 

in 𝛤  ℤ2n  i   with α, β ∈  ℤ2n  i  and 𝛼(1 + 𝑖1 ).𝛽(1 +
𝑖1 ) ≠ 0.  

Then we have 𝛼(1 + 𝑖1 ) ≠ (1 + 𝑖1 )𝑛−1 

and 𝛽(1 + 𝑖1 ) ≠ (1 + 𝑖1 )𝑛−1. 

Thus we have a path 𝛼(1 + 𝑖1 )_ _ _ 1 +
𝑖1  𝑛−1_ _ _𝛽(1 + 𝑖1 ). 

Hence 𝑑𝑖𝑎𝑚 𝛤  ℤ2n  i   = 2, 𝑛 > 1. ∎ 

Theorem 4.1.4 [7]: For 𝑛 > 1, g(𝛤  ℤ2n  i  ) = 3. 

Proof: For n=2, we have the cycle 2 _ _ _ 𝑖2 _ _ _2 +
𝑖2 _ _ _2 .  

For 𝑛 > 2, we have the 

cycle 2 𝑛−1_ _ _ 2 _ _ _𝑖2 𝑛−1_ _ _2 𝑛−1. 

Hence, g 𝛤  ℤ2n  i   = 3, 𝑛 > 1. ∎ 

Example: Consider the graph for n=2 i.e 𝛤  ℤ4 i  . 

Here the set of vertices is, 

𝑉(𝛤  ℤ4 i  )={2 , 2 𝑖, 2 + 2 𝑖, 1 + 1 𝑖, 1 + 3 𝑖, 3 + 1 𝑖, 3 +
3 𝑖}. 

 

Fig 3: 𝛤  ℤ4 i   

4.2.     Zero-divisor graph for ℤ𝒒𝒏[𝒊], 𝐪 ≡

𝟑 𝐦𝐨𝐝 𝟒  

      If q ≡ 3 mod 4 , then q is a Gaussian prime 

and so ℤ𝑞[𝑖] is a splitting field for the polynomial 

𝑔 𝑥 = 𝑥2 + 1 over the field  ℤ𝑞  and  ℤ𝑞[𝑖] is 

isomorphic to the field ℤ 𝑖 / 𝑞 . So in this case  ℤ𝑞 [𝑖] 

has no nonzero zero divisors. 

     If 𝑛 > 1, then ℤ𝑞𝑛  𝑖 ≅ ℤ 𝑖 / 𝑞𝑛  is a local 

ring with maximal ideal  𝑞  . Hence 𝑉  𝛤 ℤqn  i   =

 𝑞  \ 0  . 

     For any vertex 𝛼𝑞  in 𝛤 ℤqn  i  , 𝛼𝑞  is 

adjacent to 𝑞 𝑛−1. In this case if 𝛼𝑞  is a vertex 

in 𝛤 ℤqn  i  , then 𝛼𝑞  is adjacent to every element 

in  𝑞 𝑛−1 \{0 }. 

Theorem 4.2.1 [7]: For 𝑛 > 1,  𝑉(𝛤  ℤqn  i  ) =

𝑞2𝑛−2 − 1. 

Proof: We know that the number of units in  ℤqn  i  

is 𝑞2𝑛 − 𝑞2𝑛−2.[7] 

 ∴  𝑉  𝛤  ℤqn  i    =   𝑞   − 1 = 𝑞2𝑛 −

 𝑞2𝑛 − 𝑞2𝑛−2 − 1 = 𝑞2𝑛−2 − 1.∎ 

Theorem 4.2.2 [7]: For 𝑛 > 2, 𝑑𝑖𝑎𝑚(𝛤  ℤqn  i  ) =

2. 

Proof: 𝛤  ℤqn  i   is not complete, since if 𝛼𝑞  and 𝛽𝑞  

be vertices in 𝛤  ℤqn  i   with α, β ∈  ℤqn  i  

and 𝛼𝑞 .𝛽𝑞 ≠ 0, then we have 𝛼𝑞 ≠ 𝑞 𝑛−1 and 𝛽𝑞 ≠
𝑞 𝑛−1. 

Thus we have a path 𝛼𝑞 _ _ _ 𝑞  𝑛−1_ _ _ 𝛽𝑞 . 

Hence 𝑑𝑖𝑎𝑚  𝛤  ℤqn  i   = 2, 𝑛 > 2. ∎ 
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But if 𝑛 = 2, then 𝛤  ℤq2 i   is the complete 

graph 𝐾𝑞2−1 and so 𝑑𝑖𝑎𝑚  𝛤  ℤq2 i   = 1. 

Theorem 4.2.3 [7]: For 𝑛 > 1, g(𝛤  ℤqn  i  ) = 3. 

Proof: If 𝑛 = 2, then  𝛤  ℤqn  i   is complete with 

more than 3 vertices and so g(𝛤  ℤqn  i  ) = 3. 

If 𝑛 > 2, then we have the 

cycle 𝑞 𝑛−1_ _ _ 𝑞 _ _ _𝑖𝑞 𝑛−1_ _ _𝑞 𝑛−1 . 

Hence g(𝛤  ℤqn  i  ) = 3. ∎ 

For example, consider the graph 𝛤  ℤ32 i  . 
The set of vertices of the graph 

is, 𝑉(𝛤  ℤ9 i  )={3 , 3 𝑖, 6 , 6 𝑖, 3 + 3 𝑖, 3 + 6 𝑖, 6 +
3 𝑖, 6 + 6 𝑖}. 

 

 

                                      Fig 4: 𝛤  ℤ9 i   

4.3      Zero divisor graphs for  ℤ𝒑𝒏 𝒊 , 𝒑 ≡

𝟏(𝒎𝒐𝒅 𝟒)                                  

      Let p ≡ 1(mod 4), then there is an integer c 

such that c2 ≡ −1(mod p) and there exist 𝑎, 𝑏 ∈ ℤ 

such that 𝑝 = 𝑎2 + 𝑏2 =  𝑎 + 𝑖𝑏 (𝑎 − 𝑖𝑏). Also 

𝑎 + 𝑖𝑏 and 𝑎 − 𝑖𝑏 are Gaussian primes in ℤ[𝑖]. 

      Thus the ideals  𝑎 + 𝑖𝑏 and  𝑎 − 𝑖𝑏  are the 

only maximal ideals in ℤ[𝑖] containing p, since ℤ[𝑖] is 
a unique factorization domain. 

 Hence, ℤ𝑝  𝑖 ≅ ℤ 𝑖 / 𝑝  ≅ (ℤ[𝑖]/ 𝑎 +

𝑖𝑏 )(ℤ[𝑖]/ 𝑎 − 𝑖𝑏 ). 

      We know, the number of units in ℤ𝑝 𝑖  

is (𝑝 − 1)2. [7] 

 ∴  𝑉(𝛤  ℤp i  ) = 𝑝2 − (𝑝 − 1)2 − 1 =

2𝑝 − 2.  

 Also, 𝛤  ℤp i   is the complete bipartite 

graph  𝐾𝑝−1,𝑝−1 and so  𝑑𝑖𝑎𝑚  𝛤  ℤp i   = 2 and 

g 𝛤  ℤp i   = 4. 

Example: Consider the graph 𝛤  ℤ5 i  . 

 Here the set of vertices of the graph,  

     𝑉 𝛤  ℤ5 i   =  1 + 2𝑖, 1 − 2𝑖, 2 + 4𝑖, 2 − 4𝑖,

3 + 𝑖, 3 − 𝑖, 4 + 3𝑖, 4 − 3𝑖 . 

Fig 5: 𝛤  ℤ5 i   

 Now for 𝑛 > 1, 𝑝𝑛 =  𝑎2 + 𝑏2 𝑛 =
 𝑎 + 𝑖𝑏 𝑛 (𝑎 − 𝑖𝑏)𝑛 .   

 Hence ℤ𝑝𝑛  𝑖 ≅ ℤ 𝑖 / 𝑝𝑛   ≅

(ℤ[𝑖]/  𝑎 + 𝑖𝑏 𝑛  ) × (ℤ[𝑖]/  𝑎 − 𝑖𝑏 𝑛  ). 

 In this case, 𝑉  𝛤  ℤpn  i   =   a + ib  ∪

 a − ib   \{0 }. 

Theorem 4.3.1 [7]: For 𝑛 > 1,  𝑉(𝛤  ℤpn  i  ) =

2𝑝2𝑛−1 − 𝑝2𝑛−2 − 1. 

Proof: the number of units in  ℤpn  i  is   𝑝𝑛 −

 𝑝𝑛−1 2 . [7] 

∴  𝑉  𝛤  ℤpn  i    = 𝑝2𝑛 −   𝑝𝑛 −  𝑝𝑛−1 2 − 1

= 2𝑝2𝑛−1 − 𝑝2𝑛−2 − 1. ∎ 

Theorem 4.3.2 [7]: For 𝑛 > 1, 𝑑𝑖𝑎𝑚(𝛤  ℤpn  i  ) =

3. 

Proof: Let 𝑝 = 𝑎2 + 𝑏2 . Then 𝑑 𝑎 + 𝑖𝑏 , 𝑎 − 𝑖𝑏  > 1. 

 If there exists 𝑥 + 𝑖𝑦  such that  𝑎 + 𝑖𝑏   𝑥 +

𝑖𝑦  = 0 =  𝑎 − 𝑖𝑏   𝑥 + 𝑖𝑦  , then 𝑝𝑛  divides (𝑎𝑥 +

 𝑏𝑦), (𝑎𝑦 − 𝑏𝑥), (𝑎𝑥 –  𝑏𝑦)and (𝑎𝑦 +  𝑏𝑥).  

 So 𝑝𝑛  divides 2𝑎𝑥 and 2𝑏𝑦 and hence 𝑝𝑛  

divides 𝑥 and 𝑦 i.e., 𝑥 + 𝑖𝑦 = 0.  
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 Thus 𝑑 𝑎 + 𝑖𝑏 , 𝑎 − 𝑖𝑏  > 2. Thus, we have 

the path 

(𝑎 + 𝑖𝑏 ) _ _ _ (𝑎 +  𝑖𝑏 )𝑛−1(𝑎 −  𝑖𝑏 )𝑛_ _ _ (𝑎 +

𝑖𝑏 )𝑛(𝑎 – 𝑖𝑏 )𝑛−1  _ _ _ (𝑎 −  𝑖𝑏 ), and since the diameter 

of a zero divisor graph of a finite commutative ring 

with unity is always less than or equal to 3, (Anderson 

et al. 1999), so 𝑑𝑖𝑎𝑚(𝛤  ℤpn  i  ) = 3.∎ 

Theorem 4.3.3 [7]:  For 𝑛 > 1, g(𝛤  ℤpn  i  ) = 3. 

Proof: For 𝑛 = 2, we have the cycle 𝑝 _ _ _𝑝 +
𝑖𝑝 _ _ _𝑖𝑝 _ _ _𝑝 .  

 For 𝑛 > 2, we have the 

cycle (𝑝 )𝑛−1_ _ _ 𝑝 _ _ _𝑖(𝑝 )𝑛−1_ _ _(𝑝 )𝑛−1. 

 Hence, g 𝛤  ℤpn  i   = 3, 𝑛 > 1. ∎ 

 

V. Zero divisor graphs for ℤ𝒏[𝒊] 

      In this section we consider the general case 

by assuming 𝑛 =  𝑡𝑗
𝑛𝑗𝑚

𝑗=1 . 

The function 𝜃:  ℤ𝑛 [𝑖] →  ℤ𝑡𝑗
𝑛 𝑗 [𝑖]𝑚

𝑗 =1  such that 

 𝜃 𝑥 + 𝑖𝑦  = ((𝑥 𝑚𝑜𝑑 (𝑡𝑗 )𝑛𝑗 ) + 𝑖 𝑦 𝑚𝑜𝑑(𝑡𝑗 )𝑛𝑗  )𝑗 =1
𝑚  

is an isomorphism.  

      Now let 𝑛 = 2𝑘 ×  𝑞𝑗
𝛼𝑗𝑚

𝑗=1 ×  𝑝𝑠
𝛽𝑠𝑙

𝑠=1 , 

then the number of units in ℤ𝑛 [𝑖] is 22𝑘−1 ×

 (𝑞𝑗
2𝛼𝑗 − 𝑞𝑗

2𝛼𝑗−2) ×𝑚
𝑗 =1  (𝑝𝑠

𝛽𝑠 − 𝑝𝑠
𝛽𝑠−1)2𝑙

𝑠=1 . 

Thus we get,  𝑉(𝛤  ℤn  i  ) = 𝑛 −  22𝑘−1 ×

 (𝑞𝑗
2𝛼𝑗 − 𝑞𝑗

2𝛼𝑗−2) ×𝑚
𝑗 =1  (𝑝𝑠

𝛽𝑠 − 𝑝𝑠
𝛽𝑠−1)2𝑙

𝑠=1   −

1. 

Proposition 5.1 [11]: If 𝑅1 and 𝑅2 are commutative 

rings with identity and nonzero zero divisors, 

then 𝑑𝑖𝑎𝑚(𝛤 𝑅1 × 𝑅2 )= 3. 

Using this result and the above theorems we get the 

following theorem: 

Theorem 5.1 [7]: Let n be a positive integer greater 

than 1. Then, 

(1) 𝑑𝑖𝑎𝑚(𝛤  ℤn i  )= 1 if and only 

if 𝑛 =  𝑞2. 

(2) 𝑑𝑖𝑎𝑚(𝛤  ℤn i  )= 2 if and only 

if 𝑛 =  𝑝 or 𝑛 =  2𝑚  with m ≥ 2 

𝑜𝑟 𝑛 =  𝑞𝑚  with m ≥ 3. 

(3) 𝑑𝑖𝑎𝑚(𝛤  ℤn i  )= 3 if and only if 

𝑛 =  𝑝𝑚  with 𝑚 ≥  2 or n is 

divisible at least by two distinct 

primes. 

Theorem 5.2 [7]: Let 𝑛 =  𝑡𝑗
𝑛𝑗𝑚

𝑗 =1 be the prime 

factorization of n. Then: 

(1) If 𝑛𝑘 >  1 for some k, then g(𝛤  ℤn i  )= 3; 

(2) If 𝑛𝑘= 1 for all k and m ≥ 3, then 

g(𝛤  ℤn i  )= 3; 

(3) If 𝑛 =  𝑝1 ×  𝑝2 or 𝑛 =  𝑝1 × 𝑞 or 𝑛 =
 𝑝1 ×  2, then g(𝛤  ℤn  i  )= 3; 

(4) If 𝑛 =  𝑞1 × 𝑞2, then g(𝛤  ℤn i  )= 4; 

(5) If 𝑛 =  2 ×  𝑞, then g(𝛤  ℤn i  )= 4. 

Proposition 5.2 [2]: For a commutative ring R, Γ(R) is 

complete if and only if 𝑅 ≅ ℤ2 × ℤ2  𝑜𝑟 𝑥𝑦 =  0 for 

all 𝑥, 𝑦 ∈ 𝛤(𝑅). 

Theorem 5.3 [7]: The graph 𝛤  ℤn i   is complete if 

and only if 𝑛 =  𝑞2. 

Proof: It was shown earlier that if 𝑛 =  𝑞2, 

then 𝛤  ℤn i    is a complete graph. 

      So assume that 𝛤  ℤn i   is complete. Then n 

is a composite number not divisible by 𝑎3 for any 

prime number a, since in this case 𝑎  is not adjacent 

to 𝑖𝑎 . Moreover, n is not divisible by two distinct 

primes a, b, since in this case, 𝑎  is a vertex 

in 𝛤  ℤn i  , but 𝑎  is not adjacent to 𝑖𝑎 . Clearly 𝑝2 ∤
𝑛, since if 𝑝 =  𝑎2  +  𝑏2, then 𝑝  is not adjacent 

to 𝑎  +  𝑖𝑏 , we have also 2 ∤ 𝑛, since 1  +  𝑖1  is not 

adjacent to 2 . Thus, 𝑛 = 𝑞2 .∎ 

It is clear that if 𝛤 is a complete bipartite 

graph 𝐾𝑚,𝑛with min {𝑚, 𝑛} ≥  2, then g(Γ)=4, so if Γ 

contains a cycle with length 3, it could not be a 

complete bipartite graph or even bipartite. 

Lemma 5.1: Let 𝑅 =  𝑅1 ×  𝑅2. Then Γ(R) is a 

complete bipartite graph if and only if 𝑅1 and 𝑅2 are 
integral domains. 

Proof: If 𝑅 =  𝑅1 × 𝑅2, where 𝑅1 and 𝑅2 are integral 

domains, then Γ(R) is a complete bipartite graph 

with 𝐴 = {(𝑥, 0): 𝑥 ∈ 𝑅1\{0}} and 𝐵 = {(𝑥, 0): 𝑥 ∈
𝑅1\{0}} as the two disjoint sets of vertices such that 

every vertex in A is adjacent to every vertex in B, and 

we have no other adjacency. Now if 𝑅1is not an 

integral domain, with 𝑥, 𝑦 ∈ 𝑅1\{0} and 𝑥𝑦 =  0, then 

we have the 3-cycle (x, 0) _ _ _ (y, 0) _ _ _ (0, 1) _ _ 

_ (x, 0), so Γ(R) is not a complete bipartite graph.∎ 

If R is a direct product of more than two 

nontrivial integral domains, then R is reduced, and the 

intersection of any two prime ideals is nontrivial, so 

Γ(R) is not complete bipartite graph. So if p ≡ 

1(mod4), with 𝑝 = 𝑎2 + 𝑏2, then 𝛤  ℤp i   is a 

complete bipartite graph, since ℤp i ≅ ℤ i / p ≅

ℤ[i]/ a + ib ≅ ℤ[i]/ a − ib . And if 𝑞1 and 𝑞2 are 

two primes such that 𝑞𝑗 ≡ 3(mod4), for each j, then 

𝛤  ℤ𝑞1𝑞2
 i   is a complete bipartite graph, 

since  ℤ𝑞1𝑞2
 i ≅  ℤ𝑞1

 i ×  ℤ𝑞2
 i , a direct product of 

two fields. It is clear that  Γ(ℤ4 i ) is not a complete 

bipartite graph, similarly Γ(ℤ𝑞2 i ) is not a complete 

bipartite graph, since it is complete on more than two 

vertices. Γ(ℤ𝑝2  i ) is not a complete bipartite graph, 

since if 𝑝 = 𝑎2 +  𝑏2, then we have the 3-cycle 

𝑝 (𝑎  +  𝑖𝑏 ) _ _ _ (𝑎  –  𝑖𝑏 ) _ _ _ 𝑖𝑝 (𝑎  + 𝑖𝑏 ) _ _ _ 𝑝 (𝑎  +
 𝑖𝑏 ). If a is a prime number, then  Γ(ℤ𝑎3 i ) is not a 

complete bipartite graph, since we have the 3-

cycle 𝑎  _ _ _ 𝑎  _ _ _ 𝑖𝑎  _ _ _ 𝑎 . From this we can 

conclude that the graph Γ(ℤn i ) is complete bipartite 

if and only if n =  p or n =  q1q2 . 
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VI. CONCLUSIONS 

In this paper we study Zero-divisor graph of 

ring of Gaussian integer. Here we discussed the 
number of vertex, diameter, and girth of the graphs. 

Also we found that the graph Γ(ℤn i ) is complete 

bipartite if and only if n =  p or n =  q1q2, where 

𝑝, q1 , q2 are prime numbers. 
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