On Topological $\psi^*\alpha$ -Quotient Mappings

N. Balamani^{#1}, A. Parvathi^{*2}

1 Assistant Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043, Tamil Nadu, India

*2 Dean, Faculty of Science and Professor, Department of Mathematics, Avinashilingam Institute for Home

Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India

Abstract: Only a few class of generalized closed sets form a topology. The class of $\psi^* \alpha$ -closed set is one among them. In this paper we introduce $\psi^* \alpha$ quotient maps using $\psi^* \alpha$ -closed sets and study their properties. Also we obtain the relations between weak and strong form of $\psi^* \alpha$ -quotient maps. We also study the relationship between $\psi^* \alpha$ quotient maps and already existing quotient maps.

Keywords: ψ g-closed sets, ψ g-open sets, $\psi^*\alpha$ -closed sets, $\psi^*\alpha$ -quotient map

1.Introduction

Njastad [10] introduced the concept of an α -open sets. Lellis Thivagar [6] introduced the concept of α -quotient mappings and α^* -quotient mappings in topological spaces. Balamani and Parvathi [1] introduced the notion of $\psi^* \alpha$ -closed sets using ψg -open sets. In this paper we introduce and study $\psi^* \alpha$ -quotient mappings.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The interior and closure of a subset A of a space (X, τ) are denoted by int(A) and cl(A) respectively.

Definition 2.1 A subset A of a topological space (X, τ) is called

1) generalized closed set (briefly g-closed)[7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

2) semi-generalized closed set (briefly sgclosed)[5] if scl(A) \subseteq U whenever A \subseteq U and U is semi- open in (X, τ).

3) ψ -closed set [12] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).

4) ψ g-closed set [11] if ψ cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

5) $\psi^* \alpha$ -closed set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg -open in (X, τ) .

6) The $\psi^* \alpha$ -closure of a set A is defined as $\psi^* \alpha cl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \psi^* \alpha \text{ - } closed in (X, \tau) \} [1]$

Definition 2.2 A topological space (X, τ) is said to be a $_{\psi^*\alpha}T_c$ -space if every $\psi^*\alpha$ -closed subset of (X, τ) is closed in $(X, \tau).[2]$

Definition 2.3 A map $f: (X, \tau) \to (Y, \sigma)$ is called

(i)Continuous [7] if f $^{-1}(V)$ is closed in (X, τ) for each closed set V of (Y, σ).

(ii) α - continuous [8] if f⁻¹(V) is α -closed in (X, τ) for every closed set V of (Y, σ).

(iii) $\psi^* \alpha$ -continuous [3] if f⁻¹(V) is $\psi^* \alpha$ - closed in (X, τ) for each closed set V of (Y, σ).

(iv) quasi $\psi^* \alpha$ -continuous [4] if f⁻¹(V) is closed in (X, τ) for each $\psi^* \alpha$ - closed set V of (Y, σ).

Definition 2.4 A map $f: (X, \tau) \to (Y, \sigma)$ is called $\psi^* \alpha$ -irresolute [4] if $f^{-1}(V)$ is $\psi^* \alpha$ -closed in (X, τ) for every $\psi^* \alpha$ -closed set V of (Y, σ) .

Definition 2.5A surjective map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) a quotient map [9], provided a subset U of (Y, σ) is open in (Y, σ) if and only if $f^{-1}(U)$ is open in (X, τ) .

(ii) an α - quotient map [6] if f is α -continuous and f⁻¹(V) is open in (X, τ) implies V is an α -open set in (Y, σ).

(iii) an α^* - quotient map [6] if f is α -irresolute and f⁻¹(V) is an α -open set in (X, τ) implies V is an open set in (Y, σ).

3 $\psi^* \alpha$ -quotient maps, strongly $\psi^* \alpha$ - quotient maps and $(\psi^* \alpha)^*$ - quotient maps

Definition 3.1 A surjective map $f: (X, \tau) \to (Y, \sigma)$ is called a $\psi^* \alpha$ - **quotient map** if f is $\psi^* \alpha$ continuous and $f^1(V)$ is open in (X, τ) implies V is a $\psi^* \alpha$ -open set in (Y, σ)

Example 3.2 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l, m\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} \text{ and } \psi^* \alpha O(Y) = \{\phi, \{l\}, \{m\}, \{l, m\}, Y\}.$ Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = m, f(c) = n. Then f is a $\psi^* \alpha$ -quotient map.

Definition 3.3 A map $f: (X, \tau) \to (Y, \sigma)$ is called $\psi^* \alpha$ -open (resp. strongly $\psi^* \alpha$ -open) if f(U) is $\psi^* \alpha$

-open in (Y, σ) for every open set (resp. $\psi^* \alpha$ - open set) U in (X, τ) .

Proposition 3.4 If a map $f : (X, \tau) \to (Y, \sigma)$ is surjective, $\psi^* \alpha$ -continuous and $\psi^* \alpha$ -open, then f is a $\psi^* \alpha$ -quotient map.

Proof: It is enough to prove that $f^{1}(V)$ is open in (X, τ) implies V is a $\psi^{*}\alpha$ -open set in (Y, σ) . Let $f^{1}(V)$ is open in (X, τ) . Then $f(f^{1}(V))$ is $\psi^{*}\alpha$ -open, since f is $\psi^{*}\alpha$ -open. As f is surjective $f(f^{1}(V)) = V$ and so V is a $\psi^{*}\alpha$ -open set in (Y, σ) . Hence f is a $\psi^{*}\alpha$ -quotient map.

Definition 3.5 Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called **strongly** $\psi^* \alpha$ - **quotient map** provided a set U of (Y, σ) is open in Y if and only if $f^1(U)$ is a $\psi^* \alpha$ -open set in (X, τ) .

Example 3.6 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, \{m\}, \{l, m\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\} and \psi^* \alpha O(Y) = \{\phi, \{l\}, \{m\}, \{l, m\}, Y\}.$ Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l = f(b), f(c) = m, f(d) = n. Then f is a strongly $\psi^* \alpha$ -quotient map.

Proposition 3.7 Every strongly $\psi^* \alpha$ -quotient map is a $\psi^* \alpha$ -open map but not conversely.

Proof: $f: (X, \tau) \rightarrow (Y, \sigma)$ be a strongly $\psi^* \alpha$ quotient map. Let V be an open set in (X, τ) .Since every open set is $\psi^* \alpha$ -open and hence V is $\psi^* \alpha$ open in (X, τ) . That is $f^1(f(V))$ is $\psi^* \alpha$ -open in (X, τ) . Since f is strongly $\psi^* \alpha$ -quotient, f(V) is open and hence f(V) is $\psi^* \alpha$ -open in (Y, σ) . Therefore f is a $\psi^* \alpha$ -open map.

Example 3.8 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, \{m\}, \{l, m\}, \{l, n\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\} and \psi^* \alpha O(Y) = \{\phi, \{l\}, \{m\}, \{l, m\}, \{l, n\}, Y\}.$ Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(a) = l = f(b), \quad f(c) = n, f(d) = m$. Then f is $\psi^* \alpha$ -open but not strongly $\psi^* \alpha$ - quotient, since $f^1(\{m\}) = \{d\}$ is not $\psi^* \alpha$ -open in (X, τ)

Proposition 3.9 Every strongly $\psi^* \alpha$ -quotient map is a strongly $\psi^* \alpha$ -open map but not conversely.

Proof: $f: (X, \tau) \rightarrow (Y, \sigma)$ be a strongly $\psi^* \alpha$ quotient map. Let V be a $\psi^* \alpha$ -open set in (X, τ) . That is $f^1(f(V))$ is $\psi^* \alpha$ -open in (X, τ) . Since f is strongly $\psi^* \alpha$ -quotient, f(V) is open and hence f(V)is $\psi^* \alpha$ -open in (Y, σ) . Therefore f is a strongly $\psi^* \alpha$ -open map. *Example 3.10* Let X = {a, b, c}, $\tau = {\phi, {a}, {b}, {b}, {a, b}, X}$, Y = {l, m, n}, $\sigma = {\phi, {l, m}, Y}$, $\psi^* \alpha O(X) = {\phi, {a}, {b}, {a, b}, X}$ and $\psi^* \alpha O(Y) = {\phi, {a}, {b}, {a, b}, X}$ and $\psi^* \alpha O(Y) = {\phi, {1}, {m}, {1, m}, Y}$. Let f: (X, τ) \rightarrow (Y, σ) be a map defined by f(a) = l, f(b) = m, f(c) = n. Then f is strongly $\psi^* \alpha$ -open but not strongly $\psi^* \alpha$ - quotient, since f¹({1}) = {a} is $\psi^* \alpha$ -open in (X, τ) but the set {1} is not open in (Y, σ).

Definition 3.11 Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective map. Then f is called a $(\psi^* \alpha)^*$ - quotient map if f is $\psi^* \alpha$ -irresolute and $f^1(U)$ is $\psi^* \alpha$ -open set in (X, τ) implies U is open in (Y, σ) .

Example 3.12 Let X = {a, b, c, d}, $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\} and <math>\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let f : $(X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n, f(c) = f(d) = m. Then f is a strongly $(\psi^* \alpha)^*$ -quotient map.

Proposition 3.13 Every $(\psi^* \alpha)^*$ -quotient map is a $\psi^* \alpha$ - irresolute map but not conversely.

Proof: Follows from the definition.

Example 3.14 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, \{l, m\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n, f(c) = f(d) = m. Then f is a $\psi^* \alpha$ - irresolute map but not strongly $(\psi^* \alpha)^*$ -quotient map, since $f^1(\{l, n\}) = \{a, b\}$ is $\psi^* \alpha$ -open in (X, τ) but the set $\{l, n\}$ is not open in (Y, σ) .

Proposition 3.15 Every $(\psi^* \alpha)^*$ -quotient map is a strongly $\psi^* \alpha$ -open map but not conversely.

Proof: $f: (X, \tau) \rightarrow (Y, \sigma)$ be a $(\psi^* \alpha)^*$ - quotient map. Let V be a $\psi^* \alpha$ -open set in (X, τ) . That is f ¹(f(V)) is $\psi^* \alpha$ -open in (X, τ) . Since f is $(\psi^* \alpha)^*$ quotient, f(V) is open and hence f(V) is $\psi^* \alpha$ -open in (Y, σ) . Therefore f is a strongly $\psi^* \alpha$ -open map.

Example 3.16 Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, Y = \{1, m, n\}, \sigma = \{\phi, \{1, m\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} \text{ and } \psi^* \alpha O(Y) = \{\phi, \{1\}, \{m\}, \{1, m\}, Y\}. Let f: (X, \tau) \rightarrow (Y, \sigma) be a map defined by f(a) = 1, f(b) = m, f(c) = n. Then f is strongly <math>\psi^* \alpha$ -open but not $(\psi^* \alpha)^*$ -quotient, since $f^1(\{1\}) = \{a\}$ is $\psi^* \alpha$ -open in (X, τ) but the set $\{1\}$ is not open in (Y, σ) .

Proposition 3.17

(i) Every quotient map is a $\psi^* \alpha$ - quotient map.

(ii) Every α - quotient map is a $\psi^* \alpha$ - quotient map.

Proof: (i) Since every continuous map is a $\psi^* \alpha$ -continuous map and every open set is $\psi^* \alpha$ - open, the proof follows from the definition.

(ii)Since every α -continuous map is a $\psi^*\alpha$ - continuous

map and every α -open set is $\psi^* \alpha$ -open, the proof follows from the definition.

The converse of the statements in the above proposition need not be true as seen from the following examples.

Example 3.18 Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$, $Y = \{l, m, n\}$, $\sigma = \{\phi, \{l\}, Y\}$, $\psi^* \alpha O(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n, f(c) = f(d) = m. Then the map f is $\psi^* \alpha$ - quotien but not quotient, since for the $\psi^* \alpha$ -open set $\{l, m\}$ in (Y, σ) . (f ${}^{l}(\{l, m\}) = \{a, c, d\}$ is open in (X, τ) but the set $\{l, m\}$ is not open in (Y, σ) .

Example 3.19 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l, m\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}, \qquad \psi^* \alpha O(Y) = \{\phi, \{l\}, \{m\}, \{l, m\}, Y\} \text{ and } \alpha O(Y) = \{\phi, \{l, m\}, Y\} \text{ Let } f : (X, \tau) \rightarrow (Y, \sigma) \text{ be a map defined by } f(a) = l, f(b) = m, f(c) = f(d) = n. Then the map f is <math>\psi^* \alpha$ -quotient but not α - quotient, since $(f^1(\{l\}) = \{a\} \text{ is open in } (X, \tau) \text{ but the set } \{l\} \text{ is not } \alpha$ - open in (Y, σ) .

Proposition 3.20 Every strongly $\psi^* \alpha$ -quotient map is a $\psi^* \alpha$ - quotient map but not conversely.

Proof: Let V be an open set in (Y, σ) . Since f is strongly $\psi^* \alpha$ -quotient, $f^1(V)$ is a $\psi^* \alpha$ -open set in (X, τ) . Hence f is $\psi^* \alpha$ -continuous, Let $f^1(V)$ be a open set in (X, τ) . Then $f^1(V)$ is a $\psi^* \alpha$ -open set in (X, τ) . Since f is strongly $\psi^* \alpha$ -quotient, V is open in (Y, σ) . Hence f is $\psi^* \alpha$ -quotient.

Example 3.21 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n, f(c) = f(d) = m. Then the map f is $\psi^* \alpha$ - quotient but not strongly

 $\psi^* \alpha$ -quotient, since for the $\psi^* \alpha$ -open set {1, m} in (Y, σ). $f^1(\{1, m\}) = \{a, c, d\}$ is open in (X, τ) but the set {1, m} is not open in (Y, σ).

Proposition 3.22 Every $(\psi^* \alpha)^*$ -quotient map is strongly $\psi^* \alpha$ -quotient map but not conversely.

Proof: Let V be an open set in (Y, σ) . Then it is $\psi^* \alpha$ -open in (Y, σ) . Since f is $(\psi^* \alpha)^*$ -quotient, f $^1(V)$ is a $\psi^* \alpha$ -open set in (X, τ) . If $f^1(V)$ is $\psi^* \alpha$ - open set in (X, τ) . Then V is open in (Y, σ) as f is $(\psi^* \alpha)^*$ -quotient. Hence f is a strongly $\psi^* \alpha$ - quotient map.

Example 3.23 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ and $\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n = f(c), f(d) = m. Then the map f is strongly $\psi^* \alpha$ - quotient but not $(\psi^* \alpha)^*$ -quotient, since for the $\psi^* \alpha$ -open set $\{l, n\}$ in $(Y, \sigma) f^1(\{l, n\}) = \{a, b, c\}$ is $\psi^* \alpha$ -open in (X, τ) but the set $\{l, n\}$ is not open in (Y, σ) .

Proposition 3.24 Every $(\psi^* \alpha)^*$ -quotient map is a $\psi^* \alpha$ -quotient map but not conversely.

Proof: Let f be a $(\psi^* \alpha)^*$ -quotient map. Then f is $\psi^* \alpha$ -irresolute, by **theorem 3.4[4]** f is $\psi^* \alpha$ -continuous. Let $f^1(V)$ be an open set in (X, τ) . Then $f^1(V)$ is a $\psi^* \alpha$ -open set in (X, τ) . As f is $(\psi^* \alpha)^*$ -quotient, V is a open set in (Y, σ) . It implies that V is a $\psi^* \alpha$ -open set in (Y, σ) . Hence f is a $\psi^* \alpha$ -quotient map.

Example 3.25 Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}, Y = \{l, m, n\}, \sigma = \{\phi, \{l\}, Y\}, \psi^* \alpha O(X) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$ and $\psi^* \alpha O(Y) = \{\phi, \{l\}, \{l, m\}, \{l, n\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = l, f(b) = n = f(c), f(d) = m. Then the map f is $\psi^* \alpha$ -open set $\{l, m\}$ in (Y, σ) but the set $\{l, m\}$ is not open in (Y, σ) .

Remark 3.26 From the above observations we have the following diagram, where $A \rightarrow B$ represents A implies B but not conversely

Proposition 4.1 If a map $f : (X, \tau) \to (Y, \sigma)$ is open, surjective and $\psi^* \alpha$ -irresolute and $g : (Y, \sigma) \to (Z, \eta)$ is a $\psi^* \alpha$ -quotient map. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is a $\psi^* \alpha$ -quotient map.

Proof: Let V be any open set in (Z, η) . Then $g^{-1}(V)$ is a $\psi^* \alpha$ -open set in (Y, σ) , since g is a $\psi^* \alpha$ - quotient map. Since f is $\psi^* \alpha$ -irresolute, $f^{-1}(g^{-1}(V))$ is a $\psi^* \alpha$ -open set in (X, τ) which implies that $(g \circ f)^{-1}(V)$ is $\psi^* \alpha$ -open in (X, τ) . This shows that $g \circ f$ is $\psi^* \alpha$ -continuous.

Now assume that $(g \circ f)^{-1}(V)$ is open in (X, τ) for a subset $V \subseteq Z$. Since f is open, $f(f^{-1}(g^{-1}(V)))$ is open in (Y, σ) . This implies that $g^{-1}(V)$ is open in (Y, σ) , as f is surjective. Since g is a $\psi^* \alpha$ -quotient map, V is a $\psi^* \alpha$ -open set in (Z, η) . Hence $g \circ f$ is a $\psi^* \alpha$ -quotient map.

Proposition 4.2 If $h: (X, \tau) \to (Y, \sigma)$ is a $\psi^* \alpha$ quotient map and $g: (X, \tau) \to (Z, \eta)$ is a continuous map where Z is a space that is constant on each set $h^{-1}(\{y\})$ for each $y \in Y$, then g induces $\psi^* \alpha$ -continuous map $f: (Y, \sigma) \to (Z, \eta)$ such that f $\circ h = g$.

Proof: Since g is constant on $h^{-1}(\{y\})$ for each $y \in Y$, the set $g(h^{-1}(\{y\}))$ is an one point set in (Z, η) . If we let f(y) to denote this point, then it is clear that f is well defined and for each $x \in X$, f(h(x)) = g(x). We prove that f is $\psi^* \alpha$ -continuous. For if we let V be any open set in (Z, η) , then $g^{-1}(V)$ is an open set as g is continuous. But $g^{-1}(V) = h^{-1}(f^{-1}(V))$ is open in (X, τ) . Since h is a $\psi^* \alpha$ - quotient map, $f^{-1}(V)$ is a $\psi^* \alpha$ -open set in (Y, σ) . Hence f is $\psi^* \alpha$ -continuous.

Proposition 4.3 Let $f: (X, \tau) \to (Y, \sigma)$ be strongly $\psi^* \alpha$ -open, surjective and $\psi^* \alpha$ -irresolute map and g : $(Y, \sigma) \to (Z, \eta)$ be a strongly $\psi^* \alpha$ -quotient map. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a strongly $\psi^* \alpha$ -quotient map.

Proof: Let V be any open set in (Z, η) . Then $g^{-1}(V)$ is a $\psi^* \alpha$ -open set in (Y, σ) , since g is strongly

 $\psi^* \alpha$ -quotient. Since f is $\psi^* \alpha$ -irresolute, $f^1(g^{-1}(V))$ is a $\psi^* \alpha$ -open set in (X, τ) which implies that $(g \circ f)^{-1}(V)$ is $\psi^* \alpha$ -open in (X, τ) .

Now assume that $(g \circ f)^{-1}(V)$ is a $\psi^* \alpha$ -open set in (X, τ) for a subset $V \subseteq Z$. Then $f^1(g^{-1}(V))$ is a $\psi^* \alpha$ - open set in (X, τ) . Since f is strongly $\psi^* \alpha$ -open, $f(f^1(g^{-1}(V)))$ is $\psi^* \alpha$ -open in (Y, σ) . This implies that $g^{-1}(V)$ is a $\psi^* \alpha$ -open set in (Y, σ) , as f is surjective. This gives that V is an open set in (Y, σ) , since g is a strongly $\psi^* \alpha$ -quotient map. Hence $g \circ f$ is a strongly $\psi^* \alpha$ -quotient quotient map.

Proposition 4.4 Let $p : (X, \tau) \to (Y, \sigma)$ be a $\psi^* \alpha$ quotient map where (X, τ) and (Y, σ) are $_{\psi^* \alpha} T_c$ spaces. A map $g : (Y, \sigma) \to (Z, \eta)$ is quasi $\psi^* \alpha$ continuous if and only if the composite map $g \circ p$: $(X, \tau) \to (Z, \eta)$ is a quasi $\psi^* \alpha$ -continuous map.

Proof: Let g be quasi $\psi^* \alpha$ -continuous and U be any $\psi^* \alpha$ -open set in (Z, η) . Then $g^{-1}(U)$ is open in (Y, σ) . Since p is $\psi^* \alpha$ -quotient, $p^{-1}(g^{-1}(U)) = (g \circ p)^{-1}(U)$ is $\psi^* \alpha$ -open in (X, τ) . Since (X, τ) is a $\psi^* \alpha T_c$ -space, $p^{-1}(g^{-1}(U))$ is in open in (X, τ) . Thus $(g \circ p)$ is quasi $\psi^* \alpha$ -continuous

Conversely, assume that $(g \circ p)$ is quasi $\psi^* \alpha$ continuous. Let U be any $\psi^* \alpha$ -open set in (Z, η) . $p^{-1}(g^{-1}(U))$ is open in (X, τ) . Since p is $\psi^* \alpha$ quotient, $g^{-1}(U)$ is $\psi^* \alpha$ -open in (Y, σ) .Since (Y, σ) . is a $_{\psi^* \alpha} T_c$ -space, $g^{-1}(U)$ is open in (Y, σ) .Hence g is quasi $\psi^* \alpha$ -continuous.

Proposition 4.5 Let $f: (X, \tau) \to (Y, \sigma)$ be strongly $\psi^* \alpha$ -open, surjective and $\psi^* \alpha$ -irresolute map and g : $(Y, \sigma) \to (Z, \eta)$ be a $(\psi^* \alpha)^*$ -quotient map. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a $(\psi^* \alpha)^*$ -quotient map.

Proof: Since f and g are $\psi^* \alpha$ -irresolute, $g \circ f$ is $\psi^* \alpha$ -irresolute by **theorem 4.16[4]** Suppose that $(g \circ f)^{-1}(V)$ is $\psi^* \alpha$ -open in (X, τ) for a subset $V \subseteq Z$, that is $f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$ -open in (X, τ) . Since f is strongly $\psi^* \alpha$ -open and surjective, $f(f^{-1}(g^{-1}(V)) = g^{-1}(V)$ is $\psi^* \alpha$ -open in (Y, σ) . Since g is $(\psi^* \alpha)^*$ - quotient implies V is open in (Y, σ) . Hence $g \circ f$ is a $(\psi^* \alpha)^*$ -quotient map.

Proposition 4.6 Let $f: (X, \tau) \to (Y, \sigma)$ be a strongly $\psi^* \alpha$ - quotient and $\psi^* \alpha$ -irresolute map and $g: (Y, \sigma) \to (Z, \eta)$ be a $(\psi^* \alpha)^*$ -quotient map. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is a $(\psi^* \alpha)^*$ -quotient map.

Proof: Let V be a $\psi^* \alpha$ -open set in (Z, η). Then g⁻¹(V) is a $\psi^* \alpha$ -open set in (Y, σ), since g is ($\psi^* \alpha$)^{*} -quotient. Since f is $\psi^* \alpha$ -irresolute, f⁻¹(g⁻¹(V)) is a $\psi^* \alpha$ -open set in (X, τ) which implies that (g \circ f)⁻¹(V) is $\psi^* \alpha$ -open in (X, τ). This shows that g \circ f is $\psi^* \alpha$ -irresolute. Let f⁻¹(g⁻¹(V)) is $\psi^* \alpha$ -open in (X, τ) for a subset V \subseteq Z. Since f is strongly $\psi^* \alpha$ -quotient, g⁻¹(V) is a $\psi^* \alpha$ -open set in (Y, σ). This implies that g⁻¹(V) is a $\psi^* \alpha$ -open set in (Y, σ). Since g is ($\psi^* \alpha$)^{*} -quotient, V is open in (Z, η). Hence (g \circ f) is a ($\psi^* \alpha$)^{*} -quotient map.

Proposition 4.7 Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ are $(\psi^* \alpha)^*$ -quotient maps. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is also a $(\psi^* \alpha)^*$ -quotient map. **Proof:** Let V be any $\psi^* \alpha$ -open set in (Z, η) . Then $g^{-1}(V)$ is $\psi^* \alpha$ -open in (Y, σ) , since g is $(\psi^* \alpha)^*$ -quotient. Since f is $(\psi^* \alpha)^*$ -quotient, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is a $\psi^* \alpha$ -open in (X, τ) . This shows that g \circ f is $\psi^* \alpha$ -irresolute. Let $(g \circ f)^{-1}(V)$ is $\psi^* \alpha$ -open in (X, τ) . Since f is $(\psi^* \alpha)^*$ -quotient, $g^{-1}(V)$ is open in (X, τ) . Since f is $(\psi^* \alpha)^*$ -quotient, V is open in (X, σ) . Since g is $(\psi^* \alpha)^*$ -quotient, V is open in (Z, η) . Hence $(g \circ f)$ is $(\psi^* \alpha)^*$ -quotient.

Proposition 4.8 Let $f: (X, \tau) \to (Y, \sigma)$ be a map where (X, τ) and (Y, σ) are $_{\psi^*\alpha}T_c$ -spaces. Then the following statements are equivalent.

- (i) f is a $(\psi^* \alpha)^*$ -quotient map
- (ii) f is strongly $\psi^* \alpha$ -quotient map
- (iii) f is a $\psi^* \alpha$ -quotient map
- **Proof:** (i) \Rightarrow (ii) Follows from **Proposition 3.22** (ii) \Rightarrow (iii) Follows from **Proposition 3.20**

(iii) \Rightarrow (i) Since (Y, σ) is a $_{\psi^*\alpha}T_c$ -space, f is $\psi^*\alpha$ -irresolute by **theorem 3.7** [4] Suppose f ¹(V) is $\psi^*\alpha$ -open in (X, τ). Since (X, τ) is a $_{\psi^*\alpha}T_c$ space, f¹(V) is open in (X, τ). By (iii), V is $\psi^*\alpha$ open in (Y, σ). Since (Y, σ) is a $_{\psi^*\alpha}T_c$ -space, V is $\psi^*\alpha$ -open in (Y, σ). Hence f is a ($\psi^*\alpha$)^{*} -quotient map.

References

- [1] N.Balamani, and A. Parvathi, "Between α closed sets and \tilde{g}_{α} closed sets," International Journal of Mathematical Archive, 7(6), pp.1-10, 2016.
- [2] N.Balamani, and A. Parvathi, "Separation axioms by ψ^{*}α closed sets," International Journal of Engineering Sciences & Research Technology,5(10), pp.183-186, 2016.
- [3] N.Balamani, and A. Parvathi, "ψ^{*}α -continuous maps," International Journal of Advanced Research, 4(11), pp.1105-1109, 2016.
- [4] N.Balamani, and A. Parvathi, "ψ^{*}α irresolute maps, quasi ψ^{*}α -continuous maps and perfectly ψ^{*}α -continuous maps." Advances in Fuzzy Mathematics, 12(3), pp.539-548, 2017.
- [5] P. Bhattacharyya, and B.K Lahiri, "Semi-generalized closed sets in topology," Indian J. Math., 29, pp.376-382, 1987.
- [6] M.Lellis Thivagar, "A note on quotient mappings," Bull. Malaysian Math. Soc. 14, pp 21-30, 1991.
- [7] N.Levine, "Generalized closed sets in topology," Rend. Circ. Math. Palermo,19, pp. 89-96, 1970.
- [8] A.S.Mashhour, I.A. Hasanein, and S.N. EI-Deeb, 1983, "α continuous and α open mappings," Acta. Math. Hungar, 41, pp. 213 218, 1983.
- [9] J.R.Munkres, Topology, A first course, Fourteenth Indian Reprint.
- [10] O.Njastad, On some classes of nearly open sets, Pacific J. Math. 15, pp.961-970,1965.
- [11] N.Ramya, and A. Parvathi, A, "A study on \u03c8\u03c9 closed sets in topological bitopological and biminimal structure spaces," Ph.D Thesis, Avinashilingam University, Coimbatore, 2013.

[12] M.K.R.S. Veera Kumar, "Between semi-closed sets and semi- pre closed sets", Rend. Istit. Mat. Univ. Trieste, (ITALY) XXXXII, pp.25-41, 2000.