
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 4 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 229 

The bending of thin vertical rod and Bessel 

functions 
Raghbir Dyal 

Assistant Professor 

Government College, Sri Muktsar Sahib 

 
Abstract: This paper is based on physical problem when anyone who has tried holding a long, thin, flexible rod in a 

vertical position. If the rod is short, and its tip is given a small sideways displacement and released , the rod will 

perform transverse oscillations until it reaches an equilibrium position in a bent shape because of supporting its 

own weight. The longer the road, the larger the amplitude of these oscillations and the greater the bending under its 

own weight when in equilibrium, until at some critical length the rod will bend until its tip just touches the ground, 

after which it will remain in that position.  

 

Introduction: An idealization of this phenomenon can be modelled by a long, thin, flexible, flag pole of uniform 

cross-section, the base of which is clamped in the ground so the pole is vertical. We than ask at what length will the 

pole became unstable so that any displacement of the top of the pole will cause it to bend under its own weight until 

the top of the pole touches and remains in the contact with the ground. This paper can be posed in the mathematical 
terms, and it is the one that will be answered here. The solution of this problem will involve the use of Bessel 

functions, but the linear differential equation involved will have to satisfy a two point boundary condition instead of 

the initial conditions we have consider so far. This means that the existence and uniqueness of solutions to initial 

value problems guaranteed.  

 

Definitions:  

The Bessel differential equation is the linear second-order ordinary differential equation given by 

 
Bessel functions of the first kind, denoted as Jn(x), are solutions of Bessel's differential equation that are finite at the 

origin (x = 0) for integer or positive α, and diverge as x approaches zero for negative non-integer n and given by  

Jn(x) =  
 −1 r

r! n−r+1 !
(

x

2
)2n−r∞

r=0  

Result :Let us mode the problem by considering a thin uniform flexible rod of length L with a constant cross section 

that is constructed from material with a Young’s modules of elasticity 

E, with the moment of inertia of a cross section about the diameter 

normal to the plane of bending equal to I. The line density along the 
rod will be assumed to be constant and equal to w. the x-axis will be 

taken to be vertical and to coincide with the undistorted axis of the 

rod, with its origin located at the base of the rod. Thehorizontal 

displacement of the rod at a position x will be taken to be y, as shown 

in figure  

It is known that if the moment acting on the rod at a position x is 

M(x), the equation governing its transverse deflection y when in 

equilibrium is  

EI
𝑑2𝑦

𝑑𝑥2 = M(x)    …(a) 

The shear on the rod at point x is the force exerted perpendicular to 

the axis of the rod at x due to the weight of the rod extending from x 

to the top at P. As the length of this part of the rod is L-x, and its line 

density is w, the weight of this section is given by w(L-x), so the 

component W of this force normal to the axis of the rod at x is simply 

  W=w(L-x)sinθ     …(b) 

Where θ is the angle of deflection of the rod from vertical point x, as shown in figure. 

It is known that the shear on a rod is in terms of moment M(x) by 
𝑑𝑀

𝑑𝑥
 = -W(x)      …(c) 

http://mathworld.wolfram.com/Second-OrderOrdinaryDifferentialEquation.html


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 4 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 230 

 

Now make the approximation that the deflection at point x on the rod is small, so sinθ = tanθ = 
𝑑𝑦

𝑑𝑥
 

From (a),(b),(c) we arrive at third order differential equation 

EI
𝑑3𝑦

𝑑𝑥3 + w(L-x)
𝑑𝑦

𝑑𝑥
 = 0    …(d) 

Take z=L-x then (d) becomes  
𝑑3𝑦

𝑑𝑧3  + 
𝑤

𝐸𝐼
z
𝑑𝑦

𝑑𝑧
 = 0     …(e) 

Now to find the appropriate boundary conditions to be applied at the base and top of the rod. Due to clamping the 

pole in a vertical position at the origin. (
𝑑𝑦

𝑑𝑥
)𝑥=0=  (

𝑑𝑦

𝑑𝑧
)𝑧=𝐿=0. When the rod is bent and in equilibrium, there can be 

no bending moment at the top of the rod, so no curvature at that point. There is no curvature at x=L(z=0) when ρ=∞, 

 (
𝑑2𝑦

𝑑𝑥2)𝑥=𝐿= (
𝑑2𝑦

𝑑𝑧2)𝑧=0=0    …(f) 

Put u=
𝑑𝑦

𝑑𝑧
, boundary condition become u(L)=0 &(

𝑑𝑢

𝑑𝑧
)𝑧=0=0   …(g) 

Equation (e) is third order but in terms of u it is second order with conditions (g) 

We have 
𝑑2𝑦

𝑑𝑧2  + 
𝑤

𝐸𝐼
 zu = 0 

will provide sufficient information for us to find the critical length at which bending occurs.  

 

Identifying equation with x replaced by z, shows that  

1 − 2𝑎 = 0,      2𝑐 − 2 = 1,      a2-v2c2=0 and b2c2=w/EI, 

 

So 

 

𝑎 =
1

2
,      𝑐 =

3

2
,    𝑣 =

1

3
,   𝑎𝑛𝑑 𝑏 =

2

3
 
𝑤

𝐸𝐼
 

 

Using this information in the solution to equation gives 

 

𝑢 𝑧 = 𝐶1 𝑧𝐽1/3  
2
3
 

𝑤

𝐸𝐼
𝑧3/2 + 𝐶2 𝑧 𝐽-1/3 

2
3
 

𝑤

𝐸𝐼
𝑧3/2  

 

Noticing from            that for small z 
 

𝐽v(𝑧) ≈
1

Г(1+𝑣) 𝑧2 
v        and  𝐽-v (𝑧) ≈

1

Г(1−𝑣) 𝑧2 
-v         

 

We see that close to the top of the rod , that is, for small z, u(z) can be approximated by  

 

𝑢(𝑧) ≈ 𝐶1 

𝑧

Г(4/3)
 1

3
 

𝑤

𝐸𝐼
 1/3 +𝐶2

1

Г(2/3)
 1

3
 

𝑤

𝐸𝐼
 -1/3 

 

Differentiation of this result gives  
 

𝑢(𝑧) ≈ 𝐶1 

1

Г(4/3)
 1

3
 

𝑤

𝐸𝐼
 1/3 

 

But to satisfy the second boundary condition  
𝑑𝑢

𝑑𝑧
 𝑧 = 0, we must set 𝐶1=0, causing solution                    to reduce 

to 

 

𝑢 𝑧 = 𝐶2 𝑧 𝐽-1/3 
2
3
 

𝑤

𝐸𝐼
𝑧3/2  

 

Applying the remaining boundary condition 𝑢 𝐿 = 0 to gives 
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0 = 𝐶2 𝐿 𝐽-1/3 
2
3
 

𝑤

𝐸𝐼
𝐿3/2 , 

 

And this will be satisfied if either 𝐶2=0 or 𝐽-1/3 
2
3
 

𝑤

𝐸𝐼
𝐿3/2 = 0. The first condition 𝐶2=0 corresponds to the unstable 

equilibrium configuration in which the rod is vertical, and so must be rejected, whereas the second condition 

corresponds to the required critical bending condition, and it will be satisfied when 𝐿is such that it causes 𝐽-1/3 to 

vanish. 

 

It is at this stage that we discover the boundary value problem does not have a unique solution, because the 

asymptotic behavior of 𝐽-1/3 shows that it has infinitely many zeros. To resolve this difficulty, and to find the length 

at which critical bending occurs, we must seek a selection criterion for the length from outside the description of the 

physical situation provided by the differential equation,  

 

Such a criterion is not hard to find, because criterion bending must occur at the smallest value of  𝐿say that 𝐿c , that 

satisfies the condition  

 

𝐽-1/3 
2
3
 

𝑤

𝐸𝐼
𝐿

3/2
𝑐  = 0, 

 

Because if critical bending occurs when 𝐿=𝐿c, it will certainly occur at any larger value of 𝐿. 

A graph of 𝐽-1/3(x) is shown, from which it can be seen that the first zero α of 

𝐽-1/3(x) occurs at around the value α≈ 1.87, through numerical calculation 
provides the more accurate value α=1.86635……… However, this accuracy is 

unnecessary, because the approximations made when modeling the physical 

situation introduce errors of sufficient magnitude that the value α≈ 1.87 is 

adequate.  

 

Using the valueα≈ 1.87 shows that the length 𝐿c for the critical bending must 

satisfy the formula 

 

 2
3
 

𝑤

𝐸𝐼
𝐿

3/2
𝑐  ≈ 1.87, 

 

Which is equivalent to 

 

 

𝐿c≈ 1.99  
𝐸𝐼

𝑤
 1/3 

 

Conclusion: This shows, as would be expected, that if the rod is not cylindrically symmetric about its axis, the 

critical length 𝐿c will depend on the plane in which bending occurs, because the moment of inertia will depend on 

the direction in which the rod bends. Thus, for example, the critical length of the rod with a rectangular cross section 

that bends in a plane parallel to one pair of its faces will differ from the critical length when bending occurs in a 

plane parallel to its other pair of its faces. In such cases the model used is to simple because twisting will be likely to 

occur, causing the rod always to buckle in such a way that 𝐿c assumes its smallest possible value.  

 
The simplest case arrises when the rod has a circular cross section of radius a for then the moment of inertia of the 

cross section about the any diameter is I=πa4/4. When this expression is substituted into the approximation for 𝐿c. 

We obtain approximation 𝐿c≈ 1.25(
𝐸𝑎4

𝑤
)

1

3 
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