On Strongly Inversely-*I*-open and closed maps

Nitakshi Goyal Department of Mathematics Desh Bhagat College, Bardwal, Dhuri-148024 Punjab, India.

August 26, 2017

Abstract

We will introduce strongly inversely-*I*-open and strongly inversely-*I*-closed maps and give characterizations of these maps. We also give the relationship of these maps with pointwise-*I*-continuous maps.

2010 Mathematics Subject Classification. 54C08, 54C10 Keywords. Strongly inversely-*I*-open, strongly inversely-*I*-closed, pointwise-*I*-continuous, ideal.

1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski[2] and Vaidyanathaswamy[6]. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies that (i) $A \in I$ and $B \in I$ implies $A \cup B \in I$ and (ii) $A \in I$ and $B \subset A$ implies $B \in I$. Given a topological space (X, τ) with an ideal I on X known as ideal topological space and (.)* : $\wp(X) \rightarrow \wp(X)$, called a local function[2] of A with respect to I and τ , is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every open nhd. } U \text{ of } x \text{ in } X\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ , is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [5]. When there is no chance of confusion, we will simply write A^* for $A^*(I, \tau)$ and $\tau^*(I)$ for $\tau^*(I, \tau)$.

Throughout this paper (X, τ) will denote topological space on which no separation axioms are assumed. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. For a subset A of X, cl(A) and int(A) will denote the closure of A, interior of A in (X, τ) , respectively, $cl^*(A)$ and $int^*(A)$ will denote the closure of A, interior of A in (X, τ) , respectively, $cl^*(A)$ and $int^*(A)$ will denote the closure of A, interior of A in (X, τ) , respectively, $and A^C$ will denote the complement of A in X.

We will also make use of the following results:

Lemma 1.1. [3] For any sets X and Y, let $f : X \to Y$ be any map and E be any subset of X. Then:

- (a) $f^{\#}(E) = \{y \in Y : f^{-1}(y) \subseteq E\}.$
- (b) $f^{\#}(E^{C}) = (f(E))^{C}$ and so $f^{\#}(E) = (f(E^{C}))^{C}$ and $f(E) = (f^{\#}(E^{C}))^{C}$.

Definition 1.1. [1] A mapping $f : (X, \tau, I) \to (Y, \sigma)$ is said to be pointwise-*I*-continuous if the inverse image of every open set in *Y* is $\tau^*(I)$ -open in *X*. Equivalently, $f : (X, \tau, I) \to (Y, \sigma)$ is pointwise-*I*-continuous if and only if $f : (X, \tau^*(I)) \to (Y, \sigma)$ is continuous.

Definition 1.2. [4] A map $f : (X, \tau) \to (Y, \sigma)$ is said to be inversely open if $int(f(A)) \subseteq f(int(A))$ for any subset A of X.

Definition 1.3. [4] A map $f : (X, \tau) \to (Y, \sigma)$ is said to be inversely closed if for any subset A of X, A is closed in X whenever f(A) is closed in Y.

ISSN: 2231-5373

2 Results

We begin by introducing the following definitions and results:

Definition 2.1. A mapping $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ with $\mathcal{J} = f(I)$ is said to be strongly inversely-*I*-open if for any subset *A* of *X*, *int*^{*}(*f*(*A*)) $\subseteq f(int(A))$.

- *Remark* 2.1. (a) It can be easily seen that every strongly inversely- \mathcal{I} -open map is inversely open, since $int(f(A)) \subseteq int^*(f(A))$ for any subset A of X but converse is not true.
 - (b) From the definition of strongly inversely- \mathcal{I} -open maps, it follows immediately that if a space (X, τ) is discrete topological space then every map $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is strongly inversely- \mathcal{I} -open.

The following theorem gives various characterizations of strongly inversely-*I*-open maps.

Theorem 2.1. For any map $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ with $\mathcal{J} = f(I)$, the following conditions are equivalent:

- (a) f is strongly inversely-*I*-open i.e. for each subset A of X, $int^*(f(A)) \subseteq f(int(A))$,
- (b) $f^{\#}(cl(A)) \subseteq cl^{*}(f^{\#}(A)),$
- (c) if W is σ^* -open subset of Y and $W \subseteq f(X)$, then each set consisting of exactly one point and so at least one point from each fiber $f^{-1}(y)$, where $y \in W$, is open in X,
- (d) for any subset A of X, A is open in X, whenever f(A) is σ^* -open subset of Y,
- (e) for any subset A of X, A is closed in X, whenever $f^{\#}(A)$ is σ^* -closed subset of Y.

Proof. (a) \Leftrightarrow (b): It follows from the Lemma 1.1(b) and using $(cl(A))^C = int(A^C)$.

(a) \Rightarrow (c): Let *f* be strongly inversely-*I*-open and *W* is σ^* -open subset of *Y* such that $W \subseteq f(X)$. Let $V = \bigcup_{y \in W} f^{-1}(y)$ such that $f^{-1}(y)$ is singleton for all $y \in W$ then we will prove that *V* is open in *X*. Now f(V) = W and $f(S) \subset W$ for any proper subset *S* of *V*. If possible, let *V* is not open in *X*, then $int(V) \subset V$ but $int(V) \neq V$ and so $f(int(V)) \subset W$ but $f(int(V)) \neq W$. Therefore, by (a) $int^*(f(V)) \subseteq f(int(V)) \subset W$ but $f(int(V)) \neq W$, contradicting the fact that $W = int^*(f(V))$, since *W* is σ^* -open in *Y*. Hence (c) holds.

(c) \Rightarrow (d): Let W = f(A) be σ^* -open subset of *Y*. We have to prove that *A* is open in *X*. Consider the collection $\{V_y\}_{y \in W}$, where each $V_y = f^{-1}(y) \cap A$ and so $A = \bigcup_{y \in W} V_y$ and each V_y contains at least one point from each fiber $f^{-1}(y)$. Hence by (c), the set *A* is open in *X*.

(d) \Rightarrow (e): For any set *A* in *X*, let $f^{\#}(A)$ be σ^* -closed in *Y*, then by Lemma 1.1(b), $(f(A^C))^C$ is σ^* -closed in *Y* and so $f(A^C)$ is σ^* -open in *Y*. Therefore, by (d), A^C is open and so *A* is closed in *X*. Hence (e) holds.

(e) \Rightarrow (d): If f(A) is σ^* -open in Y, then by Lemma 1.1(b), $f^{\#}(A^C)$ is σ^* -closed in Y. Therefore, by (e), A^C is closed and so A is open in X. Hence (d) holds.

 $(d) \Rightarrow (a)$: Since for any set A in X, $int^*(f(A)) \subseteq f(A)$ and so there exists $S \subseteq A$ such that $f(S) = int^*(f(A))$. This implies that f(S) is σ^* -open subset of Y and by (d), S is open in X. Therefore, $S \subseteq int(A)$ and so $f(S) \subseteq f(int(A))$. Hence $int^*(f(A)) \subseteq f(int(A))$, i.e., f is strongly inversely-I-open.

The following corollary gives the sufficient condition for a strongly inversely-I-open map to be pointwise-I-continuous.

Corollary 2.1. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be strongly inversely-*I*-open. Then f is pointwise-*I*-continuous if f(X) is σ^* -open in Y.

Proof. Let W be open in Y. Then $f(f^{-1}(W)) = W \cap f(X)$ implies that $f(f^{-1}(W))$ is σ^* -open in Y, since f(X) is σ^* -open in Y and $\sigma \subseteq \sigma^*$ and so $f^{-1}(W)$ is open in X by Theorem 2.1. Hence f is pointwise-*I*-continuous.

The proof of the following corollary is immediate and hence is omitted.

Corollary 2.2. Let $f : (X, \tau, I) \to (Y, \sigma)$ be surjective and strongly inversely-*I*-open. Then f is pointwise-*I*-continuous.

Remark 2.2. A pointwise-I-continuous injective map need not be strongly inversely-I-open.

Corollary 2.3. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be strongly inversely-*I*-open map and $f^{-1}(y)$ contains at least two points for all $y \in Y$. Then (X, τ) is T_1 .

Proof. Let $x \in X$ be any element, we will prove that $\{x\}$ is closed. Now $f(\{x\}^C) = Y$, since $f^{-1}(y)$ contains at least two points for each $y \in Y$. Also $f(\{x\}^C) = Y$ is σ^* -open in Y and so Theorem 2.1(c), $\{x\}^C$ is open in X. Therefore, $\{x\}$ is closed in X and hence (X, τ) is T_1 .

Corollary 2.4. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be any constant map i.e. f(x) = b for all $x \in X$ and for some $b \in Y$. Then

- (a) (X, τ) is discrete topological space if f is strongly inversely-I-open and $\{b\}$ is σ^* -open in Y.
- (b) f is strongly inversely-*I*-open if $\{b\}$ is not σ^* -open in Y.

Proof. (a): Follows from the fact that for any subset A of X, $f(A) = \{b\}$ is σ^* -open in Y. (b): f is vacuously strongly inversely- \mathcal{I} -open, since for any subset A of X, $f(A) = \{b\}$ is never σ^* -open in Y. \Box

For our next results we introduce strongly inversely-I closed maps.

Definition 2.2. A mapping $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ is said to be strongly inversely-*I*-closed if for any subset *A* of *X*, *A* is closed in *X*, whenever f(A) is σ^* -closed subset of *Y*.

- *Remark* 2.3. (a) It can be seen easily that every strongly inversely-*I*-closed map is inversely closed, since every closed subset of *Y* is σ^* -closed. But converse is not true.
 - (b) From the definition of strongly inversely-*I*-closed maps, it follows immediately that if a space (X, τ) is discrete topological space then every map $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ is strongly inversely-*I*-closed.

The following theorem gives different characterizations of strongly inversely-*I*-closed maps.

Theorem 2.2. For any map $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$, the following conditions are equivalent:

- (a) f is strongly inversely-I-closed i.e. for each subset A of X, A is closed in X, whenever f(A) is σ^* -closed subset of Y.
- (b) for any subset A of X, A is open in X, whenever $f^{\#}(A)$ is σ^* -open subset of Y.
- (c) if F is σ^* -closed subset of Y and $F \subseteq f(X)$, then $T = \bigcup_{y \in F} f^{-1}(y)$ (where each $f^{-1}(y)$ contains at least one point) is closed in X.

Proof. (a) \Rightarrow (b): It follows from the Lemma 1.1(b).

(b) \Rightarrow (c): Let *F* be σ^* -closed subset of *Y* such that $F \subseteq f(X)$ and *T* be any set consisting of at least one point from each fiber $f^{-1}(y), y \in F$ then f(T) = F. We will prove that *T* is closed in *X*. Now, by Lemma 1.1(b) it follows that $(f^{\#}(T^C))^C = F$ is σ^* -closed and so $f^{\#}(T^C)$ is σ^* -open in *Y*. Therefore, (b) implies that T^C is open and so *T* is closed in *X*. Hence (c) holds.

(c)⇒(a): Let f(A) be σ^* -closed subset of *Y*. Then by (c) $A = \bigcup_{y \in f(A)} f^{-1}(y) \cap A$ is closed in *X*. Hence (a) holds. \Box

The next corollary gives the sufficient condition for a strongly inversely-*I*-closed map to be pointwise-*I*-continuous.

Corollary 2.5. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be strongly inversely-*I*-closed. Then f is pointwise-*I*-continuous if f(X) is σ^* -closed subset of Y.

Proof. Proof is similar to that of Corollary 2.1 and hence is omitted.

Corollary 2.6. Let $f : (X, \tau, I) \to (Y, \sigma)$ be surjective and strongly inversely-*I*-closed. Then f is pointwise-*I*-continuous.

Remark 2.4. A pointwise-I-continuous injective map need not be strongly inversely-I-closed.

Corollary 2.7. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be strongly inversely-*I*-closed map and $f^{-1}(y)$ contains at least two points for each $y \in Y$. Then (X, τ) is discrete topological space.

Proof. Let $x \in X$ be any element then we will prove that $\{x\}$ is open in X. Now $f(\{x\}^C) = Y$, since $f^{-1}(y)$ contains at least two points for each $y \in Y$. Also $f(\{x\}^C) = Y$ is σ^* -closed in Y and so by Theorem 2.2(c), $\{x\}^C$ is closed in X. Therefore, $\{x\}$ is open in X and hence (X, τ) is discrete topological space.

Corollary 2.8. Let $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ be any constant map i.e. f(x) = b for all $x \in X$ and for some $b \in Y$. Then the following holds:

- (a) (X, τ) is discrete topological space if f is strongly inversely-*I*-closed and $\{b\}$ is σ^* -closed in Y.
- (b) f is strongly inversely-*I*-closed if $\{b\}$ is not σ^* -closed in Y.

3 Examples

The following example shows that inversely open(inversely closed) map need not be strongly inversely-I- open(strongly inversely-I-closed).

Example 3.1. Let $X = \{a, b\}, \tau = \{\emptyset, \{b\}, X\}, I = \{\emptyset, \{b\}\}$ and $Y = \{0, 1\}, \sigma = \{\emptyset, \{0\}, Y\}$. Define $f : (X, \tau, I) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = 1, f(b) = 0. So $\mathcal{J} = \{\emptyset, \{0\}\}$ and $\sigma^* = \wp(Y)$. Then it can be easily checked that f is inversely open(inversely closed) map but not strongly inversely-I-open(strongly inversely-I-closed). Since $f(\{a\}) = \{1\}(f(\{b\}) = \{0\})$ is σ^* -open(σ^* -closed) in Y but $\{a\}(\{b\})$ is not open(closed) in X.

The following example shows that strongly inversely-I-closed map need not be strongly inversely-I-open or pointwise-I-continuous.

Example 3.2. Let $X = \{a, b\}, \tau = \{\emptyset, \{a\}, X\}, I = \{\emptyset\}$. And $Y = \{0, 1, 2\}, \sigma = \{\emptyset, \{0\}, \{0, 1\}, Y\}$. Define $f : (X, \tau, I) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = 1, f(b) = 0. So $\mathcal{J} = \{\emptyset\}$ and $\sigma = \sigma^*$. Then f(X) has no σ^* -closed subsets and therefore, f is vacuously strongly inversely-I-closed. But f is neither strongly inversely-I-open nor pointwise-I-continuous, since $f(\{b\}) = \{0\}$ is open(σ^* -open) in Y, but $\{b\} = f^{-1}(\{0\})$ is not open in X.

The following Example shows that strongly inversely-I-open map need not be strongly inversely-I-closed or pointwise-I-continuous.

Example 3.3. In the above Example 3.2, if we define the map $f : (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ as f(a) = 2, f(b) = 1. Then f(X) has no τ^* -open subsets and therefore, f is vacuously strongly inversely-I-open. But f is neither strongly inversely-I-closed nor pointwise-I-continuous.

The following Example shows that a pointwise-I-continuous injective map need not be strongly inversely-I-open or strongly inversely-I-closed.

Example 3.4. Let $X = \{a, b\}, \tau = \{\emptyset, \{a\}, X\}, I = \{\emptyset, \{a\}\}$. So $\tau = \wp(X)$. And $Y = \{0, 1, 2\}, \sigma = \{\emptyset, \{0\}, \{0, 1\}, Y\}$. Define $f : (X, \tau, I) \rightarrow (Y, \sigma, \mathcal{J})$ by f(a) = 1, f(b) = 0. Therefore, $\mathcal{J} = \{\emptyset, \{1\}\}$ and so $\sigma^* = \{\emptyset, \{0\}, \{0, 1\}, \{0, 2\}, Y\}$. Then f is vacuously pointwise-I-continuous. But f is neither strongly inversely-I-open nor strongly inversely-I-closed, since $f(\{b\}) = \{0\}(f(\{a\}) = \{1\})$ is σ^* -open(σ^* -closed) in Y, but $\{b\}(\{a\})$ is not open(closed) in X.

References

- [1] J. Kanicwski and Z.Piotrowski, "Concerning continuity apart from a meager set", *Proc. Amer. Math. Soc.*, **98**(2), 1986, pp. 324-328.
- [2] K.Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [3] N.S. Noorie and R. Bala, "Some Characterizations of open, closed and Continuous Mappings", *Int. J. Math. Mathematical Sci.*, Article ID527106, 5 pages(2008).
- [4] N.S. Noorie, "Inversely Open and Inversely Closed Maps", *Arya Bhatta Journal of Mathematics and Informatics*, 3, no. 2.
- [5] R. Vaidyanathswamy, "The localisation Theory in Set Topology", Proc. Indian Acad. Sci., 20, 1945, pp. 51-61.
- [6] _____, Set Topology, Chelsea Publishing Company, New York, 1946.