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ABSTRACT 

Let P be a finite poset.Fora subset A ofP, the open lower cover set of A is defined as L(A)={xP|x is covered by 

an aA}. The closed lower coverset of A is defined as L[A]=L(A) ∪ A and A is called an L – covering set of P if 

L[A] = P.  The L – covering number ⋀(P) is the minimum cardinality of aL-covering set. Let  𝐿𝑛
𝑖  be the family of 

all L-covering sets of a chain Pn with cardinality i.  Similarly we can define U–covering and N-covering sets of 

Pn with cardinality i. ℓ(Pn,i) = |𝐿𝑛
𝑖 |, 𝓊(Pn,i) = |𝑈𝑛

𝑖 |, 𝓃(Pn,i) = |𝑁𝑛
𝑖 |.  In this paper, we construct 𝐿𝑛

𝑖 , and obtain a 

recursive formula for ℓ(Pn,i).  Using this recursive formula we construct the polynomial L(Pn,x) = 
 ℓ𝑛
𝑖=𝑛 2 

(Pn,i)x
i   called  L-covering polynomial of Pn .  
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1.  INTRODUCTION 

A poset P is finite if it has finite number of 

elements.  Let P be a finite poset.  The open 

lowercover set of A is the set L(A) = {xP |x is 

coveredbyan aA}.  The closed lower cover set of A 

is the set L[A] = L(A) ∪ A.  We denote L({x}) as 

L(x).  A set A⊆ P is a L-covering set of P ifL[A] = P.  

The L-covering number⋀(P) is the minimum 

cardinality of an L-covering set of P.  A poset P is a 

chain if every pair of elements is comparable.  Let Pn 

be the n element chain x1< x2< …. <xn.  Let Ln
i  be the 

family of L-covering sets of Pn with cardinality i and 

let ℓ(Pn,i)= |Ln
i |.  The polynomial L(Pn,x) = 

 ℓn
i=⋀(Pn ) (Pn,i)x

i is called the L-covering polynomial 

of Pn. 

 

2. L-covering sets of chains 

  

In this section we construct the family of L-

covering sets of chains by a recursive method.  We 

use x, for the smallest integer greater than or equal 

to x.  Let Ln
i  be the family of L-covering sets of Pn 

with cardinality i.  The following lemma follows from 
observation. 

 

Lemma 2.1 

 ⋀(Pn) = 
n

2
. 

By the definition of L-covering set and by 

lemma 2.1, we have the following lemma  

 

Lemma 2.2   

 Lj
i  =  if and only if i> j or i<

j

2
. 

A chain connecting a and b where a < b is a 

simple chain if every element other than a and b in the 

chain has exactly one upper cover and lower cover. 
 The following lemma follows from 

observation. 

Lemma 2.3  

If a posetP contains a simple chain of length 2k-

1, then every L-covering set of P must contain atleastk 

elements of the chain. 

Tofind a L-covering set of Pnwithcardinality i, 

we do not need to consider L-covering sets of Pn-3 

with cardinality i-1.  We show this in lemma 2.4.  So, 

we only need to consider Ln−1
i−1 and Ln−2

i−1 . 

Lemma 2.4  

If DLn−3
i−1  and if there exist xPn suchthat 

D∪{x}Ln
i  then DLn−2

i−1 . 

Proof:  

Suppose that D ∉ Ln−2
i−1  .  Since DLn−3

i−1 , if xn-

2D,then DLn−2
i−1 , a contradiction.Hence xn-2∉D. 

Therefore,D∪{x}∉ Ln
i for any xPn,a contradiction. 

 

Lemma 2.5 

(i) If Ln−1
i−1  = Ln−3

i−1  = φ then Ln−2
i−1  = φ. 

(ii) If Ln−1
i−1 ≠φ and Ln−3

i−1 ≠φ then Ln−2
i−1 ≠φ. 

(iii) If Ln−1
i−1  = Ln−2

i−1  = φ then Ln
i  = φ. 

Proof: 

(i) Since Ln−1
i−1  = Ln−3

i−1  = φ by lemma 2.2, i-1 > n-

1or i-1 <
(n−3)

2
 . 

∴ i-1 > n-2 or i-1 <
(n−2)

2
 and henceLn−2

i−1 =  

(ii) Suppose that Ln−2
i−1 = , then by lemma 2.2,i-1 

> n-2 ori-1 <
(n−2)

2
 . 

If i-1> n-2 then i-1 >n-3 and hence Ln−3
i−1 = , 

a contradiction. 
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Therefore, i-1<
(n−2)

2
≤

(n−1)

2
 andhence 

Ln−3
i−1 = , a contradiction. 

(iii) Suppose thatLn
i ≠.  Let DLn

i . ThenxnD. 
By lemma 2.3, atleast one of xn-1 or xn-2 is in 

D.If xn-1D, then  D-{xn}Ln−1
i−1 , a 

contradiction.   

If xn-2D, again D-{xn}Ln−2
i−1 , a 

contradiction. 

 

Lemma 2.6   

 If Ln
i ≠, then 

(i) Ln−1
i−1 =  andLn−2

i−1 ≠  if and only ifn=2k and 

i=k for some kℕ. 

(ii) Ln−1
i−1 ≠andLn−2

i−1 =  if and only if  I =n. 

(iii) Ln−1
i−1 ≠  andLn−2

i−1 ≠ if and only if  


(n−1)

2
 + 1 ≤ i ≤ n-1. 

Proof: 

 (i)  (⟹) since Ln−1
i−1 ≠φ, by lemma 2.2, 

i-1>n-1 or i-1 <
(n−1)

2
.  If i-1 > n-1, then i>n 

and hence by lemma 2.2 Ln
i = φ, a 

contradiction. 

Therefore, i-1 <
(n−1)

2
 and since Ln

i ≠φ 


n

2
 ≤ i<

(n−1)

2
+1.  This gives us n=2k and 

i=k for some kℕ. 

(⇐) If n=2k and i=k for some kℕ, then by 

lemma2.2,Ln−1
i−1 =  and Ln−2

i−1 ≠ . 
 

(ii)  (⟹) since Ln−2
i−1 = φ, by lemma 2.2, i-1>n-2 or 

i-1<
(n−2)

2
.  If  i-1 <

(n−2)

2
 then i-1 <

(n−1)

2
 

and hence Ln−1
i−1 = φ, a contradiction.  

Therefore, i-1 > n-2 and so i>n-1. Also, since 

Ln
i ≠ φ, i≤ n and hence i = n. 

 (⇐)  If i=n, then by lemma 2.2, Ln−1
i−1 ≠ φ and 

Ln−2
i−1 = φ 

 

(iii) (⟹) since Ln−1
i−1 ≠ φ and Ln−2

i−1 ≠ φ, 


(n−1)

2
≤ i-1 ≤ n – 2 and hence 


(n−1)

2
 +1 ≤ i ≤ n – 1. 

 (⇐) If  
(n−1)

2
 +1 ≤ i ≤ n – 1,by lemma 2.2, 

Ln−1
i−1 ≠ , andLn−2

i−1 ≠ . 

Theorem 2.7 

 For every n ≥ 3 and i ≥  
n

2
 

(i) If  Ln−1
i−1 = φ and Ln−2

i−1 ≠ φ, then 

Ln
i   = {{x2, x4, x6, …,xn}}. 

(ii) If  Ln−1
i−1 ≠ φ and Ln−2

i−1 =φ, then 

Ln
i   = {{x1, x2, x3, …,xn}}. 

(iii) IfLn−1
i−1 ≠ φ and Ln−2

i−1 ≠ φ, then  

Ln
i  = 

{{xn}∪X|XLn−1
i−1 }∪{{xn}∪X|XLn−2

i−1 }. 

Proof: 

(i) Ln−1
i−1 = φ and Ln−2

i−1 ≠ φ.  So, by lemma 2.6 (i),  

n=2k and i=k for some kN.   

 Therefore,Ln
i   = Ln

n

2   = {{x2, x4, x6, …,xn}} 

(ii) Ln−1
i−1 ≠ φ and Ln−2

i−1 =φ.  So, by lemma 2.6 (ii),  
i=n. 

 Therefore,Ln
i   = Ln

n   = {{x1, x2, x3, …, xn-1, 

xn}} 

(iii) Ln−1
i−1 ≠ φ and Ln−2

i−1 ≠ φ.  Let X1Ln−1
i−1 . Then 

X1∪{xn}Ln
i . Let X2Ln−2

i−1 .  Again, 

X2∪{xn}Ln
i . Hence, we have  

{{xn}∪X|XLn−1
i−1 }∪{{xn}∪X|XLn−2

i−1 }⊆
Ln

i (1) 

 

Conversely, let Y Ln
i .  Then xnY. By lemma 

2.3, atleast one of  xn-1  or xn-2is in Y. If xn-1 Y, then 

Y=X∪{xn}for some  XLn−1
i−1 .  If xn-2Y, then 

Y=X∪{xn} for some XLn−2
i−1 . Therefore,  

 

Ln
i ⊆xn}∪X|XLn−1

i−1 }∪{{xn}∪X|XLn−2
i−1 } 

 (2) 
 

From (1) and (2), we get (iii)  

 

Table.1 𝓵(Pn,j) the number of L-Covering sets of Pn 

with cardinality j. 

j 1 2 3 4 5 6 7 8 9 10 

n           

1 1          

2 1 1         

3 0 2 1        

4 0 1 3 1       

5 0 0 3 4 1      

6 0 0 1 6 5 1     

7 0 0 0 4 10 6 1    

8 0 0 0 1 10 15 7 1   

9 0 0 0 0 5 20 21 8 1  

10 0 0 0 0 1 15 35 28 9 1 

 

3. L-covering polynomial of a chain 

Let L(Pn,x) =  ℓn
i=

n

2


(Pn,i) xi be the L-covering 

polynomial of a chain Pn. In this section we study this 

polynomial. 

 

Theorem 3.1 

(i) If Ln
i is the family of L-covering sets with 

cardinality i of Pn, then|Ln
i | = |Ln−1

i−1 | + |Ln−2
i−1 |. 

(ii) For every n ≥ 3,L(Pn, x) = x [L(Pn-1, x) + 

L(Pn-2, x)] with initial values L(P1,x)=x and 

L(P2, x)=x2+x. 

Proof 

(i) It follows from Theorem 2.7 

(ii) It follows from part (i) and the definition of 

the L-covering Polynomial. 
 

 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 4 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 239 

REFERENCES 

 

[1] M. Bayer and J. Billera, Counting chains and Faces in 

Polytopes andPosets, Contemporary Mathematics, 34, 207-

252 (1984). 

[2] P. Crawley and R.P.Dilworth, Algebraic theory of Lattices, 

Prentice-Hall, Inc. Englewod, Cliffs, New Jersey. 1973. 

[3] B.A Davey and H.A.Priestley, Introduction to Lattices and 

Order, Second Edition, Cambridge University Press, 2002. 

[4] Garrett Birkhoff, Lattice Theory, American Mathematical 

Society Colloquim Publications, Vol.XXV, 1961. 

[5] G.Grätzer, General Lattice Theory, BirkhauserVerlag, Basel, 

1978. 

[6] Greene C. On the Mobius algebra of a partially ordered set, 

Advances in math. 10, 177-187(1973). 

[7] Gunter M. Ziegler, Lectures on Polytopes, Springer – Verlag, 

New York, Inc., 1995. 

[8] Paffenholz and Andreas, Construction for posets, Lattices, 

and Polytopes, Doctoral Dissertation, School of 

Mathematical and Natural Sciences, Technical University of 

Berlin, 2005. 

[9] SaeidAlikhani and Yee-Hock Peng, Dominating Sets and 

Domination Polynomials of Paths, International Journal of 

Mathematics and Mathematical Sciences, Vol.2009, PP.1-10. 

[10] R.P.Stanley, Enumerative Combinatorics, Volume 1, 

Wordsworth and Brooks / Cole, 1986. 

[11] R.Subbarayan andA.Vethamanickam, On the Lattice of 

Convex Sub lattices, Elixir Dis. Math. 50 (2012), 10471-

10474. 

[12] A.Vethamanickam, Topics in Universal Algebra, Ph.D. 

Thesis, Madurai Kamaraj University, 1994. 

[13] A.Vethamanickam,and R.Subbarayan, Simple extensions of 

Eulerian Lattices, Acta Math. Univ. Comenianae, Vol. 

LXXIX, I(2010), PP.47-54. 

[14] A.Vethamanickam and R.Subbarayan, Some Properties of 

Eulerian Lattices, 

CommentationesMathematicaeUniversitatitsCarolinae, 

Vol.55 (2014), (4) PP.499-507. 

[15] A.Vethamanickam and K.M.Thirunavukkarasu, U-covering 

sets and U-covering polynomials of chains, International 

Journal of Mathematical Archive, Vol.8 (8), 2017, 41-44. 

 

 


