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I. INTRODUCTION  

Closure spaces were introduced by E. Čech [1] 

and then studied by many authors like Jeeranunt 

Khampaladee [8] , Chawalit Boonpok [2], David 

Niel Roth [4] etc. Čech closure spaces is a 

generalisation of the concept of topological spaces. 

The first to introduce the concept of grill topological 

spaces was Choquet [3] in 1947. Ideals in 
topological spaces have been considered since 1930. 

D. S. Jankovic and T. R. Hamlett [6] defined a 

topology obtained as an associated structure on a 

topological space (𝑋, 𝜏) induced by an ideal on 𝑋. B. 

Roy and M. N. Mukherjee[13] defined a topology 

obtained as an associated structure on a topological 

space (𝑋, 𝜏)  induced by a grill on 𝑋 . Later, A. 

Kandil et. al.[7] proved that the topological space 

induced by an ideal and the topological space which 

is induced by a grill are equivalent.  Also A. A. 
Nasef and A. A. Azzam [12] defined and studied 

new operators 𝛷𝑠 and 𝛹𝑠 with grill. We Tresa M. C. 

and Susha D. [15] introduced the concept of Linear 

Čech closure spaces and studied its fundamental 

properties. In this paper, we study the notion of 

linear grills and linear ideals and also we introduced 

two new operators on topological vector spaces. 

In Section II we quote the necessary preliminaries 

about Linear Čech closure spaces, grills, ideals, 

topologies derived from grills and ideals etc. Section 
III deals with the concept of linear grills and the 

topology derived from a linear grill. In Section IV 

we proved the linearity of the closure operator 

obtained from a linear ideal. Section V contains the 

proof of the equivalence of the topologies obtained 

from linear grills and linear ideals. In Section VI we 

introduced some new operators based on linear grills 

and linear ideals. 

 

 

II. PRELIMINARIES 

Definition 2.1[3] A collection 𝒢  of nonempty 

subsets of a set X is called a grill if  

1. A ∈  𝒢 and A ⊆ B ⇒ B ∈  𝒢  
2. A ∪ B ∈  𝒢 ⇒ A ∈  𝒢 or B ∈  𝒢. 

Let  𝒢  be a grill on a topological space (X, τ) . 

Consider the operator Φ𝒢: ℘ X → ℘(X) given by 

Φ𝒢 A =  x ∈ X: U ∩ A ∈ 𝒢,∀ U ∈ τ x  ,  where 

τ x =   U ∈ τ  x ∈ U }, ∀ A ∈ ℘ X . Then the map 

Ψ𝒢: ℘ X → ℘(X) given by Ψ𝒢 A = A ∪  Φ𝒢 A  is 

a Kuratowski closure operator and hence induces a 

topology τ𝒢 =  G ⊆ X: Ψ𝒢 X − G = X − G , strictly 

finer than τ. 

 

Definition 2.2 Let (X, τ, 𝒢) be a grill topological 

space. A subset A of a grill topological space 

 X, τ,𝒢  is τ𝒢 − closed  [13] (resp.  τ𝒢 − dense in 

itself [11], τ𝒢 − perfect), if Ψ𝒢 A = A  or 

equivalently if Φ𝒢 A  ⊆ A (resp. A ⊆ Φ𝒢 A , A = 

Φ𝒢 A ). 

Definition 2.3 [9] A nonempty collection I of 

subsets of a nonempty set X is said to be an ideal on 

X if  

1. A ∈  I and B ⊆ A ⇒ B ∈  I 

2. A ∈  I and B ∈  I ⇒ A ∪ B ∈ I . 

Given a topological space (X, τ)  with an ideal 

I on X , a set operator (. )∗:℘ X → ℘(X)  called a 

local function of a subset A with respect to τ and I is 
defined as A∗ I, τ =  x ∈ X U ∩ A ∉ I,∀ U ∈
τ x },  where τ x =   U ∈ τ  x ∈ U },∀ A ∈ ℘ X .  
Then the map cl∗ A = A ∪ A∗ is a Kuratowski  

closure operator and hence induces a topology 

τ∗ I, τ = {G ⊆ X: cl∗ X − G = (X − G)} , strictly 

finer than τ. 

 

Definition 2.4 Let(X, τ, I ) be an ideal topological 

space. A subset A  of an ideal topological space 

(X, τ, I) is τ∗ −closed [6] (resp.τ∗ −dense in itself [5], 

τ∗ − perfect), if A∗ ⊆ A (resp.A ⊆ A∗, A = A∗) 
 
Definition 2.5. [1] A function c:℘ X → ℘(X)  is 

called a Čech closure operator for X if  

1. c ∅ = ∅ 

2. A ⊆ c(A) 
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3. C A ∪ B = c A ∪ c B ,∀ A, B ⊆ X. Then 
 X, c  is called Čech closure space simply 

closure space. If in addition  

4. c c A  = c A ,∀A ⊆ X , then the space 

 X, c  is called a Kuratowiski (topological) 

space.  
If further 

5. for any family of subsets of X , {Ai}(iϵI),

c( Ai) =  c(Ai)iϵIiϵI , the space is called a 

total closure space. 

 

Definition 2.6. [1] A subsetA of a closure space 

(X, c) will be closed if c A = A and open if its 

complement is closed, i.e. if c X − A = X − A. 
 

Definition 2.7. [1] If  X, c is a closure space, we 

denote the associated topology on X by t . i.e. 

t = {Ac : c A = A} 

 

Theorem 2.1. Let (X, c) be a closure space and 

cl  be the closure operator of the associated 

topology. Then cl ≤ c i.e. c A ⊆ cl A , ∀ A ⊆
X. 
 

Definition 2.8. [14] A map f:  X, c → (Y, c ′)is 

said to be a  c − c′ morphism or just a morphism 

if f(c A ⊆ c ′(f a ). 

 

Result: [1]  

1. A mapping f  of a closure space 

(X, c)onto another one( Y, c′) is a c − c ′  

morphism at a point x ∈ X, if and only 

if the inverse image, f−1 V  of each 

neighbourhood V  of f(X)  is a 

neighbourhood of x. 
2. If f  is a c − c ’ morphism of a space 

(X, c) into a space( Y, c’) , then the 

inverse image of each open subset of Y 

is an open subset of X. 

3. If f:  X, c → (Y, c ′)  is a morphism, 

then f:  X, t → (Y, t′) is continuous. 

 

Definition 2.9. [14] A homeomorphism is a 

bijective mapping f such that both f and f−1  are 

morphisms. 

 

Definition 2.10. [10] A subset A  of a 

topological space (X, τ) is called semi- open set 

if A ⊆ cl(int A), where A ⊆ X and the family of 

all semi-open sets of  X, τ  is denoted by 

SO(X, τ). 

 

Definition 2.11. [15] Let V be a vector space 

and cbe a closure operator on V such that  

1. c A + c B ⊆ c(A + B) 

2. λ c A ⊆ c(λA) . Then c  is called a 

linear Čech closure operator and (V, c) 

is called a linear Čech closure 

space(LČCS). 

 

Proposition 2.1. [15] Let V be a vector space and 

c be a closure operator on V. Then (V, c) is a linear 

Čech closure space if and only if +:  V × V, c × c →
(V, c) and λ ∙:  V, c →  V, c ,∀λ ∈ K are morphisms. 

 

Proposition  2.2. [15] Let (V, c) be a LČCS. Then 

the map Ta :  V, c → (V, c)  given by Ta x = a + x 

and Mλ :  V, c → (V, c)  given by Mλ x = λx  are 
homeomorphisms. 

 

Proposition 2.3. The topology obtained from a 

LČCS is a linear topology. 

 

Result: If (X, c)is T1 and finitely generated, it is 

the discrete closure space. 

 

Proposition 2.4. Every LČCS is T1 and hence 

Hausdorff. 

Proof: Let 0 be the identity element and x be any 

other element of the vector space. 

Then c  0  + c  x  ⊆ c  0 + x  = c x . 
This shows that c 0 =  0 . 

Then c x + c −x ⊆ c x +  −x  = c 0 =  0 . 
If  y(≠ x) ∈ V, y + (−x) ≠ 0. 

Hence y(≠ x) ∉ c{x} and c x =  x . 
We have seen in the literature that every T1linear 

topological space is Hausdorff. 

 

III.  LINEAR GRILLS 

 
Definition 3.1.  A grill 𝒢 on a linear topological 

space (V, τ) is called a linear grill if  

1. A, B ∈ 𝒢 ⇒ A + B ∈ 𝒢 

2. A ∈ 𝒢 ⇒ λA ∈ 𝒢,∀ scalars λ. 

 

Proposition 3.1. If A and B are any two sets in a 

topological vector space with a linear grill in it then 

for the corresponding function Φ𝒢 ,Φ𝒢 A +

Φ𝒢(B) ⊆ Φ𝒢(A + B). Also λΦ𝒢 A ⊆ Φ𝒢 λA . 

Proof: Let x ∈ Φ𝒢(A) and y ∈ Φ𝒢 B . 

Then for every U ∈ τ x , A ∩ U ∈ 𝒢 and for every 

V ∈ τ y , B ∩ V ∈ 𝒢. 

Since U ∈ τ x , V ∈ τ y  ∃U0 , V0 ∈ τ 0 such that  

U = x + U0 and V = y + V0 

Then U0 + V0 ∈ τ(0) and 

 U + V = x + U0 + y + V0 = x + y + U0 + V0 
⇒ U + V ∈  τ(x + y). 

Let W ∈ τ x + y . Then ∃ W0 ∈ τ(0) such that 

W = x + y + W0 .  Since addition is continuous 

and 0 + 0 = 0,∃ U1and V1 ∈ τ(0)  such that 

W0 = U1 + V1 . Thus corresponding to any two 

neighbourhoods U and V of x and y respectively, ∃a 

neighbourhood of x + y and vice versa.  

Now A ∩ U ∈ 𝒢 and B ∩ V ∈ 𝒢 

⇒  A ∩ U + (B ∩ V) ∈ 𝒢, since 𝒢 is closed under 

addition and 

  A ∩ U +  B ∩ V ⊆  A + B ∩ (U + V) 
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⇒  A + B ∩ (U + V) ∈ 𝒢, by the property of a grill. 

Now we have to show that  λΦ(A) ⊆ Φ(λA). 

Let x ∈ Φ A . Then λx ∈ λΦ(A). 

x ∈ Φ A ⇒ ∀U ∈ τ x , A ∩ U ∈ 𝒢. 
We have to show that ∀ V ∈ τ λx , λA ∩ V ∈ 𝒢, so 

that λx ∈ Φ(λA). Let V ∈ τ λx . 
⇒ V = λx + V′ for some V′ ∈ τ(0). 

Since λ ∙ 0 = 0 and scalar multiplication is 

continuous in a topological vector space, ∃V0 ∈ τ(0) 

such that V′ = λV0 . 
So V = λx + λV0 = λ x + V0 = λW , where 

W ∈ τ x .  Now ∀W ∈ τ x , A ∩ W ∈ 𝒢 ⇒ 

λA ∩ V = λA ∩ λW = λ A ∩ W ∈ 𝒢, by the 

second property of 𝒢. 

 
Proposition 3.2. If 𝒢  is a linear grill in a linear 
topological space  X, τ , consisting of τ𝒢 − perfect 
sets or τ𝒢 −  dense sets, then the closure operator 
Ψ𝒢(A)  = A ∪Φ𝒢(A) , where Φ𝒢 A = {x ∈ X: U ∩
A ∈ 𝒢, ∀ U ∈ τ(x)} is a Linear Čech closure operator. 

Proof:A ∈ 𝒢 is eitherτ𝒢 −perfect set or τ𝒢 − dense 

set, hence A ∪ Φ𝒢 A = Φ𝒢(A) . 

Ψ𝒢 A + Ψ𝒢 B =  A ∪ Φ𝒢 A  + (B ∪Φ𝒢 B ) 

= Φ𝒢 A +  Φ𝒢 B  

⊆ Φ𝒢 A + B  

⊆ (A + B) ∪ Φ𝒢(A + B) 

= Ψ𝒢(A + B). 

Now λΨ𝒢 A = λ(A ∪ Φ𝒢(A)) 

= λΦ𝒢 A  

⊆ Φ𝒢(λA) 

⊆ λA ∪ Φ𝒢(λA). 

Thus Ψ𝒢is a Linear Čech closure operator. 

 

Proposition 3.3. If 𝒢 is a grill (not necessarily linear) 

in a linear topological space (X, τ) consisting of  

τ𝒢 −perfect sets or τ𝒢 − closed sets, then the closure 

operator,  Ψ𝒢(A)  = A ∪ Φ𝒢(A) , where Φ𝒢 A =

{x ∈ X: U ∩ A ∈ 𝒢, ∀ U ∈ τ(x)}  is a Linear Čech 

closure operator. 

Proof: A ∈ 𝒢 is either τ𝒢 −perfect set or τ𝒢 − closed 

set, hence  A ∪Φ𝒢(A) = A. 

Ψ𝒢 A + Ψ𝒢 B =  A ∪ Φ𝒢 A  + (B ∪Φ𝒢 B  

  = A + B 

  ⊆  A + B ∪ Φ𝒢 A + B  

   = Ψ𝒢(A + B). 

Now    λΨ𝒢 A = λ  A ∪ Φ𝒢 A   

                         =λ A 

⊆ λA ∪ Φ𝒢 λA . 

Thus Ψ𝒢is a Linear Čech closure operator. 

 

Note: Let A be a fixed subset of X, then the grill 

𝒢A = {B ⊆ X: B ∩ Ac ≠ ∅}  is not a linear grill, 

because B ∩ Ac ≠ ∅ and C ∩ Ac ≠ ∅ neednot always 

imply  B + C ∩ Ac ≠ ∅. 

IV.  LINEAR IDEALS 

 
Definition 4.1. An ideal I on a linear topological  

space is a linear ideal if  

1. A + B ∈  I ⇒ A ∈  I  or B ∈ I 
2. λA ∈  I⇒ A ∈ I 

 

Proposition 4.1. If A and B  are any two sets in a 

linear topological space with a linear ideal, then for 

the corresponding local function A∗ + B∗ ⊆
(A + B)∗. Also λA∗ ⊆ (λA)∗. 
Proof: 

Let x ∈ A∗ and y ∈ B∗. 

Then ∀U ∈ τ x , A ∩ U ∉ I 
And  ∀V ∈ τ y , B ∩ V ∉ I. 
Therefore  A ∩ U + (B ∩ V) ∉ I. 
i.e.  A + B ∩  U + V ∉ I. 
Since U ∈ τ x , V ∈ τ y ⇔ U + V ∈ τ x + y ,  
we get x + y ∈ (A + B)∗. 
Thus A∗ + B∗ ⊆ (A + B)∗. 
Now let x ∈ A∗, then λx ∈ λA∗ 

And ∀ U ∈ τ x , A ∩ U ∉ I. 
Let V ∈ τ(λx). Then V =  λW for some W ∈ τ(x). 

⇒ λA ∩ V = λA ∩ λW = λ A ∩ W . 
Since 

A ∩ W ∉ I,∀W ∈ τ x , λ A ∩ W = λA ∩ V ∉ I 
⇒ λx ∈ (λA)∗ i. e. λA∗ ⊆ (λA)∗. 
 

Proposition 4.2. If I  is a linear ideal in a linear 

topological space  X, τ , consisting of  (. )∗ −perfect 

sets or (. )∗ − dense sets in itself, then the closure 

operator cl∗ A = A ∪ A∗ , where A∗ I, τ = {x ∈
X: U ∩ A ∉ I,∀U ∈ τ x }, is a Linear Čech closure 

operator. 

Proof: 

A ∈ I is either  (. )∗ −perfect sets or (. )∗ − dense in 

itself and hence A ⊆ A∗. 

cl∗ A + cl∗ B =  A ∪ A∗ + (B ∪ B∗) 

           = A∗ + B∗ 

            ⊆ (A + B)∗ 
          ⊆  A + B ∪ (A + B)∗ 
          =  cl∗(A + B) 

Also λcl∗ A = λ A ∪ A∗ = λA∗ 

⊆ (λA)∗ ⊆ λA ∪ (λA)∗ = cl∗(λA) 

Showing that cl∗is a Linear Čech closure operator. 

 

Proposition 4.3. If I  is an ideal (not necessarily 

linear) in a linear topological space  X, τ , consisting 

of  (. )∗ −perfect sets or (. )∗ − closed sets, then the 

closure operator cl∗ A = A ∪ A∗, where A∗ I, τ =
{x ∈ X: U ∩ A ∉ I,∀U ∈ τ x } , is a Linear Čech 

closure operator. 

Proof: A ∈ I  is either  (. )∗ −perfect sets or (. )∗ − 

closed and hence A∗ ⊆ A. 

cl∗ A + cl∗ B =  A ∪ A∗ + (B ∪ B∗) 

   = A + B 

                                     ⊆  A + B ∪ (A + B)∗ 
            =  cl∗(A + B) 
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Also λcl∗ A = λ A ∪ A∗ = λA  

⊆ λA ∪ (λA)∗ = cl∗(λA) , showing that cl∗ is a 

Linear Čech closure operator. 

 

V. EQUIVALENCE OF TOPOLOGIES OBTAINED 

FROM LINEAR IDEALS AND LINEAR GRILLS 

 
Proposition 5.1. LetV be a vector space and let 

𝒢 ⊆ ℘(V). Then 𝒢is a linear grill on V if and only if 

I 𝒢 =  A ∈ ℘ V   A ∉ 𝒢 }is a linear ideal on V. 

Proof: A. Kandil et.al.[7] proved that 𝒢 is a grill if 

and only if I(𝒢) is an ideal. 

We have to prove the linearity conditions. 

Let 𝒢be a linear grill. Then A, B ∈ 𝒢 ⇒ A + B ∈
𝒢 and A ∈ 𝒢 ⇒ λA ∈ 𝒢.  

Let A, B ∉ I 𝒢 . Then A, B ∈ 𝒢 ⇒ A + B ∈ 𝒢. 
⇒ A + B ∉ I(𝒢). 

Also A ∉ I 𝒢 ⇒ A ∈ 𝒢 ⇒ λA ∈ 𝒢 ⇒ λA ∉ I 𝒢 . 
Hence I(𝒢)is a linear ideal. 

Now assume that I(𝒢)is a linear ideal.  

Let A, B ∈ 𝒢. Then A, B ∉ I 𝒢 . 
⇒ A + B ∉ I 𝒢 ⇒ A + B ∈ 𝒢. 

Also A ∈ 𝒢 ⇒ A ∉ I(𝒢) ⇒ λA ∉ I(𝒢) ⇒ λA ∈ 𝒢. 

Hence 𝒢 is a linear grill. 

 

Proposition 5.2. Let V  be a vector space and 

I ⊆ ℘(V). Then Iis a linear ideal on V if and only if 

𝒢(I) =  A ∈ ℘ V   A ∉ I }is a linear grill on V. 

 

VI.  NEW OPERATORS USING LINEAR IDEALS AND 

LINEAR GRILLS 

 

Definition 6.1. [12] Let (X, τ)  be a topological 

space and 𝒢 be a grill on X. A mapping Φs :℘ X →
℘ X ,  denoted Φ𝒢

s  for A ∈ ℘(X) (simplyΦs(A )), is 

called the operator associated with 𝒢 and τ which is 

defined by Φs A =  x ∈ X: Ux ∩ A ∈ 𝒢,∀ Ux ∈
SO X, τ  ,∀ A ∈ ℘ X . 

 

Definition 6.2. Let (X, τ) be a topological space 

and I  be an ideal on X . A mapping s∗:℘ X →
℘ X ,  denoted As∗ for A ∈ ℘(X) , is  called the 

operator associated with I and τ which is defined by 

As∗  =  x ∈ X: Ux ∩ A ∉ I,∀Ux ∈ SO X, τ  ,∀ A ∈
℘ X . 

 

Definition 6.3. [12] Let  X, τ,𝒢  be a grill 

topological space. An operator  Ψ𝒢
s :℘ X → ℘(X) is 

defined as  Ψ𝒢
s A = {x ∈ X:∃ Ux ∈ SO(X, τ)  such 

that  U − A ∉ 𝒢}, for any A ⊆ X and Ψ𝒢
s A = X −

Φs X − A  or Ψs A = A ∪Φs A . 
 

 Definition 6.4. Let (X, τ, I)be an ideal topological 

space. An operator clI   
s∗ :℘ X → ℘(X) is defined as 

clI
s∗ A = A ∪ As∗, ∀A ∈ ℘(X). 
 

Theorem 6.1. [12] The operator Ψs  satisfies 

Kuratowski’s closure axioms. 

 

Theorem 6.2. The operator clI
s∗  satisfies 

Kuratowski’s closure axioms. 

 

Definition 6.5. [12] A grill on a space X which 

carries a topology τ generates a unique topology on 

X depends on Ψsand ϕs operators symbolized by τ𝒢
s  

and defined by τ𝒢
s = {U ⊆ X:Ψs X − U =  X − U } 

for A ⊆ X. 

 

Definition 6.6. An ideal on a space X  which 

carries a topology τ generates a unique topology on 

X depends on clI
s∗symbolized by τI

s  and defined by 

τI
s = {U ⊆ X:  clI

s∗ X − U =  X − U }, for A ⊆ X. 
 

Definition 6.7. Let (X, τ,𝒢) be a grill topological 

space. Then corresponding to the topology τ𝒢
s , a set 

A ∈ ℘(X)  is said to be τ𝒢
s -closed set,[resp. 

τ𝒢
s −dense set in itself or τ𝒢

s −perfect set] if ϕ𝒢
s (A) ⊆

A [resp.A ⊆ ϕ𝒢
s (A) or A = ϕ𝒢

s (A)] 

Similarly let (X, τ, I) be an ideal topological space. 

Then corresponding to the topology τI
s , a set 

A ∈ ℘(X)  is said to be τI
s -closed set,[resp. τI

s −
dense set in itself or τI

s − perfect set] if As∗ ⊆ A 

[resp.A ⊆ As∗ or A = As∗]. 
 

Lemma 6.1. If A and B  are semi-open sets in a 

Linear topological space, then A +  B is also a semi-

open set. 

Proof: Since A  and B  are semi-open sets, A ⊆
cl(int(A)) and B ⊆ cl(int(B)). 

⇒ A + B ⊆ cl int A  +  cl(int(B)) 

For a linear topological closure operator, 

cl A + cl (B) ⊆ cl(A + B). 
Hence  

A + B ⊆ cl(int A + int(B)) ⊆ cl(int(A + B)), 

again by the property of linear topological interior 

operator. 

Thus A + B is a semi-open set. 

 

Proposition 6.1. If 𝒢  is a linear grill in a 

topological vector space (X, τ) , then Φs A +
Φs B ⊆ Φs A + B ,∀A, B ∈ ℘ X . 

Proof: Let x ∈ Φs A  and y ∈ Φs B . 
⇒ Ux ∩ A ∈ 𝒢,∀Ux ∈ SO(X, τ) 

And  Uy ∩ B ∈ 𝒢,∀Uy ∈ SO(X, τ) 

⇒ (Ux ∩ A) +  Uy ∩ B ∈ 𝒢,∀Ux , Uy ∈ SO(X, τ) 

⇒ (Ux + Uy ) ∩ (A + B) ∈ 𝒢 , since (Ux ∩ A) +

 Uy ∩ B ⊆ (Ux + Uy ) ∩ (A + B). 

Let Ux+y ∈ SO X, τ .  

Then Ux+y ⊆ cl(int(Ux+y )). 

int(Ux+y ) is an open set containing x + y. 

By the property of topological vector spaces,∃ 

two open sets Vx and Vy containing 
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x and y respectively such that Vx +  Vy ⊆

int(Ux+y ) ⊆ Ux+y . 

⇒  Vx +  Vy  ∩ (A + B) ⊆ Ux+y ∩ (A + B) 

Since 𝒢  is a grill, it follows that Ux+y ∩ (A +

B)belongs to 𝒢. 

Hence x + y ∈ Φs A + B  
⇒ Φs A + Φs B ⊆ Φs A + B ,∀A, B ∈ ℘ X . 

 
Proposition 6.2.  (1) If 𝒢 is a linear grill in a 

topological vector space (X, τ), then Ψs  is a linear 

Čech closure operator if 𝒢 has only τ𝒢
s −dense set in 

itself or τ𝒢
s −perfect set. 

(2)  If 𝒢 is a grill in a topological vector space 

(X, τ), then Ψs  is a linear Čech closure operator if 𝒢 

has only τ𝒢
s −closed sets or τ𝒢

s −perfect sets. 

Proof: (1) A. A. Nasef and A. A. Azzam [12]  

has proved that Ψs is a Kuratowski closure operator. 

We want to prove the linearity conditions, 

Ψs A + Ψs(B) ⊆ Ψs(A + B). 

Ψs A = A ∪ ϕs A = ϕs A , since A ⊆ ϕs A  

Ψs A + Ψs B =  A ∪ ϕs A  + (B ∪ ϕs B ) 

= ϕs A + ϕs B  
⊆ ϕs A + B  

⊆ (A + B) ∪ϕs A + B  
= Ψs(A + B). 

Similarily λΨs A ⊆ Ψs λA and hence Ψs is a 
Linear Čech closure operator. 

(2) If A ⊆ X is τ𝒢
s −closed, A ∪ ϕs A = A  and the 

proof  follows accordingly. 

 

Proposition 6.3. If I is a linear ideal in a topological 

vector space (X, τ) , then the function As∗ I, τ =
{x ∈ X|Ux ∩ A ∉ I, ∀Ux ∈ SO X, τ }  satisfies 

As∗ + Bs∗ ⊆ (A + B)s∗. 

Proof: Let x ∈ As∗ and y ∈ Bs∗. 

⇒ Ux ∩ A ∉ I,∀Ux ∈ SO X, τ  and  

Uy ∩ B ∉ I,∀Uy ∈ SO X, τ  

⇒ (Ux ∩ A) + (Uy ∩ B) ∉ I,∀Ux , Uy ∈ SO X, τ  

⇒ (Ux + Uy ) ∩ (A + B) ∉ I 

Let Ux+y ∈ SO X, τ . Then Ux+y ⊆ cl(int Ux+y ). 

int(Ux+y ) is an open set containing x + y. 

By the property of topological vector spaces, there 

exists two open sets Vx and Vy containing x  and y 

respectively such that 

Vx + Vy ⊆ int(Ux+y ) ⊆ Ux+y  

⇒  Vx + Vy ∩  A + B ⊆ Ux+y ∩  A + B . 
Hence by the property of ideal, 

 if Ux+y ∩ (A + B) ∈ I, then  

 Vx + Vy ∩  A + B ∈ I. 

So  Ux+y ∩  A + B ∉ I ⇒ x + y ∈ (A + B)s∗. 

Thus As∗ + Bs∗ ⊆ (A + B)s∗. 

 

Proposition 6.4. (1) If I is a linear ideal in a 

topological vector space(X, τ), then cls∗ is a linear 

Čech closure operator if I has only  τI
s −dense set in 

itself or τI
s −perfect sets. 

(2) If I is an ideal in a topological vector space (X, τ), 

then cls∗ is a linear Čech closure operator if I  has 

only  τI
s −closed sets or τI

s −perfect sets. 
Proof: Proof is analogous to that of propositions 

6.2 using proposition 6.3. 

 

VII. CONCLUSIONS 

The topology obtained from a Linear Čech 

closure operator is a T1 topology, hence it is 

Hausdorff. 

The topology derived from a grill is finer than the 

original topology. Hence the topology we obtained 

from the Linear Čech closure operator derived from 

linear grills or linear ideals possesses a significant 

role in the theory of topological vector spaces. 
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