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Introduction: 

Throught we shall deal with nxn quaternion 

matrices[26]. Let A* denote the conjugate transpose 

of A. Any matrix nXnA H is called q-EP(27) if 

R(A)=R(A*) and his called   q-EPr, if A is qs-EP and 

rk(A)=r, where N(A), R(A) and rk(A) denote the null 

space, range space and rank of A respectively. 
nxn

EQ  

denote  the q-EP matices. It is well known that sum, 

sum of parallel summable q-EP matrices, Product of  

q-EP and Generalized Inverses, Group Inverses And 

Reverse Order Law For Range Quaternion Hermitian  
Matrices (q-EP)[28-30]. 

 

In recent years, the algebra problems over 

quaternion division algebra have drawn the attention 

of mathematics and physics researchers [1-12]. 

Quaternion algebra theory is getting more and more 

important. In many fields of applied science, such as 

physics, figure and pattern recognition, spacecraft 

attitude control, 3-D animation, people start to make 

use of quaternion algebra theory to solve some actual 

problems. Therefore, it encourages people to do 
further research [13-17] on quaternion algebra theory 

and its applications. The main obstacle in the study of 

quaternion algebra is the non-commutative 

multiplication of quaternion. Many important 

conclusions over real and complex fields are different 

from ones over quaternion division algebra, such as 

determinant, the trace of matrix multiplication and 

solutions of quaternion equation. From the 

conclusions on quaternion division algebra, we find it 

to lack for general concepts, such as the definition of 

quaternion matrix determinant. There are different 

definitions which are given in [1,3,4,6,11,18] since 
Dieudonne firstly introduced the quaternion 

determinant in 1943. In addition, the inverse of 

quaternion matrix has not been well defined so far, 

because it depends on other algebra concepts.  In the 

study of quaternion division algebra, people always 

expect to get some relations between quaternion 

division algebra and real algebra or complex algebra. 

However, some conclusions on real or complex fields 

are correct but not on quaternion division algebra. It 

makes us to consider establishing other algebra 

concept system over quaternion division algebra to 

unify the complex algebra and quaternion division 
algebra. Recently, Wu in [19] used real 

representation methods to express quaternion 

matrices and established some new concepts over 

quaternion division algebra. From these definitions, 

we can see that they can convert quaternion division 

algebra problems into real algebra problems to reduce 

the complexity and abstraction which exist in all 

kinds of definitions given in [1,3,6,10,11,20]. 

However, as Wu in [19] mentioned, these concept 

system is not suitable for complex algebra. 

In this paper, based on the bicomplex form 

of q- EP matrix, we present some new concepts to 

quaternion division algebra. These new concepts can 

perfect the theory of Wu in [19] and unify the 

complex algebra and quaternion division algebra. 

This paper is organized as follows. In Section 1, we 

introduce a complex representation method of 

quaternion EP matrices and explore the relation 

between q-EP matrices and complex matrices. In 
Section 2, we present a series of new concepts over 

q-EP  division algebra and study their properties. In 

section 3, we establish some important theorems to 

illustrate the applications and effectiveness of the 

new concept system. 
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1. The Bicomplex Representation Methods of 

Quaternion EP matrices(q-EP) and the 

Relation between q-EP matrices and 

complex matrices: 

For any q-EP matrix A nxn

EQ , A can be 

uniquely represented as  

A    =  A0+A1j 

R(A) =  R(A0+A1j)     (by [27],1.1.1) 

R(A) = R(A0)+R(A1)j 

Where AsCnxn (s=0,1), A1j means to multiply each 

entries of A1 by j from right hand side and  

 rk(A0) = rk(A1j). For above reasons we can establish 

a mapping relation between quaternion EP matrices 

and complex matrices as follows:  

f : A
nxn

EQ  (A0,A1)       (1.1.2) 

where AsCnxn (s=0,1).  

The set of nxn quaternion matrices is written 

as A and the set of image of A is written as Aimg . 

Theorem 1.1 

            Let f:A
nxn

EQ  (A0,A1), (AsCnxn(s=0,1),  

Then the mapping f is a bijective mapping from A to 

Aimg. 

Proof 

 For any entry (A0,A1) in Aimg, there exists 

the corresponding q-EP matrixA = A0+A1j in A, 

therefore f is a surjection from A to Aimg. 

Simultaneously, since any q-EP matrix in A can be 

uniquely represented as the form (1.1.1), So f is an 

injection from A to Aimg. Thus f is bijective mapping 

from a to Aimg.The proof is complete. 

Theorem 1.2 

 Bijection f : A (A0,A1), AsCnxn 

(s = 0,1) is an isomorphism mapping from A to Aimg. 

 

Proof 

 By the concept of isomorphism mapping, 

this theorem is easy to prove and we omit it here. 

2. The Bicomplex Matrix concept System over 

q-EP 

 According to the complex representation of 

q-EP matrices above, a series of new definition of 

quaternion division algebra which are helpful to 

discuss the algebra problems on quaternion division 

algebra can be given as follows. 

Definition 2.1 

 The matrix E  = E+Ej is said to be an nxn 

unit q-EP matrix if E is an nxn unit matrix, over 

complex field. In particular, if n=1, then R( E ) = 

R(E)+R(E)j =R(1)+(1)j is said to be a unit 

q-EP written as au. 

Definition 2.2 

 Let A = A0+A1j  and B = B0+B1j
nXt

EQ be 

given. The operator R(A*B) = R(A0B0) + R(A1B1)j 

(where A0B0,A1B1 are both the multiplications of 

complex matrices) is called the  *   product of q-EP 

matrices A and B. In particular, if n=t=1, then we can 

drive the * product of q-EP. 

Note: when ACnxn BCnxn, then  

A * B=AB. 

Under the definition 2.1 and 2.2, we give some 

relative properties.For any matrix A,B
nxn

EQ , we 

have: 

1) E *A = A* E =A, where E is a nxn q-

EP matrix: 

2) A+B = B+A; 

3) (A+B)*C = A*C+B*C; 

4) (A*B)T = BT * AT; 

5) Tr(A*B) = Tr(B*A) 
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Similarly, we establish a new definition as follows. 

Definition 2.3 

Let x
1nx

EQ and aH be given. Then a*x = x*a = 

a0x0+a1x1j is called the * product of quaternion EP 

and quaternion EP vector, where R(x) = 

R(x0)+R(x1j), x0Cnx1, x1Cnx1,  a = a0+a1j, a0C, 

a1C. 

Definition 2.4 

         For any q-EP matrix A 
nxn

EQ (A=A0+A1j), 

||A|| = |A1|j is said to be the determinant of A, where 

1.1 is the determinant of A, where 1.1 is the 

determinant of a complex matrix. 

Note: when ACnxn, then ||A||=A 

 The definition 2.3 is reasonable. First of all, 

the result of a q-EP matrix determinant under 

definition 2.4 is a q-EP. Secondly, from 2.4 we can 

see that it can convert the determinant of a  q-EP 

matrix into that of complex matrices to reduce the 

complexity and abstraction. Finally, the new 

determinant has the same fundamental properties as 

that over complex field. That is, if A is a nxn q-EP 

matrix and i  j, then we have 

1) R(||A||) =R( ||AT||) 

2) If quaternion EP matrix B is obtained from 

quaternion EP matrix A by interchanging two 

rows (or columns) of A. then R(||B||) = R(-||A||) 

3) If quaternion EP matrix A has a zero row (or 

column), then R(||A||)=R(||A
T
||)= 0 

4) R(||K*A||) =R( K*n||A||), where 

K*n= K*K* *K
n

 , K H 

5) If the jth row (column) of quaternion matrix A 

equal. A multiple of the ith row(column) of the 

matrix A, then ||A||=0 

6) Suppose that A, B and C are all nxn q-EP 

matrices If all rows of B and C both equal the 

corresponding to rows(columns) of A except that 

the ith row(column) of matrix A equal the sum of 

the ith of B and C, then R(||A||) =      sR 

(||B||)+R(||C||). 

7) If quaternion EP matrix B is the nxn matrix 

resulting from adding a multiple of the ith 

row(column) of matrix A to the jth row (or 

column) of matrix A, then R(||B||)=R(||A||). 

8) Let A and B be nxn q-EP matrices respectively. 

We have R(||A*B||) = ||A||*||B|| 

Up to now, people still treat the inverse matrix 

concept of q-EP matrix A satisfies 

 A-1A = E(where E is a real unit matrix), then people 

think that q-EP matrix A exists its inverse matrix A-1. 

However, people pointedly ignore two questions. An 

issue is how to define the product of quaternion EP 

matrices A-1 and A. The other one is how to make 

calculation of A-1. It indicates that the terminology of 

inverse matrix does not have a clear definition in 

quaternion    q-EP theory. 

In the following, we shall give a new 

definition and specific computational method for the 

inverse of q-EP matrix. 

Definition : 2.5  

 Let A = A0+A1j 
nxn

EQ  be given (where 

A0,A1 both are complex matrices). If the inverse 

matrices of A0 and 
1

1A 
 both exist, then q-EP matrix 

A is said to be invertible and the inverse matrix is 

written as R(A¯ ) = R(
1

0A 
)+R(

1

1A 
)j, where 

1

0A 
,

1

1A 
denote the inverse of complex matrices 

A0,A1 respectively. 

Note : when ACnxn, then A¯ = A-1. 

 Then inverse of q-EP matrix under the new 

definition has the same fundamental properties as 

those under the traditional algebra system. It is easy 

to show the following facts by the new concept, 

namely, if a quaternion EP matrix A is invertible, 

then we have: 

1) R((A¯ )¯ )= R(A) 
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2) R((A¯ )k) = R((Ak)¯ )                  = 

R(
1

0( )kA 
)+R(

1

1( )kA 
)j, where 

A*=A*A*……….*A is product of KA which is 

defined in definition 2.2 

3) If A1,A2,……,Am are all invertible q-EP 

matrices, then  

R((A1*A2*……*Am)¯)  = 

R( mA 
)*R( 1mA 

 )*……..*R( 1A 
) 

Obviously, by the new definition of inverse 

of q-EP matrix above, people can 

  Determine easily whether the inverse matrix 

of q-EP matrices exists or not and calculate the 

inverse matrix if possible. Under the definition of 

inverse of q-EP matrix above, a new concept of 

similar q-EP matrices can be given as follows: 

Definition 2.6 

Let A,B
nxn

EQ , if there exists an invertible 

q-EP matrix P such that A=P¯*B*P, then 

A and B are said to be similar q-EP matrices 

written as A~B. 

Note: When A,BCnxn, A=P¯*B*P is equivalent to 

A = 
1

0P 
BP0, where                P = 

P0+P1j,P0,P1Cnxn. 

For similar q-EP matrices, we will deduce many 

important properties in the next section. 

2. Some applications of the Bicomplex Matrix 

concept System 

 In this section, we establish some important 

theorems to illustrate the applications and 

effectiveness of the new concept system for the 

research of quaternion division algebra. The eigan 

value is an important issue in quaternion division 

algebra theory. So, under the new concept of system, 

we will study firstly the eigen value of q-EP matrix 

and the relation between eigen values of similar q-EP 

matrices in detail. 

 Before showing the application, we will 

introduce firstly some concepts associate with eigen 

value. 

Definition 3.1 

 For any matrix A=(aij) 
nxn

EQ , if there 

exists non-zero quaternion vector XHnx1 and a 

quaternion 
0 1 j    (where 

0 ,
1  are both 

complex numbers such that A*X= * X , then  is 

said to be the left eigen value of A, and X is the left 

eigen vector corresponding to  . 

 For the sake of distinction, we call the left 

eigen value and the left quaternion the left     q-EP 

eigen value and the left q-EP eigen vector 

respectively. 

 According to the new definition of   q-EP 

matrix multiplication and A*X = A*X, we can derive 

that ( * )*E A A  =0. Thus ( )f  =||
~

* E A  || 

is said to be characteristic polynomial of A (where 

the operator ||.|| denotes the determinant of q-EP 

matrix under definition 2.4). 

Theorem 3.2 

A nxn q-EP matrix A = A0 +A1j (where A0, 

A1 both are complex matrices), if  and   are the 

left eigen value of A0 and A1 respectively, then 

aj  and b+ j are the left q-EP eigen value of A. 

Proof 

 Since   and   are the left eigen values of 

A0 and A1 respectively, then there exist nonzero 

vectors. 
1nxC  and

1nxC
 

such that  

A0 = , 1A  we have 

 A*
 

=(A0+A1j)*(  +0j)=A0 = = 

( )aj  * , for all aC 

So aj  and b j are all the left q-EP eigen 

value of A. The proof is complete. 
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Similarly, we introduce a new right q-EP eigen value 

concept. 

Definition 3.3 

 For any matrix A=(aij) 
nxn

EQ , if there 

exists nonzero quaternion vectorH1xn and 

quaternion  = 0+ 1j(where  0,  1 are both 

complex numbers) such that        SY*A =  * Y, 

then   is said that to be the right q-EP eigenvalue of 

A and Y is the right q-EP eigenvector corresponding 

to  . 

For the eigen value of q-EP matrix, we have the 

following theorem: 

Theorem 3.4 

 A nxn q-EP matrix A = A0+A1j (where 

A0,A1 are both complex matrices), if  and  are 

the right q-EP eigen value of A0 and A1 respectively, 

then aj   and b+ j ( 1r  ac ,   bc) are the 

right q-EP eigen values of A. 

Proof 

 Since  and  are the right eigen values of 

A0 and A1 respectively, then there exists nonzero 

vectors 
1XnC  and 

1XnC such that 

0A  , 1A  . We have 

* A = ( 0 j  )*(A0+A1j)  = 0A  

 =  =( aj  )* , for a c  

( j)*A = (0+ j) * (A0+A1j)  =  A1j = j  

  = s(b+ j ) * ( j), for  b c  

 So, aj  and b j are the right q-EP 

eigenvalues of A .The proof is complete. 

Theorem 3.5 

 If the left eigen values of A0 are 

1 2, ........ k   and the left eigen values of A1 are 

1 2, ,........ m   (where A0, A1 both are complex 

matrices), then the left q-EP eigen values of matrix A 

= A0 + A1j are {
s aj  or 

tb j ,for all ac 

bc, s=1,……,k, t=1,……,m}. 

Proof 

 Suppose that  is arbitrary left q-EP eigen 

value of A, then  0   

1

0 1

nj H      , Such that A * =  * , 

that is, 
0 0 0 0

1 1 1 1

A

A

  

  





,Since 0 

 

We know that both  0 and  1 are not zeroes .So 

there are two cases as follows. 

1) When, obviously, we 

have 0 1 2{ , ........ }k    .So,

1{ , 1,2,...... }aj i k   . 

2) When, obviously we have 

1{ , 1,2,...... }aj i k  
.
So,          

1{ , 1,2,....... }b j t m    

To sum up 1),2) and theorem 3.2, we can 

draw the conclusion. The proof is complete. 

Theorem 3.6 

 If the right eigen values of A0 are 

1 2, ,..........., k   and he right eigen values of A1 

are 1 2, ,..........., m    (where A0, A1 both are 

complex matrices), then the right q-EP eigen values 

of matrix A = A0 + A1j are { s aj  or b+ t , a c , 

b c , s=1,……k, t = 1,…….m}. 

This proof is similar to theorem 3.5 so we omit it 

here. 

Theorem 3.7 

 Let A
nxn

EQ , then A and AT have same q-

EP left (right) eigen values 
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Proof 

Since  A=A0+A1j  where A0Cnxn,A1Cnxn), then 

AT=A0
T+A1

Tj. We know A1 and A1
T have the same 

left(right) eigen values (1,2), by Theorem 3.5 and 3.6, 

we can draw the conclusion. 

Theorem 3.8 

 Let A
nxn

EQ and , H  be given. If 

( )  is the left (right) q-EP eigen value of A. Then 

( )  is the right(left) q-EP eigen value of A. 

Proof 

 Since  is the left q-EP eigen value of A, 

then there exists nonzero vector 
 
such that  

 A* =  *  

 Then (A* )T=( * )T. we can have
 

* *T T TA   . 

So,  is the right q-EP eigen value of AT by 

theorem 3.7, we know  is the right q-EP eigen 

value of A. the same proof to  . So, the proof is 

complete. 

 Specially, when ACnxn, if ( )  is the 

left(right) eigen value of A, then ( )  is the 

right(left) eigen value of A . 

Note: By the new definition of q-EP multiplication, 

the left q-EP eigen values of a q-EP matrix is 

equivalent to its right q-EP eigen value. So they are 

both called q-EP eigen value of the q-EP matrix. 

Theorem 3.9 

 Let A,B
nxn

EQ be given. If A~B, then A 

and B have the same eigen values. 

Proof  

 Since A~B, there exists an invertible matrix 

P
nxn

EQ such that A = P¯*B*P, that is equivalent to 

A = P0
-1BP0 and    A1 = P1

-1B1P1 (where A = A0+A1j,               

B = B0+B1j, P = P0+P1j). We know Bs and As (s=0,1) 

have the same eigen values. By theorem 3.5 and 3.6, 

we can draw that A and B have the same eigen 

values. The proof is complete. 

Theorem 3.10  

(the generalized Cayley-Hamilton theorem 

over q-EP division algebra). A q-EP matrix A must 

be the root of its characteristic polynomial 

( )f  =|| *E A  ||. 

Proof  

 According to definition 2.4, we know that 

( )f 
 

= 0 1( )f j 
 
= ||

~

* E A  || 

 = ||( 0 1E Ej  ) – ( 0 1A A j )|| 

= | 0 0E A  |+| 1 1E A  |j= 0 1( ) ( )g h j   

 Where 0( )g 
 

=| 0 0E A  |, 

1( )h  =| 1 1E A  |. 

 According to the Cayley-Hamilton Theorem 

on complex field, we know g(A0)=0,     h(A1) = 0. So 

f(A) = g(A0) + h(A1) = 0. It indicates that q-EP 

matrix A must be the root of its characteristic 

polynomial f( ). So, the proof is complete. 

Theorem 3.11 

 Let A = A0+A1j
nxn

EQ , A0, A1
nxn

EQ be 

given. A is a diagonalizable matrix if and only if both 

A0 and A1 are diagonalizable matrices. 

Proof 

 A is diagonalizable matrix, that is, there 

exists an invertible q-EP matrix P such that 

A=P¯* *P. It is equivalent to             A0 = P0
-

1 0P0 and A1 = P1
-1 1P (where  = 0+ 1j is 

diagonal matrix). So, A is diagonalizable matrix if 

and only if both A0 and A1 are diagonalizable 

matrices, the proof is complete. 
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Corollary 3.12 

 Let A = A0+A1j 
nxn

EQ (where 

A0,A1Cnxn) be given. If A0 and A1 both have n 

different eigen values, then A is diagonalizable 

matrix. 

Corollary 3.13 

 Let A = A0+A1j
nxn

EQ (whereA0,A1Cnxn) 

be given. A q-EP matrix A is diagonalizable matrix if 

and only if and A1 both have n linearly independent 

eigenvectors. 

Corollary 3.14 

   LetA=A0+A1j
nxn

EQ
 
(whereA0,A1C

nxn
) 

be    given. q-EP matrix A is diagonalizable matrix if 

and only if the geometric multiplicity of A0 and A1 

both equal their algebraic multiplicity respectively. 

 In section 2, we have given the new 

definition of the inverse of q-EP matrix, but that of q-

EP is not defined. In fact, a quaternion can be treats 

as a 1x1 matrix. So, we can define the inverse of 

quaternion as follows. 

Definition 3.15 

 For any q-EP a = a0+a1j, if neither of a0 and 

a1 are zeroes, then a¯ = a0
-1+a1

-1j is said to be the 

inverse of a, where as
-1(s=0,1) is the reciprocal of as. 

 It is easy to verify the following facts. For 

any a,bH, we have: 

1) au*a = a*au=a; 

2) a+b = b+a; 

3) (a+b)*c = a*c + b*c 

4) an = (a0)
n+(a1)

nj 

5) If a = a0+a1j has the inverse a¯, then 

a*a¯=au  

In addition, we discover that there are some 

special phenomena about the roots at q-EP 

polynomial under the new definition of q-EP 

multiplication. 

Definition 3.16 

 The polynomial which has the form as 

follows: 

a0*x*0+a1*x*(n-1)+…..+an-1*x*1+an*x*0 is said to be q-

EP polynomial with complex coefficients (where ai,    

i = 0,1,………n are all complex numbers, x = x0 + 

x1j,x
*0 is the * product of  ith quaternion x and x*0 is 

unit q-EP. 

Theorem 3.17 

 Let f(x) be a q-EP polynomial with complex 

coefficient. Then f(x) has infinite q-EP roots. 

Proof 

 By fundamental theorem of algebra, f(x) 

exist at least one complex root x0, then for any given 

complex number x1, obviously, x0+x1j is the root of 

f(x).The proof is complete. 

Theorem 3.18 

 Let f(x) be a q-EP polynomial with complex 

coefficient and A = A0+A1j
nxn

EQ be a given q-EP 

matrix (where, both A0 and A1 are complex matrices). 

If  is the eigen value of A0, then 

f( ) is the eigen value of f(A). 

Proof 

 According to the new definition of    sssq-

EP multiplication, we can easily obtain f(A) =f(A0). 

Since   is the eigen value of A0, So f( ) is the 

eigen value of f(A0). The proof is complete. 

 Under the new concept system, we can also 

solve the problems of system of linear equation A*X 

= b, where operator „*‟ denotes the new 

multiplication of q-EP matrices. 

 As we known, for nay A
nxn

EQ ,A can be 

represented uniquely as A = A0+A1j, where As 

(s=0,1) are nxn complex matrices. Let 
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x =(x10+x11j,x20+x21j,……..,xn0+xn1j)
T and 

b = (b10+b11j,b20+b21j,…….,bn0+bn1j)T be nx1 q-EP 

vectors, then the following theorems are valid. 

Theorem 3.19 

Let A = A0+A1j
nxn

EQ  be given and 

X=X0+X1j be nx1 q-EP vector. If rank(As) = rs and 

the fundamental system of solution to the system of 

homogeneous linear equation  

AsXs=0 is  i1, i2,……. i( -ri) (s=0,1) respectively, 

then any solutions to the q-EP system of 

homogeneous linear equations A*X=0 can be 

expressed as follows 

X=(C01 01+C02 02+………+C0( -
0

r ) 0( -
0

r ))+ 

(C11 11+C12 12+……C1(n- 1r )  (n- 1r )j 

where 
ystC C, ts=0,……n-rs, s=0,1. 

Proof 

 By the new definition of q-EP matrix 

multiplication, the quaternion a system of 

homogeneous linear equations A*X = 0 is equivalent 

to the system of homogenous linear 

sequation
0 0 0

1 1 1

A X b

A X b





. Since any solution to the 

system of homogenous linear equations AsXs=0 can 

be expressed as Xs = 

(Cs1 s1+Cs2 s2+…………..+Cs( -ro) s( -r0) 

(where 
sstC C, ts=1,…..n-rs, s=0,1) and the 

solution of the system of homogenous linear 

equations A*X = 0 are X = X0+X1j, so we can draw 

the conclusion. So, the proof is complete. 

Corollary 3.20 

 Let A = A0+A1j be a given q-EP matrix 

(where Ascnxn, s =0,1) 

 If rank (A0) = rank (A1) =n, then the q-EP 

system of homogenous linear equations A*X=0 has 

unique solution X = 0 = {0,0,…,0}T 

Corollary 3.21 

 Let A = A0+A1j be a given q-EP matrix 

(where Ascnxn, s=0,1). If rank (A0) < n and rank(A1) 

= n, then the q-EP system of homogenous linear 

equations A*X=0 only exists complex solution. 

Theorem 3.22 

Let A = A0+A1j be a given q-EP matrix, X = 

X0+X1j and b = b0+b1j be q-EP vectors. (where 

Ascnxn, Xscnxn,bs=(bs1,bs2…….,bsn)
T, bstc, s = 

0,1, t =1,2,…..n). If there is at least one            

s0{0,1} such that rank (As0) < rank(As0 bs0), then 

the q-EP system of linear equation A*X = b has no 

solution. 

Proof 

 By the new definition of q-Ep matrix 

multiplication the q-EP system of linear equations 

A*X=b is equivalent to the system of linear 

equations
0 0 0

1 1 1

A X b

A X b





, since 

rank(As0) < rank(As0 bs0),  the system of linear 

equations 
0 0 0

1 1 1

A X b

A X b





 have no solutions A*X = b 

has no solution. So, the proof is complete. 

Theorem 3.23 

 Let A = A0+A1j be a given q-EP matrix and 

X = X0 + X1j be a given q-EP vector 

(where Asc
nxn

,Xsc
nxt

,s=0,1). We suppose that the 

fundamental system of solutions to the system of 

linear equations As Xs = 0 is  s1, s2,….. s(n-rs) 

(s=0,1) respectively and  s (s=0,1) is a special 

solution of the system of linear equations Asxs = b, 

respectively, and rank(As) = rank(As bs) (s=0,1), 

then any solution to the q-EP system of linear 

equations A*X=b can be expressed as  

X=( 0+C01 01+C02 02+…….+C0(n-r0) (n-

r0))+( 1+C11 11+C12 12+……..C1(n-n)  1(n- ))j 
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The proof is complete. 

Theorem 3.24 

 Let A = A0+A1j be a given q-EP matrix, X = 

X0+X1j and b=b0+b1j be q-EP vectors (where 

AsCnxn, xsCnxn,bscnx1, (s = 0,1). If rank(as) = 

rank(As bs) = n(s = 0,1), then the q-EP system of 

linear equations A*X = b exists unique solution. 

Proof 

 By the new definition of q-EP matrix 

multiplication, the q-EP system of linear equations 

A*X=b is equivalent to the system of linear equations 

0 0 0

1 1 1

A X b

A X b





and rank(As) = rank(AsBs)=n, we 

know the system of linear equations 

0 0 0

1 1 1

A X b

A X b





have unique solution. So the q-EP 

system of linear equations A*X = b exists unique 

solution.  

Corollary 3.25 

 Let A = A0+A1j be a given nxn q-EP matrix 

and b = b0+b1j be a given nx1 q-EP vector. If 

rank(As) = rank(AsBs)  = n (s=0,1), then the solution 

of the system of equations A*X=b is 

 X = A-1* b0. 

Corollary 3.26 

 Let AQE

nxn and b = b0 + b1j (where bs  

Cnx1, s=0,1,b1 0) be given. Then the q-EP system of 

linear equations A*X = b has no solution. 

Corollary 3.27 

 Let AQE

nxn and bCnx1 be given. If 

rank(A) = rank(A b), then any solution to the q-EP 

system of linear equations A*X = b can expressed as 

X = a-1b+aj, where aCs. 
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