New forms of compactness via grills

M. K. Gupta, Monika Gaur

Department of Mathematics, Ch. Charan Singh University, Meerut-250004, India

Abstract: In the present paper, we introduce and study new types of compactness with respect to a grill, namely ρG – compactness and σG – compactness. Several of its properties are investigated and effects of various kinds of functions on them are studied.

AMS Subject Classification: 54D30, 54C10

Keywords: Grill, *G* – compact, *Gg* – closed, ρG – compact, σG – compact

1. Introduction

In the present paper, we consider a topological space equipped with a grill, a brilliant notion that has been initiated by Choquet [1]. A grill *G* on a topological space *X* is a collection of subsets of *X* satisfying following conditions: (1) $\phi \notin G$, (2) $A \in G$ and $A \subseteq B \Longrightarrow B \in G$, and (3) $A \notin G$ and $B \notin G \Longrightarrow A$ $\cup B \notin G$. *G* ($\{\phi\}$):= *P*(*X*)-{ ϕ } and ϕ are trivial examples of grills. Some useful grills are (i) G_{∞} , the grill of all infinite subsets of *X*, (ii) G_{co} , the grill of all uncountable subsets of *X*, (iii) G_{p} , a particular point grill on *X*.

A topological space (X, τ) with a grill G on X will be denoted by (X, τ, G) . Roy and Mukherjee [6, 7] defined a topology obtained as an associated structure on a topological space (X, τ) induced by a grill on X. According to them, for $A \in P(X)$, $\Phi G(A, \tau)$ or $\Phi G(A)$ or simply $\Phi(A)$ is the set { $x \in X : A \cap U \in G$, for every open neighborhood U of x}. For a grill space (X, τ, G) , the $\mathcal{B} = \{U - A : U \in \tau \text{ and } A \notin G\}$ is a base for the topology τG , finer than τ .

The concept of compactness modulo an ideal was introduced by Newcomb [4]. In 2006, Gupta and Noiri [2] investigated C-compactness modulo an ideal. Recently, Pachón [5] defined two new forms of strong compactness in terms of ideals. Using his idea, we introduce ρG – compactness and σG – compactness in terms of grills.

A subset A of a space (X, τ) is said to be g-closed [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$. It is clear that every closed set is g-closed, but the converse is not true.

If (X, τ, G) is a grill space, (Y, β) a topological space and $f: X \rightarrow Y$ a function, then $f(G) = \{f(G): G \in G\}$ is a grill on *Y*.

Let (X, τ) be a topological space and $A \subseteq X$ then cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) .

2. pG – Compact Spaces

We recall that a subset A of a grill space (X, τ, G) is said to be G – compact [7] if for every cover

 $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of A by elements of τ , there exists finite $\Lambda_0 \subseteq \Lambda$, such that $A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$. The grill space (X, τ, G) is said to be G - compact if X is G - compact.

It is clear that (X, τ) is compact if and only if $(X, \tau, G(\{\phi\}))$ is $G(\{\phi\}) - \text{compact. If}$

 (X, τ) is compact then (X, τ, G) is G – compact.

Definition 2.1: For a grill space (X, τ, G) and $A \subseteq X$, A is said to be ρG – compact if for every family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, if $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$ then there exists finite $\Lambda_0 \subseteq \Lambda$, such that $A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$. The grill space (X, τ, G) is said to be ρG – compact if X is ρG – compact.

It is obvious that (X, τ) is ρG – compact if and only if $(X, \tau, G(\{\phi\}))$ is $\rho G(\{\phi\})$ – compact and that if (X, τ, G) is ρG – compact then (X, τ, G) is G – compact. The converse is not true.

Example 2.2: Let $X = [0, +\infty)$, $\tau = \{ \phi, X \} \cup \{ (r, +\infty) : r \ge 0 \}$ and $G = G_{\infty}$ then :

i) (X, τ, G) is G - compact, because if { V_{α} } a content of X, then there exists $\Lambda_0 \subseteq \Lambda$ with $V \wedge_0 = X$ and hence $X - V \wedge_0 \notin G$.

ii) (X, τ, G) is not ρG - compact, because $X - \bigcup_{r>0} (r, +\infty) = \{0\} \notin G$, but if *n* is a positive integer and $0 < r_1 < r_2 < \dots < r_n$, then X $- \bigcup_{i=1}^n (r_i, +\infty) = X - (r_1, +\infty) \in G$.

Definition 2.3: A subset *A* of a grill space (X, τ, G) is said to be Gg-closed if for every $U \in \tau$, if $A - U \notin G$ then $cl(A) \subseteq U$.

It is easy to check if A is Gg-closed then A is gclosed. The converse is not true.

Example 2.4:1) Let X = R, the set of real numbers, $\tau = \{ \phi, R \} \cup \{ (r, +\infty) : r \in R \}, G = \{ B : B \subseteq R - Q \}$ and if A = Q, then

- (a) A is g-closed because if $U \in \tau$ and A is a subset of U then U = R and $cl(A) = cl(Q) = R \subseteq U$.
- (b) A is not Gg closed since $A (0, +\infty) \notin G$ and $cl(A) = R \not\subset (0, +\infty)$.

2) $X = \{0,1,2\}, \tau = \{\phi, \{0\}, \{1\}, \{0,1\}, X\}, G = \{\{2\}, \{0,2\}, \{1,2\}, X\} \text{ and } A = \{2\}, \text{ then } A \text{ is } Gg - \text{closed because if } U \in \tau \text{ and } A - U \notin G \text{ then we}$ have $A \subseteq U$, and so U = X and $\text{cl}(A) \subseteq U$.

Theorem 2.5: For a grill space (X, τ, G) and a base \mathscr{B} for τ , (X, τ, G) is ρG -compact if and only if all family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open sets in \mathscr{B} , if $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$ then there exists finite $\Lambda_0 \subseteq \Lambda$, such that $X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$.

Proof: Necessary part is easy to prove. For sufficiency, let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of non-empty open subsets of X such that $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. For all $\alpha \in \Lambda$ there exists a family $\{W_{\alpha\beta} : \beta \in \Lambda_{\alpha}\}$ of elements in \mathcal{B} such that $V_{\alpha} = \bigcup_{\beta \in \Lambda_{\alpha}} W_{\alpha\beta}$. Given that $X - \bigcup_{\alpha \in \Lambda} \bigcup_{\beta \in \Lambda_{\alpha}} W_{\alpha\beta} \notin G$ and (X, τ, G) is ρG -compact, there exists $W_{\alpha_1\beta_1}, W_{\alpha_2\beta_2}, ..., W_{\alpha_{\alpha}\beta_{\alpha}}$ such $\begin{array}{l} \text{that} \ X - \bigcup_{i=1}^{n} W_{\alpha_{i}\beta_{i}} \not\in \mathcal{G}. \ \text{But} \ X - \bigcup_{i=1}^{n} V_{\alpha_{i}} \subseteq \\ X - \bigcup_{i=1}^{n} W_{\alpha_{i}\beta_{i}} \quad \text{and so} \ X - \bigcup_{i=1}^{n} V_{\alpha_{i}} \notin \mathcal{G}. \end{array}$

Theorem 2.6: For a grill space (X, τ, G) , the following are equivalent:

- (a) (X, τ, G) is ρG compact.
- (b) $(X, \tau_{\mathcal{G}}, \mathcal{G})$ is $\rho \mathcal{G}$ compact.
- (c) For any family { F_α } _{α∈Λ} of closed subsets
 of X, if ∩_{α∈Λ} F_α ∉ G then there exists
 finite Λ₀ ⊆ Λ, such that ∩_{α∈Λ0} F_α ∉ G

Proof : (a) \Leftrightarrow (c) This is easy to prove.

(b) \Rightarrow (a) Obvious, since $\tau_{\mathcal{G}}$ is finer than τ .

(a) \Longrightarrow (b) We know that the $\mathscr{B} = \{U - A : U \in \tau \text{ and } A \notin G\}$ is a base for the topology τG . Let $\{V_{\alpha}\}$ $_{\alpha \in \Lambda}$ be a family of non-empty open subsets in \mathscr{B} such that $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. For each $\alpha \in \Lambda$ there exists $W_{\alpha} \in \tau$ and $A_{\alpha} \notin G$ such that $V_{\alpha} = W_{\alpha} - A_{\alpha}$. Since $X - \bigcup_{\alpha \in \Lambda} W_{\alpha} \notin G$ then there exists finite $\Lambda_0 \subseteq \Lambda$, such that $X - \bigcup_{\alpha \in \Lambda_0} W_{\alpha} \notin G$. Now $X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \subseteq (X - \bigcup_{\alpha \in \Lambda_0} W_{\alpha})$ $\cup (\bigcup_{\alpha \in \Lambda_0} A_{\alpha}) \notin G$ and so $X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$. Therefore (X, τ_G, G) is ρG -compact.

Theorem 2.7: Let (X, τ, G) be ρG – compact and

 $A \subseteq X$ be Gg-closed set. Then A is ρG -compact.

Proof: Let { V_{α} } _{α∈Λ} be a family of open subsets in *A* such that $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Since *A* is *Gg*-closed, cl(*A*) $\subseteq \bigcup_{\alpha \in \Lambda} V_{\alpha}$ then X = (X - cl(A))

$$\bigcup_{\alpha \in \Lambda} V_{\alpha} \text{ and so } X - [(X - \operatorname{cl}(A))]$$
$$\bigcup_{\alpha \in \Lambda} V_{\alpha}]$$

 $= \phi \notin \mathcal{G}. \text{ Given that } X \text{ is } \rho \mathcal{G} - \text{compact, there exists}$ finite $\Lambda_0 \subseteq \Lambda$, such that $X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin \mathcal{G} \text{ or}$

$$X - [(X - \operatorname{cl}(A)) \cup \bigcup_{\alpha \in \Lambda_0} V_{\alpha}] \notin G. \text{ But } X - [(X - \operatorname{cl}(A)) \cup \bigcup_{\alpha \in \Lambda_0} V_{\alpha}] = \operatorname{cl}(A) - \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$$

and since
$$A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \subseteq \operatorname{cl}(A) - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G, \text{ we have}$$
$$A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G \implies A \text{ is } \rho G - \operatorname{compact.}$$

Theorem 2.8: For ρG – compact subsets A and B of a grill space $(X, \tau, G), A \cup B$ is ρG – compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets such that $(A \cup B) - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Since $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \subseteq (A \cup B) - \bigcup_{\alpha \in \Lambda} V_{\alpha}$ and $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \subseteq (A \cup B) - \bigcup_{\alpha \in \Lambda} V_{\alpha}$, therefore $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$ and $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$, and hence there exist, both finite $\Lambda_1 \subseteq \Lambda$ and $\Lambda_2 \subseteq \Lambda$, with $A - \bigcup_{\alpha \in \Lambda_1} V_{\alpha} \notin G$ and $B - \bigcup_{\alpha \in \Lambda_2} V_{\alpha} \notin G$. This implies that $A - \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} V_{\alpha} \notin G$ and $B - \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} V_{\alpha} \notin G$, and so $(A \cup B) - \bigcup_{\alpha \in \Lambda_1 \cup \Lambda_2} V_{\alpha} \notin G$.

Theorem 2.9: Let (X, τ, G) be a grill space and $A \subseteq X$. Suppose that for all $U \in \tau$, if $A - U \notin G$ then there exist $B \subseteq X$ such that B is $\rho G -$ compact, $A \subseteq B$ and $B - U \notin G$. Then A is $\rho G -$ compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of X such that $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. There exists

 $B \subseteq X$ such that B is ρG - compact, $A \subseteq B$ and $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. There exists finite $\Lambda_0 \subset \Lambda$,

such that $B - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$. Since $A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \subseteq B - \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$ we have $A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$.

Theorem 2.10: Let (X, τ, G) be a grill space and $A \subseteq B \subseteq X$, $B \subseteq cl(A)$ and A be Gg-closed,

then A is ρG – compact if and only if B is ρG – compact.

Proof: First let { *V*_α } _{α∈Λ} be a family of open subsets of *X* such that *B*−⋃_{α∈Λ}*V*_α ∉ *G*. Then *A*−⋃_{α∈Λ}*V*_α ∉ *G*, and given that *A* is ρ*G*− compact there exists finite Λ₀ ⊆ Λ, such that *A*−⋃_{α∈Λ0}*V*_α ∉ *G*. Since *A* is *Gg*−closed, cl(*A*)⊆ ⋃_{α∈Λ0}*V*_α and so cl(*A*)−⋃_{α∈Λ0}*V*_α ∉ *G*. This implies *B*−⋃_{α∈Λ0}*V*_α ∉ *G*.

Conversely, let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of X such that $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Given that A is Gg-closed, $cl(A) - \bigcup_{\alpha \in \Lambda} V_{\alpha} = \phi \notin G$. This implies $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Since B is ρG compact, there exists finite $\Lambda_0 \subseteq \Lambda$, such that $B - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$. Hence $A - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin G$.

Theorem 2.11: Let (X, τ, G) be a grill space such that (X, τ) is Hausdorff. If A is ρG – compact subset of X, then A is closed in (X, τ_G) .

Proof: Let *A* be ρ*G* – compact subset of Hausdorff grill space (*X*, τ, *G*). Let *x* ∉ *A*. Then for each *y* ∈ *A*, there exist neighborhoods *U_y* and *V_y* of *x* and *y* respectively such that *U_y*∩*V_y* = φ. Note that *x* ∉ cl(*V_y*). Now { *V_y* : *y* ∈ *A*} is a τ-open cover of *A* which is *A*−⋃_{*α*∈Λ₀}*V_α* ∉ *G*. Now *x* ∉ cl(*V_y*) for each *y* implies *x* ∉ ⋃_{*y*∈Λ₀} cl(*V_y*) = cl(⋃_{*y*∈Λ₀}*V_y*) . Let *U* = *X* − cl(⋃_{*y*∈Λ₀}*V_y*) and *J* = *A*−cl(⋃_{*y*∈Λ₀}*V_y*) ⊆ *A*−(⋃_{*y*∈Λ₀}*V_y*) = *G*₁(say), with *G*₁ ∉ *G*. Then *U* − *J* ∈ τ_{*G*}(*x*) and (*U*−*J*)∩*A* = φ ⇒ *x* ∉ Φ(*A*). Hence Φ(*A*)⊂ *A*, so *A* is closed in (*X*, τ_{*G*}).

Theorem 2.12: Let (X, τ, G) be a ρG – compact space such that (X, τ) is Hausdorff. If *F* and *G* are disjoint *Gg* – closed subsets of *X*, then there exist disjoint open subsets *U* and *V* of *X*, such that F - U $\notin G$ and $G - V \notin G$.

Proof: The result is clear if $F = \phi$ or if $G = \phi$. Suppose that $F \neq \phi$ and $G \neq \phi$. By Theorem 2.3, we have *F* and *G* are ρG – compact spaces of *X*. We choose $g \in G$, arbitrary but fixed.

For all $f \in F$ there exist disjoint $U_f \in \tau$ and $V_f \in \tau$ such that $f \in U_f$ and $g \in V_f$. Given that $F - \bigcup_{f \in F} U_f \notin G$, there exist $F_g \subseteq F$, finite with $F - \bigcup_{f \in F_g} U_f \notin G$. Let $T_g = \bigcup_{f \in F_g} U_f$ and $W_g = \bigcap_{f \in F_g} V_f$. It is clear that $T_g \cap W_g = \phi$. Now since $G - \bigcup_{g \in G} W_g = \phi \notin G$ and G is ρG - compact, there exist $G_0 \subseteq G$, finite such that $G - \bigcup_{g \in G_0} W_g$, we note that $F - U = \bigcup_{g \in G_0} T_g$ and $V = \bigcup_{g \in G_0} W_g$, we note that $F - U = \bigcup_{g \in G_0} (F - T_g) \notin G$ and $G - V \notin G$. Moreover U and V are disjoint, because if $u \in U \cap V$ then there exists $g_1 \in G_0$ with $u \in W_{g_1}$ and since $u \in T_{g_1}$, we have $T_{g_1} \cap W_{g_1} \neq \phi$, contradiction.

Theorem 2.13: If (X, τ, G) is ρG -compact, $f: (X, \tau) \rightarrow (Y, \beta)$ is a continuous function and if $\mathcal{H} = \{B \subseteq Y : f^{-1}(B) \in G\}$ then :

- (a) \mathcal{H} is a grill on Y.
- (b) (Y, β, \mathcal{H}) is $\rho \mathcal{G}$ compact.

Proof: (a) Suppose that $A \subseteq B \subseteq Y$ and $A \in \mathcal{H}$. Since $f^{-1}(A) \subseteq f^{-1}(B) \in \mathcal{G}$ then $f^{-1}(B) \in \mathcal{G}$ and so $B \in \mathcal{H}$. Now if $A \notin \mathcal{H}$ and $B \notin \mathcal{H}$ then $f^{-1}(A) \notin \mathcal{G}$ and $f^{-1}(B) \notin \mathcal{G}$ and then $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \notin \mathcal{G}$. This implies $A \cup B \notin \mathcal{G}$.

> (b) Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of Y such that $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin \mathcal{H}$ since

 $\begin{aligned} X - \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) &= f^{-1}(Y - \bigcup_{\alpha \in \Lambda} V_{\alpha}) \notin \mathcal{G}. (X, \tau, \mathcal{G}) \text{ is } \rho \mathcal{G} - \text{compact, hence there exists finite} \\ \Lambda_0 &\subseteq \Lambda, \text{ with } f^{-1}(Y - \bigcup_{\alpha \in \Lambda_0} V_{\alpha}) = \\ X - \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha}) \in \mathcal{G}. \text{ Thus } Y - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \in \mathcal{H}. \end{aligned}$

Theorem 2.14: For a ρG – compact space (X, τ, G) and $f: (X, \tau) \rightarrow (Y, \beta)$ a bijective continuous function, one has $(Y, \beta, f(G))$ is ρG – compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of *Y* such that $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} \in f(G)$. There exists $G \in G$ with $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} = f(G)$. Then G = $f^{-1}(f(G)) = X - \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) \notin G$. Given that (X, τ, G) is ρG - compact, there exists finite $\Lambda_0 \subseteq \Lambda$, with $f^{-1}(Y - \bigcup_{\alpha \in \Lambda_0} V_{\alpha}) =$ $X - \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha}) \notin G$.

If $f: X \to Y$ is an injective function and \mathcal{H} is a grill on *Y*, then the set $f^{-1}(\mathcal{H}) = \{ f^{-1}(J) : J \in \mathcal{H} \}$ is a grill on *X*.

Theorem 2.15: Let (Y, β, \mathcal{H}) be ρG – compact, $f: (X, \tau) \rightarrow (Y, \beta)$ a continuous function, then $(X, \tau, f^{-1}(\mathcal{H}))$ is $\rho f^{-1}(\mathcal{H})$ – compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of X such that $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin f^{-1}(\mathcal{H})$. There exists $J \in \mathcal{H}$ with $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} = f^{-1}(J)$. Then $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} = f(f^{-1}(J)) = J \in \mathcal{H}$, and given that (Y, β, \mathcal{H}) is ρG -compact then there exists finite $\Lambda_0 \subseteq \Lambda$, with $f(X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha}) = Y - \bigcup_{\alpha \in \Lambda_0} f(V_{\alpha}) \notin \mathcal{H}$, this implies that $X - \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \notin f^{-1}(\mathcal{H})$.

3. σG – Compact Spaces

Definition 3.1: Let (X, τ, G) be a grill space and $A \subseteq X$, A is said to be σG – compact if for every family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open subsets of X, if $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$ then there exists, finite $\Lambda_0 \subseteq \Lambda$ such that $A \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$. The grill space (X, τ, G) is said to be σG – compact if X is σG – compact.

We note that if (X, τ, G) is a grill space and $(X, \tau G, G)$ is σG – compact, then (X, τ, G) is σG – compact. Also (X, τ, G) is σG – compact if and only if for any family $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed subsets of X, if

 $\bigcap_{\alpha \in \Lambda} F_{\alpha} \notin G \quad \text{then there exists, finite } \Lambda_0 \subseteq \Lambda$ such that $\bigcap_{\alpha \in \Lambda_0} F_{\alpha} = \phi$.

It is clear that (X, τ) is compact if and only if $(X, \tau, G(\{\phi\}))$ is $\sigma G(\{\phi\})$ -compact, and that if (X, τ, G) is σG -compact then (X, τ, G) is ρG -compact, and (X, τ) is compact.

Example 3.2: (1) Let $X = Z^+$, $\tau = \{ A \subseteq X : X - A \text{ is finite } \} \bigcup \{\phi\}$, and $G = \{ A \subseteq X : A \text{ is infinite} \}$. Then

- (a) (X, τ, G) is ρG compact, because if $\{F_i\}_{i\in\Lambda}$ is a family of closed subsets of X with $\bigcap_{i\in\Lambda} F_i \notin G$, then there exists $i_0 \in \Lambda$ such that $F_{i_0} \neq X$. Thus $F_{i_0} \notin G$.
- (b) (X, τ, G) is not σG compact, because if F_n = {1, 2, ...,n} then F_n is a closed subset of X and $\bigcap_{n=1}^{\infty} F_n = \{1\} \notin G$, but if $n_1, n_2, ..., n_r \in Z^+$ then $\bigcap_{k=1}^r F_{n_k} \neq \phi$.

Theorem 3.3: Let (X, τ, G) be a grill space and \mathscr{B} a base for τ , then (X, τ, G) is σG – compact if and only if for every family $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of open sets in \mathscr{B} , if $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$ then there exists, finite $\Lambda_0 \subseteq \Lambda$ such that $X = \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$.

Proof: Necessary part is easy to proof.

Conversely, let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of non-empty open subsets of X such that $X - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. For all $\alpha \in \Lambda$ there exists a family $\{W_{\alpha\beta} : \beta \in \Lambda_{\alpha}\}$ of elements in \mathcal{B} such that $V_{\alpha} = \bigcup_{\beta \in \Lambda} W_{\alpha\beta}$.

Given that $X - \bigcup_{\alpha \in \Lambda} \bigcup_{\beta \in \Lambda_{\alpha}} W_{\alpha\beta} \notin G$ and (X, τ, G)) is σG - compact, there exist $W_{\alpha_1\beta_1}, W_{\alpha_2\beta_2}, W_{\alpha_3\beta_3}, \dots, W_{\alpha_r\beta_r}$ such that

$$X = \bigcup_{i=1}^{r} W_{\alpha_i \beta_i}.$$
 But

$$X = \bigcup_{i=1}^{r} W_{\alpha_{i}\beta_{i}} \subseteq \bigcup_{i=1}^{r} V_{\alpha_{i}} \subseteq X \quad \text{and} \quad \text{so}$$
$$X = \bigcup_{i=1}^{r} V_{\alpha_{i}}.$$

Now we investigate the behavior of subspaces of a σG – compact space.

Theorem 3.4: Let (X, τ, G) be σG – compact and $A \subseteq X$ be Gg-closed, then A is σG – compact.

Proof: Let {*V*_α}_{α∈Λ} be a family of open subsets of *X* such that *A*−⋃_{α∈Λ}*V*_α ∉ *G*.Since *A* is *Gg*− closed, cl(*A*) ⊆ ⋃_{α∈Λ}*V*_α. Then *X* = (*X*−cl(*A*)) ∪ (⋃_{α∈Λ}*V*_α) and so *X*−[(*X*−cl(*A*)) ∪ (⋃_{α∈Λ}*V*_α)] = φ∉ *G*. Given that *X* is σ*G* − compact, there exists finite Λ₀ ⊆ Λ, such that *X* = (*X*−cl(*A*)) ∪ (⋃_{α∈Λ₀}*V*_α). Then *A* = *A* ∩ [(*X*−cl(*A*)) ∪ (⋃_{α∈Λ₀}*V*_α)] = [*A* ∩ ⋃_{α∈Λ₀}*V*_α] ⊆ ⋃_{α∈Λ₀}*V*_α.

Theorem 3.5: For A and $B \sigma G$ – compact subsets of a grill space $(X, \tau, G), A \cup B$ is σG -compact.

Proof: This proof is similar to that of Theorem 2.8.

Theorem 3.6: Let (X, τ, G) be a grill space and $A \subseteq X$. Suppose that for all $U \in \tau$, if $A - U \notin G$, then there exist $B \subseteq X$ such that B is σG - compact, $A \subseteq B$ and $B - U \notin G$. Then A is σG - compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of X such that $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. There exist $B \subseteq X$ such that B is σG - compact, $A \subseteq B$ and $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Hence there exist, finite $\Lambda_0 \subseteq \Lambda$, such that $B \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$ and so $A \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$.

Theorem 3.7: For a grill space (X, τ, G) and $A \subseteq B \subseteq X$ and $B \subseteq cl(A)$:

(1) If A is g-closed and σG -compact, then B is σG -compact.

(2) If A is Gg-closed and B is σG -compact, then A is σG -compact.

Proof: (1) Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of X such that $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Then $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$, and given that A is σG – compact, so there exist, finite $\Lambda_0 \subseteq \Lambda$, such that $A \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$. Since *A* is *g*-closed, $\operatorname{cl}(A) \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$, and this implies $B \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$.

(2) Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of Xsuch that $A - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Given that A is Ggclosed, $\operatorname{cl}(A) - \bigcup_{\alpha \in \Lambda} V_{\alpha} = \phi \notin G$, and this implies $B - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Since B is σG - compact, therefore there exist, finite $\Lambda_0 \subseteq \Lambda$, such that $B \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$. Hence $A \subseteq \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$.

Theorem 3.8: Let (X, τ, G) be a grill space such that (X, τ) is Hausdorff. If A is a σG – compact subset of X, then A is closed in (X, τ_G) .

Proof : This is an easy consequence of Theorem 2.11.

Theorem 3.9: If (X, τ, G) is σG - compact, $f: (X, \tau) \rightarrow (Y, \beta)$ is a continuous surjective function and if $\mathcal{H} = \{B \subseteq Y : f^{-1}(B) \notin G\}$ then (Y, β, \mathcal{H}) is $\sigma \mathcal{H}$ -compact.

Proof: In Theorem 2.13, we prove that \mathcal{H} is a grill on *Y*. Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of *Y* such that $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin G$. Since

 $\begin{aligned} X - \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) &= f^{-1}(Y - \bigcup_{\alpha \in \Lambda} V_{\alpha}) \notin G \\ \text{and} (X, \tau, G) \text{ is } \sigma G - \text{compact, therefore there exist,} \\ \text{finite } \Lambda_0 &\subseteq \Lambda \text{, such that } X = \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha}). \end{aligned}$ Given that *f* is surjective so we have $Y = \bigcup_{\alpha \in \Lambda_0} V_{\alpha}. \end{aligned}$

Theorem 3.10: For a σG – compact space (X, τ, G) and $f: (X, \tau) \rightarrow (Y, \beta)$ a continuous bijective function, we have $(Y, \beta, f(G))$ is $\sigma f(G)$ – compact.

Proof: Let $\{V_{\alpha}\}_{\alpha \in \Lambda}$ be a family of open subsets of *Y* such that $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} \notin f(\mathcal{G})$. There exist $G \in \mathcal{G}$ with $Y - \bigcup_{\alpha \in \Lambda} V_{\alpha} \neq f(\mathcal{G})$. Then $G = f^{-1}(f(G))$ and $X - \bigcup_{\alpha \in \Lambda} f^{-1}(V_{\alpha}) \notin G$. Given that (X, τ, G)) is σG - compact, therefore there exist, finite $\Lambda_0 \subseteq \Lambda$, such that $X = \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha})$. Since fis bijective, $Y = \bigcup_{\alpha \in \Lambda_0} V_{\alpha}$.

Theorem 3.11: Let $f: (X, \tau) \rightarrow (Y, \beta)$ be a bijective and open function and $(Y, \beta, \mathcal{H}) \sigma \mathcal{H} -$ compact space, then $(X, \tau, f^{-1}(\mathcal{H}))$ is $\sigma f^{-1}(\mathcal{H}) -$ compact.

Proof: Let {*V*_α}_{α∈Λ} be a family of open subsets of *X* such that *X* − ⋃_{α∈Λ}*V*_α ∉ *f*⁻¹(*H*). There exist *H* ∈ *H* with *X* − ⋃_{α∈Λ}*V*_α = *f*⁻¹(*H*). Then *Y* − ⋃_{α∈Λ}*f*(*V*_α) = *f*(*f*⁻¹(*H*)) = *H* ∉ *H*. Given that (*Y*, β, *H*) is σ*H*−compact, therefore there exist, finite Λ₀ ⊆ Λ, such that *Y* = ⋃_{α∈Λ₀}*f*(*V*_α). This implies that *X* = ⋃_{α∈Λ₀}*V*_α.

References

- [1] Choquet, G., Sur les notions de filter et grille, *Comptes Rendus Acad. Sci. Paris*, **224**(1947), 171-173.
- [2] Gupta, M.K., and Noiri, T., C-compactness modulo an ideal, *International J. Math. and Math. Sci.*, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135.
- [3] Levin, N., Generalized closed sets in Topological spaces, *Rend. Circ. Mat. Palermo*, **19** (1970), 89-96.
- [4] Newcomb, R.L., Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
- [5] Pachón, N.R., New forms of strong compactness in terms of ideals, *Int. J. of Pure and App. Math.*, 106(2)(2016),481-493.DOI: 10.12732/ijpam.v106i2.12.
- [6] Roy, B., and Mukherjee, M. N., On a typical topology induced by a grill, *Soochow J. of Math.*, 33(4)(2007), 771-786.
- [7] Roy, B., and Mukherjee, M.N., On a type of compactness via grills, *Matematicki Vesnik*, 59(2007), 113-120.