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Abstract:  

This  analysis investigated with the boundary layer flow and heat transfer aspects of a micropoloar nanofluid over a 

porous shrinking sheet with thermal radiation. The boundary layer equations governed by the partial differential 

equations are transformed in to a set of ordinary differential equations with the help of suitable local similarity 

transformations. The coupled nonlinear ordinary differential equations are solved by the implicit finite difference 

method along with the Thamous algorithm. Dual solutions of dimensionless velocity, angular velocity, temperature 

and concentration profiles are analyzed by the effect of various controlling flow parameters viz., Lewis number Le, 

thermophoresis Nt, Brownian motion parameter Nb, Radiation parameter R, Prandtl number Pr, material 

parameter K, mass suction parameter S, magnetic parameter M. Physical quantities such as skin frication 

coefficient, local heat, local mass fluxes are also computed and are shown in a table.    

  

Keywords: MHD, micropolar fluid flow, thermal radiation, nanofluid, shrinking sheet.  

 

1. Introduction: In last few decades, the research interest in micropolar fluid theory has significantly increased due 

to its enormous applications in many industrial processes. A micropolar fluid is the fluid with internal structures in 

which coupling between the spin of each particle and the macroscopic velocity field is taken into account. It is a 

hydro dynamical framework suitable for angular systems which consist of particles with macroscopic size. Unlike 

the other fluids, micropolar fluids may be described as non-Newtonian fluids consisting of dumb-bell molecules or 

short rigid cylindrical element, polymer fluids, fluid suspension, etc. In addition with the classical velocity field, a 

microrotation vector and a gyration parameter are introduced in the micropolar fluid model in order to investigate 

the kinematics of microrotation. The theory of micropolar fluids, first proposed by Eringen [1,2] can be used to 

study the behaviors of exotic lubricants, polymeric suspensions, muddy and biological fluids, animal blood, 

colloidal solutions, liquid crystals with rigid molecules, etc. The presence of dust or smoke, in particular in a gas 

may also be modeled using micropolar fluid dynamics.  Analysis of the flow and heat transfer of micropolar fluid in 

a vertical channel has been of great interest because the Navier–Stokes equations for Newtonian fluids cannot 

successfully describe the characteristics of fluid with suspended particles. Comprehensive reviews of the theory and 

applications can be found in the review articles by Ariman et al. [3, 4] and the recent books by Lukaszewicz [5] and 

Eringen [6]. The pioneering work of Eringen [1] was extended in boundary layer theory by Peddieson and McNitt 

[7]. Peddieson [8] applied the micropolar fluid model in turbulent flow also. The self-similar solution of boundary 

layer flow of a micropolar fluid over a semi-infinite flat plate was obtained by Ahmadi [9]. Kummerer [10] studied 

the steady two-dimensional flow of micropolar fluid using a numerical technique. BS Malga and Kishan.N [11] 

studied the unsteady free convection and mass transfer boundary layer flow past an accelerated infinite vertical 

porous plate with suction by taking into account the viscous dissipation is considered when the plate accelerates in 

its own plane.  Guram and Smith [12] investigated the stagnation point flow of a micropolar fluid in an infinite plate 

with two different boundary conditions – vanishing spin and vanishing spin gradient. The free convective boundary 

layer flow of a thermomicropolar fluid over a non-isothermal vertical flat plate was discussed by Jena and Mathur 

[13]. Gorla [14] studied the micropolar boundary layer flow near a stagnation point on a moving wall. 

 In a continuation study of flow over a stretching sheet, considerable interest has been placed on fluid flow 

over a shrinking sheet. The study of viscous flow over a shrinking sheet with suction effect at the boundary was first 

investigated by Miklavcic and Wang [15]. Following this pioneering work, many papers on this topic have been 

published. For such problem, the movement of the sheet is in the opposite direction to that of the stretching case, and 

thus the flow moves towards a slot. Goldstein [16] has described the shrinking flow which is basically a backward 

flow. The existence and uniqueness of steady viscous flow due to a shrinking sheet was established by Miklavcic 

and Wang [17] considering the suction effects and they concluded that for some specific values of suction, dual 

solutions exist and also in certain range of suction, no boundary layer solution is possible. The boundary layer flow 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 5 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 306 

near a shrinking sheet is given significant attention due to its increasing engineering applications. The flow 

development around the shrinking sheet was demonstrated by Wang [18] while studying behavior of liquid film on 

an unsteady stretching sheet. Fang [19] studied the boundary layer flow over a continuously shrinking sheet with 

power-law surface velocity and with mass transfer. Fang and Zhang [20] obtained a closed-form analytical solution 

for MHD viscous flow over a shrinking sheet subjected to applied suction through the porous sheet. The unsteady 

viscous flow over a continuously shrinking sheet with mass suction was investigated by Fang et al. [21]. 

Bhattacharyya [22] investigated the steady boundary layer flow and heat transfer over an exponentially shrinking 

sheet. Ishak et al. [23] described the boundary layer flow of non-Newtonian power-law fluid past a shrinking sheet 

with suction and Yacob and Ishak [24] discussed the micropolar fluid flow over a shrinking sheet. Wang‟s [25] 

problem was extended by many researchers showing various aspects of shrinking sheet flow. Radiative heat transfer 

in the boundary layer flow is very important from application point of view, because the quality of the final product 

is very much dependent on the rate of heat transfer of the ambient fluid particles. Elbashbeshy [26] discussed the 

effect of radiation on the forced convection flow of along a heated horizontal stretching surface. Bhatacharyya and 

Layek [27] demonstrated the radiation effects on the steady stagnation-point flow and heat transfer towards a 

permeable shrinking sheet.  

The „„nanofluid‟‟ term was first introduced by Choi [28] to describe the mixture of nanoparticles and base 

fluid such as water and oil. The addition of nanoparticle into the base fluid is able to change the transport properties; 

flow and heat transfer capability of the liquids and indirectly increase the low thermal conductivity of the base fluid 

which is identified as the main obstacle in heat transfer performance. This mixture has attracted the interest of 

numerous researchers because of its many significant applications such as in the medical applications, 

transportations, microelectronics, and chemical engineering, aerospace and manufacturing. A comprehensive 

literature review on nanofluids has been given by Li et al. [29], Kakac and Pramuanjaroenkij [30]. Hunegnaw D and 
Kishan.N [31] studied the the magnetohydrodynamic boundary layer flow and heat transfer of a nanofluid past a 

nonlinearly permeable stretching/shrinking sheet with thermal radiation and suction effect in the presence of 

chemical reaction. Wong and De Leon [32], Saidur et al. [33] and most recently by Mahian et al. [34]. These papers 

are based on the mathematical nanofluid models proposed by Khanafer [35] and Tiwari and Das [36] for the two-

phase mixture containing micro-sized particles. On the other hand, one should also mention the mathematical 

nanofluid model proposed by Buongiorno [37] used in many papers pioneered by Nield and Kuznetsov [38], and 

Kuznetsov and Nield [39] for the free convection boundary layer flow along a vertical flat plate embedded in a 

porous medium or in a viscous fluid. In this model, the Brownian motion and thermophoresis enter to produce their 

effects directly into the equations expressing the conservation of energy and nanoparticles, so that the temperature 

and the particle density are coupled in a particular way, and that results in the thermal and concentration buoyancy 

effects being coupled in the same way.  

 

Srinivas Maripala and Kishan.N,[40],  studied the Unsteady MHD flow and heat transfer of nanofluid over a 

permeable shrinking sheet with thermal radiation and chemical reaction. Recently, Krishnendu Bhattacharyya 

et.al.[41] studied the  Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking 

sheet. 

The main goal of the present study in to investigate the MHD flow and heat transfer in micropolar 

nanofluid over a porous shrinking sheet with thermal radiation are studied. It is very interesting to investigate the 

simultaneous effects of the thermal radiation and the microrotation on the steady flow. The nonlinear self-similar 

ordinary differential equations obtained here are solved numerically by finite difference technique with the help of 

Cranck-Nicklson method using Thomus algoritham. The complete effects of several parameters are discussed in 

detail. 

2. Analysis of the flow problem: 

Consider, unsteady two-dimensional laminar boundary layer flow of incompressible electrically conducting viscous 

microploar nanofluid and heat transfer a porous shrinking sheet with thermal radiation. The flow is subjected to a 

transverse magnetic field of strength B0 , which is assumed to be applied in the positive   𝑦 − direction, normal to 

the surface. It is assumed that the velocity of the shrinking sheet 𝑈𝑊 = −𝐶𝑋   with c > 0 being shrinking constant. 

Using boundary layer approximation, the equations of motion for the micropolar nanofluid and heat transfer may be 

written in usual notation as: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                      (1) 
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Subject to the boundary conditions: 

    𝑢 = 𝑈𝑤 =  −𝑐𝑥 , = 𝑣𝑤  , 𝑁 =  −𝑚
𝜕𝑢

𝜕𝑦
 ,     𝑇 = 𝑇𝑤    𝐶 = 𝐶𝑤  at  𝑦 = 0 ,                                                 (6) 

And   𝑢                 0,    𝑁                0,  𝑇                 𝑇∞   and  𝐶 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜  𝐶∞      as   𝑦  tends to  ∞, 

Where  𝑢   and 𝑣  are velocity components in 𝑥  and 𝑦  direction respectively, 𝑣(= µ/𝜌)  is the kinemetic fluid 

viscosity, ρ is the fluid density, µ is the dynamic viscosity,  𝑁   is the microrotation or angular velocity whose 

direction is normal to the 𝑥𝑦 -plane,  𝑗 is microinertia per unit mass, γ is spin gradient  viscosity, 𝑘 is the vortex 

viscosity (gryo-viscosity,) T is the temperature, C is the concentration of the fluid,  𝑘∗ is the thermal conductivity of 

the fluid, 𝐶𝑝  is the specific heat, 𝑞𝑟  is the radiative heat flux,  𝑇𝑤  and  𝐶𝑤  - the temperature and concentration  of the 

sheet, 𝑇∞  and  𝐶∞ - the ambient temperature and concentration, 𝐷𝐵  - the Brownian diffusion coefficient,  𝐷𝑇  the 

thermophoresis coefficient, 𝐵0 - the magnetic induction, (𝜌𝐶)𝑝  - the heat capacitance of the nanoparticles, (𝜌𝐶)𝑓- 

the heat capacitance of the base fluid, and τ  = (𝜌𝐶)𝑝/(𝜌𝐶)𝑓    is the ratio between the effective heat capacity of the 

nanoparticles material and heat capacity of the fluid. Here,  𝑣𝑤  is the wall mass transfer velocity with 𝑣𝑤 < 0 for 

mass suction and 𝑣𝑤 > 0   for mass injection. We note that m is constant such that  0≤m≤1. The case m=0 

indicates 𝑁 = 0  at the surface. It presents flow of concentrated particle in which the microelements closed to the 

wall surface are unable to rotate [42]. This case is also known as strong concentration of microelements [43]. The 

case m=0.5 indicates the vanishing of the anti-symmetric part of the stress tensor and denotes weak concentration of 

microelements [44]. Whereas, the case m=1 suggested by Peddiesion [45] is used for the modeling of turbulent 

boundary layer flows. Following, Ahmadi [44], Gorla [46], or Ishak et al. [47], we assumed that spin gradient 

viscosity y is given by   : 

 𝛾 =  µ + 𝑘 2  𝑗 =  µ(1 + 𝑘 2  𝑗 ,          (7) 

where 𝐾 = 𝑘 µ  is the material parameter. This assumption is in voked o allow the field of equations to predict  the 

correct behavior in the limiting case when the microstructure effects become negligible and the total spin N reduces 

to the angular velocity[44]. 

 Using Rosseland‟s approximation for radiation [48], we obtain  𝑞𝑟 =  −(4𝜎/3𝑘1) 𝜕𝑇4 𝜕𝑦    where 𝜎 the Stefan-

Boltzman constant is,   𝑘1 is the absorpation coefficient. We presume that the temperature variation within the flow 

is such that   𝑇4  may be expanded in a Taylor‟s series. Expanding  𝑇4   about 𝑇∞  and neglecting higher order terms 

we get, 𝑇4 = 4 𝑇∞
3 𝑇 − 3 𝑇∞

4  

 Now Eq.(4)  reduces to: 

𝑢
𝜕𝑇
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+ 𝑣
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=

𝑘∗
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16𝜎𝑇∞

3 

3𝑘1ρCp
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𝜕𝑦2 −  τ[𝐷𝐵
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
  

𝑑𝑇

𝑑𝑦
 

2

]       (8) 

The following transformations are introduced  : 

𝜓 = (𝑐𝑣)
1

2  𝑋 𝑓 𝜂 ,    𝑁 = 𝑐𝑋(𝑐/𝑣)
1

2  ℎ 𝜂  , = 𝑇∞ + (𝑇𝑤 − 𝑇∞) 𝜃 𝜂  ,                                                                   𝐶 =

𝐶∞ + (𝐶𝑤 − 𝐶∞) 𝜑 𝜂 ,    𝜂 = (𝑐/𝑣)
1

2 𝑦                                                                       (9) 
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 Where 𝜓  is the stream function defined in the usual notation as  𝑢 = 𝜕𝜓 𝜕𝑦    and 𝑣 = −𝜕𝜓 𝜕𝑥  and ƞ is the 

similarity variable. 

Now, Eq. (1) is identically satisfied and the Eqs.(2), (3) and (8) reduce  to the following nonlinear self-

similar ordinary differential equations : 

 1 + 𝐾 𝑓‴ +  𝑓𝑓″ − 𝑓′2 + 𝐾ℎ′ −𝑀𝑓′ =  0               (10) 

 1 + 𝐾/2 ℎ″ +  𝑓ℎ′ − 𝑓 ′ℎ − 𝐾 2ℎ + 𝑓″ =  0               (11) 

 3𝑅 + 4 𝜃″ +  3𝑅𝑃𝑟𝑓𝜃 ′ + Pr⁡(𝑁𝑏 𝜃 ′ + 𝑁𝑡 𝜃 ′2) =  0                                                                          (12) 

𝜑′′ +  𝐿𝑒𝑓𝜑′ +
𝑁𝑡

𝑁𝑏
𝜃 ′′ =  0                   (13) 

Where primes denote differential with respect to ƞ. 𝑀-  𝑃𝑟 = µ𝐶𝑝 𝑘∗   is the Prandtl number , 𝑁𝑏 = τ 𝐷𝐵(𝐶𝑤 −

𝐶∞) /𝑣 is Brownian motion parameter, 𝑁𝑡 = τ 𝐷𝑇(𝑇𝑤 − 𝑇∞) /𝑣𝑇∞ is thrmophoresis parameter,   𝐿𝑒 = 𝑣/𝐷𝐵  is  

Lewis number and  𝑅 = 𝑘∗𝐾1 4𝜎𝑇∞
3   is the thermal radiation parameter. The transformed boundary conditions are  

 

𝑓 ƞ = 𝑆, 𝑓 ′(ƞ) = −1,  ℎ ƞ = −𝑚 𝑓′′ ƞ  ,   𝜃 ƞ = 1  , 𝜑 ƞ = 1   at  ƞ = 0 

And  𝑓 ′ ƞ 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0  , ℎ′ ƞ 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜    0,  𝜃 ′ ƞ 𝑡𝑒𝑛𝑑𝑠 𝑡𝑜  0 , 𝜑′ ƞ  𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0   as ƞ  tends to ∞ 

And where 𝑆 =  − 𝑣𝑤 (𝑐 𝑣)
1

2    is wall mass transfer parameter, S>0 corresponds to mass suction and  

𝑆 < 0  corresponds to mass injection. 

Table I: Numerical values of f ''(0), g '(0),'(0) and '(0) at the sheet for different values of  
𝑁𝑡 ,Nb,Le and M when  K=0.1,m=0.5,Pr=1.0,R=1.0.  

 

  f ''(0) g '(0) '(0) '(0) 

 

 

Nt 

 

0.1 

0.2 

0.3 

0.4 

0.5 

 

  -0.654881 

-0.64741 

-0.63809 

-0.62081 

 -0.619554 

 

-0.253793 

-0.249314 

-0.234939 

-0.220668 

-0.216498 

 

1.085830 

1.065970 

1.066430 

1.069200 

0.998283 

 

2.326034 

2.216199 

2.107338 

1.999418 

1.992407 

 

 

Nb 

 

0.1 

0.2 

0.3 

0.4 

0.5 

 

-0.602010 

-0.635423 

-0.646809 

-0.652032 

-0.654779 

 

-0.221426 

-0.229303 

-0.244939 

-0.247504 

-0.248841 

 

1.111610 

1.065070 

1.026430 

0.990473 

0.956098 

 

1.30727 

1.88328 

2.07338 

2.16771 

2.22387 

 

 

Le 

1 

10 

20 

50 

100 

-0.444950 

-0.649813 

-0.683747 

-0.714107 

   -0.729246 

-0.144039 

-0.236340 

-0.254022 

-0.270606 

-0.279186 

1.27846 

1.12596 

1.10025 

1.08001 

1.07134 

-0.185624 

1.999160 

3.160030 

5.353600 

    7.757390 

 

 

M 

0 

5 

10 

20 

         50 

-0.902584 

-0.772424 

-0.646809 

-0.524913 

   -0.406157 

-0.3743770 

-0.3042750 

-0.2349390 

-0.1662230 

-0.0980246 

 

0.976165 

1.002770 

1.026430 

1.047850 

1.087500 

 

2.03765 

2.05617 

2.07338 

2.08950 

     2.10473 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 5 August 2017 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 309 

3. Results: 

The computations have been carried out for various flow parameters such as  mass suction parameter S, magnetic 

parameter M, Lewis number Le, thermophoresis parameter Nt, Brownian motion  parameter Nb, radiation parameter 

R, Prandtl number Pr, material parameter K. The values of skin frication coefficient  𝑓″(0) , stress coefficient  ℎ′(0) 

, Nusselt number coefficient −𝜃 ′(0) , Sherwood number coefficient  −𝜑′(0)  for different values of thermophoresis 

parameter Nt, Brownian motion parameter Nb, Lewies number Le, magnetic parameter M  are calculated and shown 

in table I. It is evident that with the increase of thermophoresis parameter Nt the skin frication coefficient 𝑓″(0) and 

stress coefficient  ℎ′(0) increases and the Nusselt number coefficient −𝜃 ′(0), Sherwood number coefficient  −𝜑′(0)  

decreases with the increase of thermophoresis parameter Nt. The effect of Brownian motion parameter Nb is to 

decreases the skin frication coefficient  𝑓″(0) , stress coefficient  ℎ′(0) and Nusselt number coefficient −𝜃 ′(0) 

values, where as it increases Sherwood number coefficient  −𝜑′(0) it is evident from the table that the effect of 

magnetic parameter M  is leads to enhance the values of skin frication coefficient  𝑓″(0), , stress coefficient  ℎ′(0) 

and Nusselt number −𝜃 ′(0) and the , Sherwood number coefficient  −𝜑′(0). 

Figure 1(a)-1(d) shows that for both first and second solution for velocity, angular velocity, temperature, and 

concentration profiles respectively, for different values of mass suction parameter S. For first solution the velocity 

profiles 𝑓 ′ decreases with the increasing in mass suction parameter S, while for second solution the velocity profiles 

increases with increasing in mass suction parameter S. From figure 1(b) it is noticed that the angular velocity 

increases with the increasing of mass suction parameter S for both dual solutions. It can be observed from figure 

1(c) that the temperature profiles decrease with the increase of mass suction parameter S, where as the temperature 

profiles increases with the increase of mass suction parameter S for the second solution. It is also noticed that the 

concentration profiles decreases with the increase of mass suction parameter S for both dual solutions. 

Figure 2(a) represents the effect of constant m for velocity profiles. It is observed that the velocity profiles decreases 

with the increase of m for first solution and increases in the second solution. The angular velocity decreases with the 

increase of m is observed from figure 2(b). Figure 2(c) depicts that the increasing m leads to decreases the 

temperature profiles for first solution and increasing the temperature profiles with the increase of m in second 

solution. Figure 2(d) shows that increasing m enhance the concentration for both first and second solutions. In figure 

3(a) the dual velocity profiles shows that the velocity profiles increases with the increase of magnetic parameter M 

for both these solutions. The effects of magnetic parameter M enhance the dual angular velocity profiles for first and 

second solutions. In figure 3(c) shows that the dual temperature profiles for several values of magnetic parameter M. 

As the increasing magnetic parameter M enhance the temperature profiles for first and second solutions. Figure 3(d) 

depict the dual concentration profiles for the effect of magnetic field parameter M, as the magnetic parameter M 

increases the concentration profiles decreases for first and second solutions. The variations in velocity, angular, 

temperature and concentration profiles distribution for several values of thermophoresis parameter Nt respectively. 

The effect of thermophoresis parameter Nt reduces as increases with the increase of thermophoresis parameter Nt 

for both solutions. It is observed that an increase of thermophoiresis  parameter Nt leads to increased the angular 

velocity profiles for both first and second solutions is also noticed that an increases the value of Nt results increasing 

the temperature profiles and concentration profiles for both first and second solutions. Therefore with increase of 

thermophoresis parameter Nt temperature distribution for both the solutions. The effect of Brownian motion 

parameter Nb on dual velocity, angular, temperature and concentration profiles are shown in fig 5(a) - 5(d). It is 

observed from the figure that the effect of   Brownian motion parameter Nb reduces the velocity profiles for both 

first and second solutions. It is also noticed from figure 5(b) the influence of Brownian motion parameter Nb is to 

enhance the angular velocity for second solution, where as reduce for first solution. The reverse phenomenon is 

observed for both the solutions for accuracy from the boundary. The influence of Nb on dual temperature increases 

with the increase of Nb for both the solutions. This is due to enhance molecular activity at higher values of Nb 

which increase fluid motion and transport of heat energy their diffusion. But the nanoparticle fraction profiles 

decreases for both the first and second solutions with the increasing of Brownian motion parameter Nb.  

The variations in velocity, angular velocity and temperature profiles for different values of material parameter K are 

demonstrated in figure 6(a)-6(c).   From figure 6(a), it is evident that the velocity profiles 𝑓 ′(𝜂) values decreases 

with the increasing of material parameter K for first solution, while, it increases with the material parameter K. In 

the second solution, the dual angular velocity profiles ℎ(𝜂)  in figure 6(b) show that the angular velocity values 

increases as material parameter K decreases for both first and second solution. From the figure 6(c), it is observed 
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that with the increasing values of material parameter K the thermal boundary layer thickness increases for first 

solution and it decreases for second solution. 

The Lewis Number Le effects on velocity and concentration profiles are explained from the figure 7(a) – 7(b). From 

figure 7(a), it is claimed that the velocity profiles are decreases with the increasing of Lewis number Le in both first 

and second solution. The reverse phenomenon observed in figure 7(b) that is the   temperature profiles increases 

with the increase of Lewis number Le. Figure 8 and 9 represents the influence of Prandtl number Pr and the 

radiation parameter R on the dimensional less temperature profiles. It is observed that the thermal conductivity of 

the fluid reduces with the increase of Prandtl number Pr increases same phenomenon is noticed for both first and 

second solutions. The dual temperature profiles are decreases with the increase in radiation parameter R is noticed 

for both first and second solutions from figure 9. 
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