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I. INTRODUCTION& PRILIMINARIES 

 

In each space there is defined a notion of the distance from an arbitrary element to the origin, that is, a notion of 

the “size” of an arbitrary element. The size of an element x is a non-negative real number denoted by ||x|| and 

called norm of x, in such a manner that  

(N1) ||x||  0, and ||x|| = 0 x = 0. 

(N2) ||x|| || ||x|| 

(N3) ||x + y||  ||x|| +||y||. 

 We know that space (Linear space) over which a norm is defined, is called a Normed linear space. 

 We next mention the concept of linear transformation T from a vector space X to another vector space Y with 

the property that T(x + y) = T(x) + T(y) V IF. 

 The main fact about such transformation is that the collection of all linear transformation mapping a vector 

space X into another vector space Y can be viewed as a vector space by defining addition of the linear 

transformation T1 and T2 to be that transformation which takes X into T(x) + T(y) symbolically, 

 We have  

  (T1+ T2)(x) = T1(x) + T2(x) 

 as for scalar multiplication, we have 

  (T)(x) = T(x) 

 We now turn our attention to operator norm and Bounded linear operator. 

 Let the linear mapping T : X  Y where X and Y are two normed spaces over the same field IF. Then the 

operator norm of T in L(X, Y) is defined by  

  ||T|| = sup{||Tx|| : ||x|| = 1} 

 and the linear mapping T  L(X, Y) is said to be a bounded if there exist an M > 0 such that ||Tx||  M such that 

||Tx||  M and ||T|| is then the infimum of all such M.  

In other word, T is said to be a bounded operator if ||T|| is finite otherwise T is called unbounded operator. 

Some other concepts that we shall make extensive use of are Inner product, Hilbert space and Adjoint of an 

operator. 

  

Inner product : Let X be a linear space then an inner product on X is a mapping from X × X the 

Cartesian product space, into the scalar field IF :  

   X × X  IF, <x, y> (x, y) 

 [Here (x, y) denotes the inner product of the two vectors, whereas <x, y> represents only the ordered pair in X × 

X] with the following operator : 

 [I1] let x, y  X then (x, y) = (y , x ) where the bar denotes complex conjugation. 

 [I2] if and  are scalar and x, y, z are vectors then (x +  y, z) = (x, z)  +(y,z) 

 [I3] (x, x)  for all x  X and equal to zero if and only if x is the zero vector. 

 Here, it is important to note that the linear space X with the inner product defined above, is an inner product 

space or pre-Hilbert space.   

With the help of inner product on X, we can define a norm of x by ||x||
2
 = (x, x) with these ideas as a 

background, we are now in a position to give the basic definition of Hilbert space as follows : 
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Let X be an inner product then X is said to be Hilbert space if X is complete with respect  to the norm derived 

from the inner product. We now focus on adjoint of an operator. Let T be an operator on a Hilbert space H and 

there exists a unique T* on H to every T on H such that (Tx, y) = (x, T*y) for al x, y  H. Then T* is called 

adjoint of T. 

Our work in the present paper centres around a special type of operator, called a (3, 2)-jection operator. 

In linear algebra and functional analysis a projection is of fundamental importance, which is defined as a linear 

operator E on a vector space X such that E
2
 = E. That is, wherever E is applied twice to any element x  X, it 

gives the same result as if it were applied once. 

As stated above, projection is a special case of idempotent. On the basis of above definition of projection, we 

develop a new operator called a (3, 2)-jection operator, which is a suitable generalization of projection, defined 

as a linear operator on a linear space X such that E
3
 = E

2
. This definition of (3, 2)-jection operator can be carried 

over verbation to Hilbert space H with an additional condition that E* = E where E* stands for adjoint of E.  

  

II. MAIN RESULT 

The analogous results are listed with the following theorems : 

Theorem 2.1 : 

 If E be a (3, 2)-jection in a Hilbert space H then  

  (x, E
2
x) = (E

2
x, x) = (E

2
x, Ex) =  ||E||

2
. 

Proof : We have 

  (x, E
2
x) = (E*x, Ex) 

    = (Ex, Ex)  { E* = E} 

    = ||Ex||
2
       … (2.1.1) 

 Again,   (E
2
x, x) = (Ex, E*x) 

    = (Ex, Ex)  { E* = E} 

    = ||Ex||
2
       … (2.1.2) 

 Again, (E
2
x, Ex) = (Ex, E*Ex) 

    = (Ex, EEx)  { E* = E} 

    = (Ex, E
2
x) 

    = (x, E*E
2
x) 

    = (x, EE
2
x)   { E* = E} 

    = (x, E
3
x) 

    = (x, EE
2
x) 

    = (x, E
2
x)  { E

3
 = E

2
} 

    = (E*x, Ex) 

    = (Ex, Ex)  { E* = E}  

    = ||Ex||
2
       … (2.1.3) 

 From (2.1.1), (2.1.2) and (2.1.3), we have 

  (x, E
2
x) = (E

2
x, x) = (E

2
x, Ex) = ||Ex||

2
 Proved. 

 

Theorem 2.2 : 

 If E is a (3, 2)-jection in a Hilbert space H then ||E
2
|| = ||E||. 

Proof : Let E be a (3, 2) –jection in a Hillbert space H. 

 Now,  

  (E
2
x, E

2
x) = (Ex, E*E

2
x)   

    = (Ex, EE
2
x)  {  E* = E} 

    = (Ex, E
3
x)  

    = (Ex, E
2
x)  {  E

3
 = E

2
} 

    = (x, E*E
2
x) 

    = (x, EE
2
x) 

    = (x, E
3
x) 

    = (x, E
2
x)  {  E

3
 = E

2
} 

    = (E*x, Ex) 

    = (Ex, Ex)  {  E* = E} 

    = ||E||
2
 

 i.e, ||E
2
x||

2
 = ||Ex||

2
 

    ||E
2
x|| = ||Ex|| 

 Since ||E
2
|| = sup {||E

2
x|| : ||x|| 1} 

   = sup  {||Ex|| : ||x|| 1} 

   = ||E|| 

 Hence, ||E
2
|| = ||E||,  Proved. 
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Theorem 2.3: 

 If E be a (3, 2)-jection operator in R
2
 then ||E|| = 0 or 1. 

Proof : Since E is a (3, 2)-jectionoperator in R
2
 

 Then E* = E    

  E is a normal operator in R
2
.  

  E* = E*E    

  E* – E*E = 0 

  E* – E*E)x, x) = 0      x R
2
 

  E*x, x) – (E*Ex, x) = 0     

  E*x, x) = (E*Ex, x)   

  *x, E*x) = (Ex, Ex)  

  E*x||
2
 = Ex||

2
 

  E*x|| = Ex||        … 

(2.3.1) 

 Now we have  

   E
2
x||  = Ex|| 

    = y||   {putting y = Ex}
 

    = *y||  {using (2.3.1)}
 

    = *Ex||       … 

(2.3.2) 

 Therefore, 

  ||E
2
|| = sup{||E

2
x|| : ||x||  1} 

   = sup{|| E*Ex || : ||x||  1} {using (2.3.2)} 

   = || E*Ex || 

   = ||E||
2
    {since || E*E || = ||E||

2
} 

 || E || = ||E||
2
    {from Theorem (2.2)} 

 || E || – ||E||
2
 = 0  

 || E || (1 – ||E||) = 0 

 || E || = 0 or 1 

 Note : ||E|| = 0  E = 0  

 And if E is a non-zero (3, 2)-jectionoperator  

 then || E || = 1  

 

III. CONCLUSION  

Motivated by the theorem 2.3, we say that a (3, 2)-jection operator on a Hilbert space is a bounded 

operator. 
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