Norm of (3, 2) Jection Operator

Navin Kumar Singh
Research scholar (Reg. No. 1227/14/16).
V.K.S., UNIVERSITY, Ara, Bihar (India)

Abstract

In this paper, we deal with the basic concept of norm of the (3, 2)-jection operator in a Hilbert space and present the deep property concerning with this.

Key words : Norm, Linear transformation, Hilbert space, operator norm of a linear operator, Bounded linear operator.

I. INTRODUCTION\& PRILIMINARIES

In each space there is defined a notion of the distance from an arbitrary element to the origin, that is, a notion of the "size" of an arbitrary element. The size of an element x is a non-negative real number denoted by $\|x\|$ and called norm of x, in such a manner that

$$
\begin{array}{ll}
\left(\mathrm{N}_{1}\right) & \|\mathrm{x}\| \geq 0, \text { and }\|\mathrm{x}\|=0 \Leftrightarrow \mathrm{x}=0 . \\
\left(\mathrm{N}_{2}\right) & \|\alpha \mathrm{x}\|=|\alpha|\|\mathrm{x}\| \\
\left(\mathrm{N}_{3}\right) & \|\mathrm{x}+\mathrm{y}\| \leq\|\mathrm{x}\|+\|\mathrm{y}\| .
\end{array}
$$

We know that space (Linear space) over which a norm is defined, is called a Normed linear space.
We next mention the concept of linear transformation T from a vector space X to another vector space Y with the property that $\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y})=\alpha \mathrm{T}(\mathrm{x})+\beta \mathrm{T}(\mathrm{y}) \forall \alpha, \beta \in \mathrm{IF}$.
The main fact about such transformation is that the collection of all linear transformation mapping a vector space X into another vector space Y can be viewed as a vector space by defining addition of the linear transformation T_{1} and T_{2} to be that transformation which takes X into $T(x)+T(y)$ symbolically,

We have

$$
\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)(\mathrm{x})=\mathrm{T}_{1}(\mathrm{x})+\mathrm{T}_{2}(\mathrm{x})
$$

as for scalar multiplication, we have

$$
(\alpha \mathrm{T})(\mathrm{x})=\alpha \mathrm{T}(\mathrm{x})
$$

We now turn our attention to operator norm and Bounded linear operator.
Let the linear mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ where X and Y are two normed spaces over the same field IF. Then the operator norm of T in $L(X, Y)$ is defined by

$$
\|T\|=\sup \{\|T \mathrm{x}\|:\|\mathrm{x}\|=1\}
$$

and the linear mapping $\mathrm{T} \in \mathrm{L}(\mathrm{X}, \mathrm{Y})$ is said to be a bounded if there exist an $\mathrm{M}>0$ such that $\|\mathrm{Tx}\| \leq \mathrm{M}$ such that $\|\mathrm{Tx}\| \leq \mathrm{M}$ and $\|\mathrm{T}\|$ is then the infimum of all such M .
In other word, T is said to be a bounded operator if $\|\mathrm{T}\|$ is finite otherwise T is called unbounded operator.
Some other concepts that we shall make extensive use of are Inner product, Hilbert space and Adjoint of an operator.

Inner product : Let X be a linear space then an inner product on X is a mapping from $X \times X$ the Cartesian product space, into the scalar field IF :

$$
\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{IF},\langle\mathrm{x}, \mathrm{y}\rangle \rightarrow(\mathrm{x}, \mathrm{y})
$$

[Here (x, y) denotes the inner product of the two vectors, whereas $\langle x, y>$ represents only the ordered pair in $X \times$ $\mathrm{X}]$ with the following operator :
$\left[I_{1}\right] \quad$ let $x, y \in X$ then $(x, y)=\overline{(y, x)}$ where the bar denotes complex conjugation.
$\left[I_{2}\right] \quad$ if α and β are scalar and x, y, z are vectors then $(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z)$
$\left[I_{3}\right] \quad(x, x) \geq$ for all $x \in X$ and equal to zero if and only if x is the zero vector.
Here, it is important to note that the linear space X with the inner product defined above, is an inner product space or pre-Hilbert space.
With the help of inner product on X, we can define a norm of x by $\|x\|^{2}=(x, x)$ with these ideas as a background, we are now in a position to give the basic definition of Hilbert space as follows :

Let X be an inner product then X is said to be Hilbert space if X is complete with respect to the norm derived from the inner product. We now focus on adjoint of an operator. Let T be an operator on a Hilbert space H and there exists a unique T^{*} on H to every T on H such that $(T x, y)=\left(x, T^{*} y\right)$ for al $x, y \in H$. Then T^{*} is called adjoint of T.
Our work in the present paper centres around a special type of operator, called a (3, 2)-jection operator.
In linear algebra and functional analysis a projection is of fundamental importance, which is defined as a linear operator E on a vector space X such that $E^{2}=E$. That is, wherever E is applied twice to any element $x \in X$, it gives the same result as if it were applied once.
As stated above, projection is a special case of idempotent. On the basis of above definition of projection, we develop a new operator called a (3, 2)-jection operator, which is a suitable generalization of projection, defined as a linear operator on a linear space X such that $E^{3}=E^{2}$. This definition of $(3,2)$-jection operator can be carried over verbation to Hilbert space H with an additional condition that $E^{*}=E$ where E^{*} stands for adjoint of E.

II. MAIN RESULT

The analogous results are listed with the following theorems :

Theorem 2.1 :

If E be a (3, 2)-jection in a Hilbert space H then

$$
\left(\mathrm{x}, \mathrm{E}^{2} \mathrm{x}\right)=\left(\mathrm{E}^{2} \mathrm{x}, \mathrm{x}\right)=\left(\mathrm{E}^{2} \mathrm{x}, \mathrm{Ex}\right)=\|\mathrm{E}\|^{2}
$$

Proof:

> We have

$$
\left(\mathrm{x}, \mathrm{E}^{2} \mathrm{x}\right) \quad=\left(\mathrm{E}^{*} \mathrm{x}, \mathrm{Ex}\right)
$$

$$
=(\mathrm{Ex}, \mathrm{Ex}) \quad\left\{\because \mathrm{E}^{*}=\mathrm{E}\right\}
$$

$$
\begin{equation*}
=\|\mathrm{Ex}\|^{2} \tag{2.1.1}
\end{equation*}
$$

$$
\text { Again, }\left(E^{2} x, x\right) \quad=\left(E x, E^{*} x\right)
$$

$$
\begin{equation*}
=\|\mathrm{Ex}\|^{2} \tag{2.1.2}
\end{equation*}
$$

$$
\text { Again, }\left(E^{2} x, E x\right) \quad=\left(E x, E^{*} E x\right)
$$

$$
=(\mathrm{Ex}, \mathrm{EEx}) \quad\left\{\because \mathrm{E}^{*}=\mathrm{E}\right\}
$$

$$
=\left(E x, E^{2} x\right)
$$

$$
=\left(x, E^{*} * E^{2} x\right)
$$

$$
=\left(x, E^{2} \mathrm{x}\right) \quad\left\{\because \mathrm{E}^{*}=\mathrm{E}\right\}
$$

$$
=\left(\mathrm{x}, \mathrm{E}^{3} \mathrm{x}\right)
$$

$$
=\left(x,{E E^{2}}^{2}\right)
$$

$$
=\left(x, E^{2} x\right)
$$

$$
\left\{\because E^{3}=E^{2}\right\}
$$

$$
=(E * x, E x)
$$

$$
=(\mathrm{Ex}, \mathrm{Ex}) \quad\left\{\because \mathrm{E}^{*}=\mathrm{E}\right\}
$$

$$
\begin{equation*}
=\|\mathrm{Ex}\|^{2} \tag{2.1.3}
\end{equation*}
$$

From (2.1.1), (2.1.2) and (2.1.3), we have

$$
\left(x, E^{2} x\right)=\left(E^{2} x, x\right)=\left(E^{2} x, E x\right)=\|E x\|^{2} \quad \text { Proved. }
$$

Theorem 2.2 :

If E is a $(3,2)$-jection in a Hilbert space H then $\left\|E^{2}\right\|=\|E\|$.
Proof: Let E be a $(3,2)$-jection in a Hillbert space H.
Now,

$$
\left(E^{2} x, E^{2} x\right)=\left(E x, E^{*} E^{2} x\right)
$$

$$
=\left(E x, E^{2} x\right) \quad\left\{\because E^{*}=E\right\}
$$

$$
=\left(E x, E^{3} x\right)
$$

$$
\begin{aligned}
& =(\mathrm{EX}, \mathrm{EX}) \\
& =\left(\mathrm{Ex}, \mathrm{E}^{2} \mathrm{x}\right)
\end{aligned} \quad\left\{\because \mathrm{E}^{3}=\mathrm{E}^{2}\right\}
$$

$$
=\left(x, E * E^{2} x\right)
$$

$$
=\left(x, E^{2} x\right)
$$

$$
=\left(\mathrm{x}, \mathrm{E}^{3} \mathrm{x}\right)
$$

$$
\begin{aligned}
& =(X, \mathrm{E} x) \\
& =\left(\mathrm{x}, \mathrm{E}^{2} \mathrm{x}\right)
\end{aligned} \quad\left\{\because \mathrm{E}^{3}=\mathrm{E}^{2}\right\}
$$

$$
=\left(\mathrm{E}^{*} \mathrm{x}, \mathrm{Ex}\right)
$$

$$
=(E x, E x)
$$

$$
\left\{\because E^{*}=E\right\}
$$

$$
\text { i.e, } \quad\left\|E^{2} x\right\|^{2}=\|E x\|^{2}
$$

$$
=\|\mathrm{E}\|^{2}
$$

$$
\underset{c}{\Rightarrow} \quad\left\|\mathrm{E}^{2} \mathrm{E}^{2}\right\|=\|\mathrm{Ex}\|
$$

$$
\text { Since }\left\|E^{2}\right\|=\sup \left\{\left\|E^{2} x\right\|:\|x\| \leq 1\right\}
$$

$$
\begin{aligned}
& =\sup \{\|\mathrm{Ex}\|:\|\mathrm{x}\| \leq 1\} \\
& =\|\mathrm{E}\|
\end{aligned}
$$

Hence, $\left\|E^{2}\right\|=\|E\|, \quad$ Proved.

Theorem 2.3:

If E be a $(3,2)$-jection operator in R^{2} then $\|E\|=0$ or 1 .
Proof: \quad Since E is a (3, 2)-jectionoperator in R^{2}
Then E* $=$ E

$$
\begin{array}{ll}
\Rightarrow & \mathrm{E} \text { is a normal operator in } \mathrm{R}^{2} . \\
\Rightarrow & \mathrm{EE}^{*}=\mathrm{E}^{*} \mathrm{E} \\
\Rightarrow & \mathrm{EE}^{*}-\mathrm{E}^{*} \mathrm{E}=0 \\
\Rightarrow & \left.\left(\left(\mathrm{EE}^{*}-\mathrm{E}^{*}\right) \mathrm{E}\right) \mathrm{x}\right)=0 \quad \forall \mathrm{x} \in \mathrm{R}^{2} \\
\Rightarrow & \left(\mathrm{EE}^{*} \mathrm{x}, \mathrm{x}\right)-\left(\mathrm{E}^{*} \mathrm{Ex}, \mathrm{x}\right)=0 \\
\Rightarrow & \left(\mathrm{EE}^{*} \mathrm{x}, \mathrm{x}\right)=\left(\mathrm{E}^{*} \mathrm{Ex}, \mathrm{x}\right) \\
\Rightarrow & \left(\mathrm{E}^{*} \mathrm{x}, \mathrm{E}^{*} \mathrm{x}\right)=(\mathrm{Ex}, \mathrm{Ex}) \\
\Rightarrow & \left\|\mathrm{E}^{*} \mathrm{x}\right\|^{2}=\|\mathrm{Ex}\|^{2} \\
\Rightarrow & \left\|\mathrm{E}^{*} \mathrm{x}\right\|=\|\mathrm{Ex}\|
\end{array}
$$

(2.3.1)

Now we have

$$
\begin{array}{rlr}
\left\|\mathrm{E}^{2} \mathrm{x}\right\| & =\|\mathrm{EEx}\| & \\
& =\|\mathrm{Ey}\| & \quad \text { \{putting } \mathrm{y}=\mathrm{Ex}\} \\
& =\left\|\mathrm{E}^{*} \mathrm{y}\right\| & \{\text { using }(2.3 .1)\} \\
& =\left\|\mathrm{E}^{*} \mathrm{Ex}\right\| &
\end{array}
$$

(2.3.2)

Therefore,

$$
\begin{aligned}
& \left\|\mathrm{E}^{2}\right\|=\sup \left\{\left\|\mathrm{E}^{2} \mathrm{x}\right\|:\|\mathrm{x}\| \leq 1\right\} \\
& =\sup \left\{\left\|\mathrm{E}^{*} \mathrm{Ex}\right\|:\|\mathrm{x}\| \leq 1\right\} \quad\{\text { using (2.3.2) }\} \\
& =\|\mathrm{E} * \mathrm{Ex}\| \\
& =\|E\|^{2} \quad\left\{\text { since }\|E * E\|=\|E\|^{2}\right\} \\
& \Rightarrow \quad\|\mathrm{E}\|=\|\mathrm{E}\|^{2} \\
& \Rightarrow \quad\|\mathrm{E}\|-\|\mathrm{E}\|^{2}=0 \\
& \Rightarrow \quad\|\mathrm{E}\|(1-\|\mathrm{E}\|)=0 \\
& \Rightarrow \quad\|\mathrm{E}\|=0 \text { or } 1 \\
& \text { Note : }\|\mathrm{E}\|=0 \quad \Rightarrow \quad \mathrm{E}=0 \\
& \text { And if } \mathrm{E} \text { is a non-zero (3, 2)-jectionoperator } \\
& \text { then } \quad\|\mathrm{E}\|=1
\end{aligned}
$$

III. CONCLUSION

Motivated by the theorem 2.3, we say that a (3,2)-jection operator on a Hilbert space is a bounded operator.

REFERENCES

[1] Simmons G.F., Introduction to Topology and Modern Analysis, Indian Edition McGraw Hill Education, 2004, pp. 54, 81, 212.
[2] Bachman George and Narici Lawrence, Functional Analysis" Dover Publication, INC. Mineola, New York, 2000, pp. 238, 365.
[3] Samasundaram D., A first course in Functional Analysis" Narosa Publishing House, India, 2014, pp. 48, 177.
[4] Ponnusamy S., Foundation of functional Analysis" Narosa Publishing House, India, 2014, pp. 255, $256,257$.
[5] Pundhir S.K., A competitive Approach to Linear Algebra" CBS Publishers and Distributors Pvt. Ltd., 2015, pp. 471-473, 489-492.
[6] Cheney Ward \&Kinead David, Linear Algebra Theory and Applications" Second Edition, 2014, pp. 404-410.
[7] Penney, Richard C., Linear Algebra Idea and Applications" second Edition. A John Wiley \& Sons.INC., Publication Moboleen, New Jersey, 2005, pp. 10, 12.
[8] Sharma R.D. \& Jain Ritu, Theory and Problems of Linear Algebra" I.K. International Publishing House Pvt. Ltd.New Delhi India, 2012, pp. 235, 240, 531.
[9] Sehneider Hans \& Barker George Phillip, Matrices and Linear Algebra" Second Edition, Dover Publication, INC., New York, 2015, pp. 96-99.
[10] Sharma J.N. \&Vasistha A.R., Functional Analysis, $15^{\text {th }}$ edition, Krishna Prakashan Mandir, Meerut (U.P.), India, 1994, pp. 316-319, 327.
[11] Jha K.K., Functional Analysis, Students' Friends, Patna India, 1986, pp. 321-324.

