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Abstract. The object of the present paper is to study generalized Sasakian-
space-forms satisfying certain curvature conditions on W7� curvature ten-
sor. In this paper, we study W7� semisymmetric, � �W7� �at, generalized
Sasakian-space-forms satisfying G:S = 0;W7� �at. Also satisfying G:P = 0;

G: eC = 0; G:R = 0:

1. Introduction

In 2011, M.M. Tripathi and P. Gupta [8] introduced and explored �� curvature
tensor in semi -Riemannian manifolds. They gave properties and some identities of
�� curvature tensor. They de�ned W7� curvature tensor of type (0; 4) for (2n +
1)�dimensional Riemannian manifold, as

(1.1) W7(X;Y; Z; U) = R(X;Y; Z; U)�
1

2n
fS(Y; Z)g(X;U)� g(Y; Z)S(X;U)g

where R and S denote the Riemannian curvature tensor of type (0; 4) de�ned by
`R(X;Y; Z; U) = g(R(X;Y )Z;U) and the Ricci tensor of type (0; 2) respectively.
The curvature tensor de�ned by (1:1) is known as W7� curvature tensor. A mani-
fold whose W7� curvature tensor vanishes at every point of the manifold is called
W7� �at manifold. They also de�ned ��conservative semi � Riemannian mani-
folds and gave necessary and su¢ cient condition for semi � Riemannian manifolds
to be �� conservative.
A. Sarkar and U.C. De [1] studied some curvature properties of generalized

Sasakian-space-forms. C. Özgür and M.M. Tripathi [2] have given results on about
P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor.
In [3] C. Özgür studied ��conformally �at LP- Sasakian manifolds. J.L. Cabrerizo
and et al have given results in [7] about the structure of a class of K-contact man-
ifolds.
In di¤erential geometry, the curvature of a Riemannian manifold (M; g) plays a

fundamental role as well known, the sectional curvature of a manifold determine the
curvature tensor R�completely. A Riemannian manifold with constant sectional
curvature c is called a real-space form and its curvature tensor is given by the
equation

R(X;Y )Z = cfg(Y;Z)X � g(X;Z)Y g
for any vector �elds X; Y; Z on M . Models for these spaces are the Euclidean
space (c = 0), the sphere (c > 0) and the Hyperbolic space (c < 0):
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2 SHYAM KISHOR AND PUSHPENDRA VERMA

A similar situation can be found in the study of complex manifolds from a Rie-
mannian point of view. If (M;J; g) is a Kaehler manifold with constant holomorphic
sectional curvature K(X ^JX) = c; then it is said to be a complex space form and
it is well known that its curvature tensor satis�es the equation

R(X;Y )Z =
c

4
fg(Y;Z)X � g(X;Z)Y + g(X; JZ)JY � g(Y; JZ)JX

+2g(X; JY )JZg

for any vector �elds X;Y; Z onM: These models are Cn; CPn and CHn depending
on c = 0; c > 0 and c < 0 respectively.
On the other hand, Sasakian-space-forms play a similar role in contact metric

geometry. For such a manifold, the curvature tensor is given by

R(X;Y )Z = (
c+ 3

4
)fg(Y;Z)X � g(X;Z)Y g

+(
c� 1
4
)fg(X;�Z)�Y � g(Y; �Z)�X + 2g(X;�Y )�Z

+�(X)�(Z)Y � �(Y )�(Z)X + g(X;Z)�(Y )� � g(Y; Z)�(X)�g

for any vector �elds X;Y; Z on M . These spaces can also be modeled depend-
ing on cases c > �3; c = �3 and c < �3:It is known that any three-dimensional
(�; �)�trans Sasakian manifold with �; � depending on � is a generalized Sasakian-
space-forms [9]. Alegre et al. give results in [11] about B.Y. Chen�s inequality on
submanifolds of generalized complex space-forms and generalized Sasakian-space-
forms. Al. Ghefari et al. analyse the CR submanifolds of generalized Sasakian-
space-forms [12; 13]:Sreenivasa. G.T. Venkatesha and Bagewadi C.S. [14] have some
results on (LCS)2n+1�Manifolds. S. K. Yadav, P.K. Dwivedi and D. Suthar [15]
studied (LCS)2n+1�Manifolds satisfying certain conditions on the concircular cur-
vature tensor. De and Sarakar [16] have studied generalized Sasakian-space-forms
regarding projective curvature tensor. Motivated by the above studies, in the
present paper, we study �atness and symmetric property of generalized Sasakian-
space-forms regarding W7 � curvature tensor. The present paper is organized as
follows:-
In this paper, we study theW7�curvature tensor of generalized Sasakian-space-

forms with certain conditions. In section 2, some preliminary results are recalled. In
section 3, we study W7 semisymmetric generalized Sasakian-space-forms. Section
4 deals with � �W7 �at generalized Sasakian-space-forms. Generalized Sasakian-
space-forms satisfying G:S = 0 are studied in section 5. In section 6, W7 � flat
generalized Sasakian-space-forms are studied. Section 7 is devoted to study of
generalized Sasakian-space-forms satisfying G:P = 0: In section 8 contains general-
ized Sasakian-space-forms satisfying G: eC = 0: The last section contains generalized
Sasakian-space-forms satisfying G:R = 0:

2. Preliminary

An odd � dimensional di¤erentiable manifold M2n+1 of di¤erentiability class
Cr+1, there exists a vector valued real linear function �, a 1-form �; associated
vector �eld � and the Riemannian metric g satisfying

(2.1) �2(X) = �X + �(X)�;�(�) = 0
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ON W7� CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS 3

(2.2) �(�) = 1; g(X; �) = �(X); �(�X) = 0

(2.3) g(�X;�Y ) = g(X;Y )� �(X)�(Y )
for arbitary vector �eldsX and Y , then (M2n+1; g) is said to be an almost contact

metric manifold [5], and the structure (�; �; �; g) is called an almost contact metric
structure to M2n+1. In view of (2:1), (2:2) and (2:3), we have

(2.4) g(�X;Y ) = �g(X;�Y ); g(�X;X) = 0

(2.5) rX�(Y ) = g(rX�; Y )
Again we know [10] that in a (2n+1)� dimensional generalized Sasakian-space-

forms, we have

R(X;Y )Z = f1fg(Y; Z)X � g(X;Z)Y g
+f2fg(X;�Z)�Y � g(Y;�Z)�X + 2g(X;�Y )�Zg
+f3f�(X)�(Z)Y � �(Y )�(Z)X + g(X;Z)�(Y )� � g(Y; Z)�(X)�g(2.6)

for any vector �eld X;Y; Z on M2n+1; where R denotes the curvature tensor of
M2n+1 and f1; f2; f3 are smooth functions on the manifold.
The Ricci tensor S and the scalar curvature r of the manifold of dimension

(2n+ 1) are respectively, given by

(2.7) S(X;Y ) = (2nf1 + 3f2 � f3)g(X;Y )� (3f2 + (2n� 1)f3)�(X)�(Y )

(2.8) QX = (2nf1 + 3f2 � f3)X � (3f2 + (2n� 1)f3)�(X)�

(2.9) r = 2n(2n+ 1)f1 + 6nf2 � 4nf3
Also for a generalized Sasakian-space-forms, we have

(2.10) R(X;Y )� = (f1 � f3)f�(Y )X � �(X)Y g

(2.11) R(�;X)Y = �R(X; �)Y = (f1 � f3)fg(X;Y )� � �(Y )Xg

(2.12) �(R(X;Y )Z) = (f1 � f3)fg(Y; Z)�(X)� g(X;Z)�(Y )g

(2.13) S(X; �) = 2n(f1 � f3)�(X)

(2.14) Q� = 2n(f1 � f3)�
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4 SHYAM KISHOR AND PUSHPENDRA VERMA

where Q is the Ricci Operator, i.e.

(2.15) g(QX;Y ) = S(X;Y )

For a (2n+1)� dimensional (n > 1) Almost Contact Metric, theW7� curvature
tensor G is given by

(2.16) G(X;Y )Z = R(X;Y )Z � 1

2n
fS(Y; Z)X � g(Y; Z)QXg

the W7� curvature tensor G in a generalized Sasakia-space-forms satis�es
(2.17)

G(X;Y )� = (f1�f3)[�(Y )X��(X)Y ]�
1

2n
(3f2+(2n�1)f3)[�(X)�(Y )���(Y )X]

(2.18) G(X; �)� =
1

2n
(2nf1 + 3f2 � f3)fX � �(X)�g

(2.19) G(�; Y )� = (f1 � f3)f�(Y )� � Y g

(2.20) G(�;X)Y = (f1 � f3)f2g(X;Y )� � �(Y )Xg �
1

2n
S(X;Y )�

�(G(X;Y )Z) = (f1 � f3)f�(X)g(Y; Z)� �(Y )g(X;Z)g

� 1

2n
(3f2 + (2n� 1)f3)fg(Y;Z)�(X)� �(X)�(Y )�(Z)g(2.21)

Given an (2n + 1)� dimensional Riemannian manifold (M; g), the Concircular
curvature tensor eC is given by
(2.22) eC(X;Y )Z = R(X;Y )Z � r

2n(2n+ 1)
fg(Y;Z)X � g(X;Z)Y g

(2.23) eC(�;X)Y = [f1 � f3 � r

2n(2n+ 1)
]fg(X;Y )� � �(Y )Xg

and

(2.24) �( eC(X;Y )Z) = [f1 � f3 � r

2n(2n+ 1)
]fg(Y; Z)�(X)� g(X;Z)�(Y )g

and Projective curvature tensor is given by

(2.25) P (X;Y )Z = R(X;Y )Z � 1

2n
[S(Y; Z)X � S(X;Z)Y ]

and related term

(2.26) �(P (X;Y )�) = 0

(2.27) �(P (X; �)Z) =
1

2n
S(X;Z)� (f1 � f3)g(X;Z)

(2.28) �(P (�; Y )Z) = (f1 � f3)g(Y;Z)�
1

2n
S(Y; Z)
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ON W7� CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS 5

for any vector �eld X;Y; Z on M:

3. W7� Semisymmetric Generalized Sasakian-Space-Forms

De�nition 1. A (2n+ 1)� dimensional (n > 1) generalized Sasakian-space-forms
is said to be W7� semisymmetric if it satis�es R:G = 0; where R is the Riemannian
curvature tensor and G is the W7� curvature tensor of the space form.

Theorem 1. A (2n+1)� dimensional (n > 1) generalized Sasakian-space-form is
W7� semisymmetric if and only if f1 = f3.

Proof. Let us suppose that the generalized Sasakian-space-forms M2n+1(f1; f2; f3)
is W7� semisymmetric, then we have

(3.1) R(�; U):G(X;Y )� = 0

The above equation can be written as
(3.2)
R(�; U)G(X;Y )� �G(R(�; U)X;Y )� �G(X;R(�; U)Y )� �G(X;Y )R(�; U)� = 0

In view of (2:2); (2:10) & (2:11) the above equation reduces to

(f1 � f3)fg(U;G(X;Y )�)� � �(G(X;Y )�)U � g(U;X)G(�; Y )�(3.3)

+�(X)G(U; Y )� � g(U; Y )G(X; �)� + �(Y )G(X;U)�
��(U)G(X;Y )� +G(X;Y )Ug

= 0

In view of (2:16); (2:17) & (2:18) and taking the inner product of above equation
with �, we get

(3.4) (f1 � f3)fg(U;G(X;Y )� + g(G(X;Y )U; �)g = 0

(3.5) (f1 � f3)fg(U;G(X;Y )�) + �(G(X;Y )U)g = 0

This implies either f1 = f3 or

g(U;G(X;Y )�) + �(G(X;Y )U) = 0

In the light of equation (2:17) and (2:21); the above equation gives

(3.6) �(Y )g(X;U)� �(X)g(U; Y ) = 0

which is not possible in generalized Sasakian-space-form. Conversely, if f1 =
f3; then from (2:11), R(�; U) = 0: Then obviously R:G = 0 is satis�ed. This
completes the proof. �

4. � �W7� Flat Generalized Sasakian-Space-Forms

De�nition 2. A (2n + 1)� dimensional (n > 1) generalized Sasakian-space-form
is said to be W7� �at [6] if G(X;Y )� = 0 for all X;Y 2 TM .

Theorem 2. A (2n+1)� dimensional (n > 1) generalized Sasakian-space-form is
� �W7 � flat if and only if it is �� Einstein Manifold.
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6 SHYAM KISHOR AND PUSHPENDRA VERMA

Proof. Let us consider that a generalized Sasakian-space-forms is ��W7� �at, i.e.
G(X;Y )� = 0 . Then from (2:16), we have

(4.1) R(X;Y )� =
1

2n
fS(Y; �)X � g(Y; �)QXg

(4.2) R(X;Y )� =
1

2n
fS(Y; �)X � �(Y )QXg

By using (2:10) & (2:12) above equation becomes

(4.3) (f1 � f3)f�(Y )X � �(X)Y g = 1

2n
f2n(f1 � f3)�(Y )X � �(Y )QXg

On solving, we get

(4.4) �(Y )QX = 2n(f1 � f3)�(X)Y

putting Y = �; we obtain

(4.5) QX = 2n(f1 � f3)�(X)�

Now, taking the inner product of the above equation with U, we get

(4.6) S(X;U) = 2n(f1 � f3)�(X)�(U)

which implies generalised Sasakian-space-forms is an �� Einstein Manifold. Con-
versely, suppose that (4:6) is satis�ed. Then from (4:1) & (4:4), we get

G(X;Y )� = 0

This completes the proof. �

5. Generalized Sasakian-Space-Forms Satisfying G:S = 0

Theorem 3. A generalized Sasakian-space-form M2n+1(f1; f2; f3) satis�es the
condition G(�;X):S = 0 if and only if either M2n+1(f1; f2; f3) has f1 = f3 or
an Einstein Manifold.

Proof. The condition G(�;X):S = 0 implies that

S(G(�;X)Y; Z) + S(Y;G(�;X)Z) = 0

for any vector �elds X;Y; Z on M . Substituting (2:18) in above equation, we
obtain

(f1 � f3)f2n(f1 � f3)g(X;Y )�(Z)� �(Y )S(X;Z)(5.1)

+2n(f1 � f3)g(X;Y )�(Z)g �
1

2n
2n(f1 � f3)S(X;Y )�(Z)

+(f1 � f3)f2n(f1 � f3)g(X;Z)�(Y )� S(Y;X)�(Z)

+2n(f1 � f3)g(X;Z)�(Y )g �
1

2n
2n(f1 � f3)S(X;Z)�(Y )

= 0
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ON W7� CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS 7

For Z = �, the last equation is equivalent to

(f1 � f3)f2n(f1 � f3)g(X;Y )� 2n(f1 � f3)�(Y )�(Z)(5.2)

+2n(f1 � f3)g(X;Y )g � (f1 � f3)S(X;Y )
+(f1 � f3)f2n(f1 � f3)�(X)�(Y )� S(Y;X)
+2n(f1 � f3)�(X)�(Y )g � 2n(f1 � f3)(f1 � f3)�(X)�(Y )

= 0

Using (2:12), we obtain

(5.3) S(X;Y ) = 2n(f1 � f3)g(X;Y )

S(X;Y ) = �g(X;Y )

which implies, it is an Einstein Manifold where � = 2n(f1 � f3): �

6. W7� flat Generalized Sasakian-space-forms

Theorem 4. A (2n+1)� dimensional (n > 1) generalized Sasakian-space-form is
W7� �at if and only if f1 =

3f2
(1�2n) = f3:

Proof. For a (2n+1)� dimensional W7� �at generalized Sasakian-space-forms, we
have from (2:16)

(6.1) R(X;Y )Z =
1

2n
fS(Y;Z)X � g(Y; Z)QXg

In view of (2:7) & (2:8); the above equation takes the form

(6.2) R(X;Y )Z =
1

2n
f�(3f2 + (2n� 1)f3)(�(Y )�(Z)X + g(Y; Z)�(X)�g

By virtue of (2:6); the above equation reduces to

f1fg(Y;Z)X � g(X;Z)Y g(6.3)

+f2fg(X;�Z)�Y � g(Y;�Z)�X + 2g(X;�Y )�Zg
+f3f�(X)�(Z)Y � �(Y )�(Z)X + g(X;Z)�(Y )� � g(Y; Z)�(X)�g

=
1

2n
f�(3f2 + (2n� 1)f3)(�(Y )�(Z)X + g(Y;Z)�(X)�g

Now, replacing Z by �Z in the above equation, we obtain

f1fg(Y;�Z)X � g(X;�Z)Y g(6.4)

+f2fg(X;�2Z)�Y � g(Y;�2Z)�X + 2g(X;�Y )�2Zg
+f3fg(X;�Z)�(Y )� � g(Y;�Z)�(X)�g

=
1

2n
f�(3f2 + (2n� 1)f3)g(Y;�Z)�(X)�g

Taking inner product of above equation with �, we get
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8 SHYAM KISHOR AND PUSHPENDRA VERMA

f1fg(Y;�Z)�(X)� g(X;�Z)�(Y )g(6.5)

+f3fg(X;�Z)�(Y )� g(Y;�Z)�(X)g

=
1

2n
f�(3f2 + (2n� 1)f3)g(Y;�Z)�(X)g

In view of (2:1) & (2:2), we obtain

(6.6) (2nf1 + 3f2 � f3)g(Y;�Z)�(X)� 2n(f1 � f3)g(X;�Z)�(Y ) = 0
Putting X = � in above equation, we get

(6.7) (2nf1 + 3f2 � f3)g(Y;�Z) = 0
Since g(Y;�Z) 6= 0 in general, we obtain

(6.8) 2nf1 + 3f2 � f3 = 0
Again replacing X by �X in equation (6:3), we get

f1fg(Y; Z)�X � g(�X;Z)Y g(6.9)

+f2fg(�X;�Z)�Y � g(Y;�Z)�2X + 2g(�X;�Y )�Zg
+f3f�(�X)�(Z)Y � �(Y )�(Z)�X + g(�X;Z)�(Y )� � g(Y;Z)�(�X)�g

=
1

2n
f�(3f2 + (2n� 1)f3)[�(Y )�(Z)�X + g(Y; Z)�(�X)�]g

Taking inner product with �

(6.10) (f1 � f3)g(�X;Z)�(Y ) = 0
putting Y = �; we get

(6.11) (f1 � f3)g(�X;Z) = 0
Since g(�X;Z) 6= 0 in general, we obtain

(6.12) f3 = f1

From equation (6:8) and (6:12), we get

(6.13) f1 =
3f2
1� 2n = f3

Conversely, suppose that f1 =
3f2
1�2n = f3 satis�es in generalized Sasakian-spaces-

forms and then we have

(6.14) S(X;Y ) = 0

(6.15) QX = 0

Also, in view of (2:16), we have

(6.16) G(X;Y; Z; U) = �R(X;Y; Z; U)
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ON W7� CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS 9

where G(X;Y; Z; U) = g(G(X;Y )Z;U) and �R(X;Y; Z; U) = g(R(X;Y )Z;U):
Putting Y = Z = ei in above equation and taking summation over i; 1 � i � 2n+1;
we get

(6.17)
2n+1X
i=1

G(X; ei; ei; U) =
2n+10X
i=1

R(X; ei; ei; U) = S(X;U)

In view of (2:6) & (6:16), we have

G(X;Y; Z; U) = f1fg(Y; Z)g(X;U)� g(X;Z)g(Y; U)g
+f2fg(X;�Z)g(�Y; U)� g(Y;�Z)g(�X;U) + 2g(X;�Y )g(�Z;U)g
+f3f�(X)�(Z)g(Y; U)� �(Y )�(Z)g(X;U)
+g(X;Z)�(Y )�(U)� g(Y; Z)�(X)�(U)g(6.18)

Now, putting Y = Z = ei in above equation and taking summation over i; 1 �
i � 2n+ 1; we get

(6.19)
2n+1X
i=1

G(X; ei; ei; U) = 2nf1g(X;U)+3f2g(�X;�U)�f3f(2n�1)�(X)�(U)+g(X;U)g

In view of (6:14) & (6:17), we have

(6.20) 2nf1g(X;U) + 3f2g(�X;�U)� f3f(2n� 1)�(X)�(U) + g(X;U)g = 0

Putting X = U = ei in above equation and taking summation over i; 1 � i �
2n + 1; we get f1 = 0. Then in view of (6:12), f2 = f3 = 0: Therefore, we obtain
from (2:6)

(6.21) R(X;Y )Z = 0

Hence in view of (6:14) ; (6:15) & (6:21), we have G(X;Y )Z = 0:This completes
the proof. �

7. Generalized Sasakian-space-forms satisfying G:P = 0

Theorem 5. A generalized Sasakian-space-formM2n+1(f1; f2; f3) satis�es the con-
dition

G(�;X):P = 0

if and only if M2n+1(f1; f2; f3) has either the sectional curvature (f1 � f3) or the
function f1; f2 and f3 are linearly dependent such that (2nf1�3f2+(1�4n)f3) = 0:

Proof. The condition G(�;X):P = 0 implies that
(7.1)
(G(�;X)P )(Y; Z; U) = G(�;X)P (Y; Z)U�P (G(�;X)Y;Z)U�P (Y;G(�;X)Z)U�P (Y;Z)G(�;X)U = 0

for any vector �elds X;Y; Z on M .
In view of (2:7), we obtain from (2:25)

(7.2) �(P (X;Y )Z) = 0
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Since,
(7.3)

G(�;X)P (Y; Z)U = (f1�f3)f2g(X;P (Y;Z)U)���(P (Y; Z)U)Xg�
1

2n
S(X;P (Y; Z)U)�

(7.4)

P (G(�;X)Y; Z)U = (f1�f3)f2g(X;Y )P (�; Z)U��(Y )P (X;Z)U)�
1

2n
S(X;Y )P (�:Z)U

Finally, we conclude that
(7.5)

P (Y;Z)G(�;X)U = (f1�f3)f2g(X;U)P (Y; Z)���(U)P (Y;Z)X)�
1

2n
S(X;U)P (Y; Z)�

So, substituting (7:3), (7:4) and (7:5) in (7:1), we get

(f1 � f3)f2g(X;P (Y;Z)U)� � �(P (Y;Z)U)X � 2g(X;Y )P (�; Z)U(7.6)

+�(Y )P (X;Z)U � 2g(X;Z)P (Y; �)U + �(Z)P (Y;X)U

�2g(X;U)P (Y;Z)� + �(U)P (Y;Z)Xg � 1

2n
fS(X;P (Y;Z)U)�

�S(X;Y )P (�; Z)U � S(X;Z)P (Y; �)U � S(X;U)P (Y;Z)�g
= 0

Taking inner product with 0�0

2(f1 � f3)fg(X;R(Y; Z)U)� (f1 � f3)(g(X;Y )g(Z;U)� g(X;Z)g(Y; U))g

� 1

2n
fS(X;R(Y;Z)U)� (f1 � f3)(S(X;Y )g(Z;U)� S(X;Z)g(Y;U))g

= 0

Simplifying above equation, we get
(7.7)
(2nf1�3f2+(1�4n)f3)fg(X;R(Y; Z)U)�(f1�f3)(g(X;Y )g(Z;U)�g(X;Z)g(Y; U)g = 0
which say us M2n+1(f1; f2; f3) has the sectional curvature (f1� f3) or the fucn-

tions f1; f2 and f3 are lineraly dependent such that (2nf1�3f2+(1�4n)f3) = 0: �

8. Generalized Sasakian-space-forms satisfying G: eC = 0
Theorem 6. A generalized Sasakian-space-formM2n+1(f1; f2; f3) satis�es the con-
dition

G(�;X): eC = 0
if and only if either the scalar curvature � of M2n+1(f1; f2; f3) is � = (f1 �

f3)2n(2n + 1) or the functions f2 and f3 are linearly dependent such that 3f2 +
(2n� 1)f3 = 0:

Proof. The condition G(�;X): eC = 0 implies that
(G(�;X) eC)(Y; Z; U) = G(�;X) eC(Y;Z)U � eC(G(�;X)Y; Z)U(8.1)

� eC(Y;G(�;X)Z)U � eC(Y;Z)G(�;X)U = 0
for any vector �elds X;Y; Z and U on M: From (2:22) and (2:23), we can easily

to see that
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(8.2)

G(�;X) eC(Y; Z)U = (f1�f3)f2g(X; eC(Y; Z)U)���( eC(Y;Z)U)Xg� 1

2n
S(X; eC(Y;Z)U)�

(8.3)eC(G(�;X)Y; Z)U = (f1�f3)f2g(X;Y ) eC(�; Z)U)��(Y ) eC(X;Z)Ug� 1

2n
S(X;Y ) eC(�; Z)U

(8.4)eC(Y;G(�;X)Z)U = (f1�f3)f2g(X;Z) eC(Y; �)U��(Z) eC(Y;X)Ug� 1

2n
S(X;Z) eC(Y; �)U

and
(8.5)eC(Y; Z)G(�;X)U = (f1�f3)f2g(X;U) eC(Y; Z)���(U) eC(Y;Z)Xg� 1

2n
S(X;U) eC(Y; Z)�

Thus, substituting (8:2), (8:3), (8:4) and (8:5) in (8:1) and after from necessary
abbreviations, (8:1) takes from

(2nf1 � 3f2 � (4n� 1)f3)fg(X;R(Y; Z)U)� (f1 � f3)(g(Z;U)g(X;Y )� g(X;Z)g(Y;U))g
+(f1 � f3 �

�

2n(2n+ 1)
)(3f2 + (2n� 1)f3)fg(X;Z)�(Y )�(U)� g(X;Y )�(Z)�(U)g = 0

Now putting U = � in the above equation, we get

(f1 � f3 �
�

2n(2n+ 1)
)(3f2 + (2n� 1)f3)fg(X;Z)�(Y )� g(X;Y )�(Z)g = 0

This equation tells us that eitherM2n+1(f1; f2; f3) has either the scalar curvature
� = (f1� f3)2n(2n+1) or the functions f2 and f3 are linearly dependent such that
3f2 + (2n� 1)f3 = 0: �

9. Generalized Sasakian-space-forms satisfying G:R = 0

Theorem 7. A (2n + 1)�dimensioanl (n > 1) generalized Sasakian-space-form
satis�ng G.R=0 is an ��Einstein Manifold.
Proof. The condition G(�;X):R = 0 yields to
(9.1)
G(�;X)R(Y; Z)U �R(G(�;X)Y; Z)U �R(Y;G(�;X)Z)U �R(Y; Z)G(�;X)U = 0
for any vector �elds X;Y; Z; U on M . In view of (2:20), we obtain

G(�;X)R(Y;Z)U = (f1 � f3)f2g(X;R(Y; Z)U)� � �(R(Y; Z)U)Xg

� 1

2n
S(X;R(Y; Z)U)�(9.2)

On the other hand, by direct calculations, we have

R(G(�;X)Y;Z)U = (f1 � f3)f2g(X;Y )R(�; Z)U)� �(Y )R(X;Z)Ug

� 1

2n
S(X;Y )R(�; Z)U(9.3)

and

R(Y;G(�;X)Z)U = (f1 � f3)f2g(X;Z)R(Y; �)U � �(Z)R(Y;X)Ug

� 1

2n
S(X;Z)R(Y; �)U(9.4)
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and

R(Y; Z)G(�;X)U = (f1 � f3)f2g(X;U)R(Y; Z)� � �(U)R(Y;Z)Xg

� 1

2n
S(X;U)R(Y; Z)�(9.5)

Substituting (9:2); (9:3); (9:4) & (9:5) in (9:1); we get

(f1 � f3)f2g(X;R(Y; Z)U)� � (f1 � f3)(g(Z;U)�(Y )X � g(Y; U)�(Z)X)
�2g(X;Y )(f1 � f3)(g(Z;U)� � �(U)Z) + �(Y )R(X;Z)U � 2g(X;Z)(f1 � f3)(�(U)Y � g(Y; U)�)
+�(Z)R(Y;X)U � 2g(X;U)(f1 � f3)(�(Z)Y � �(Y )Z) + �(U)R(Y; Z)X

+
1

2n
f�S(X;R(Y; Z)U)� + S(X;Y )(f1 � f3)(g(Z;U)� � �(U)Z)

+S(X;Z)(f1 � f3)(�(U)Y � g(Y;U)�) + S(X;U)(f1 � f3)(�(Z)Y � �(Y )Zg = 0
Taking inner product with �; above equation implies that

(f1 � f3)f2g(X;R(Y; Z)U)� 2(f1 � f3)g(X;Y )g(Z;U) + (f1 � f3)g(X;Y )�(Z)�(U)
�(f1 � f3)g(X;Z)�(Y )�(U) + 2(f1 � f3)g(X;Z)g(Y; U)g

+
1

2n
f�S(X;R(Y; Z)U) + (f1 � f3)S(X;Y )(g(Z;U)

��(Z)�(U)) + (f1 � f3)S(X;Z)(�(U)�(Y )� g(Y; U)g = 0
In consequence of (2:6), (2:10), (2:11) and (2:12) the above equation takes the

form

(f1 � f3)f2f3g(X;Y )g(Z;U)� 2f3g(X;Z)g(Y; U) + 2f2g(X;�Z)g(Y;�U)
�2f2g(Z;�U)g(X;�Y ) + 4f2g(X;�U)g(Y;�Z) + (3f3 � f1)g(X;Z)�(Y )�(U)
+(f1 � 3f3)g(X;Y )�(Z)�(U) + 2f3g(Y; U)�(X)�(Z)� 2f3g(Z;U)�(X)�(Y )g

+
1

2n
f�f3S(X;Y )g(Z;U) + f3S(X;Z)g(Y; U)� f2S(X;�Z)g(Y;�U)

+f2S(X;�Y )g(Z;�U)� 2f2g(Y;�Z)S(X;�U) + (f1 � 2f3)S(X;Z)�(Y )�(U)
+(2f3 � f1)S(X;Y )�(Z)�(U)� f3g(Y; U)S(X; �)�(Z) + f3g(Z;U)S(X; �)�(Y )g = 0

Putting Z = U = ei in the above equation and taking summation over i; 1 � i �
2n+ 1; we get

S(X;Y ) =
2n(f1 � f3)(f1 + 6f2 + (4n� 3)f3)

(f1 + 3f2 + (2n� 2)f3)
g(X;Y )�2n(f1 � f3)(3(2n+ 1)f3 + �)

(f1 + 3f2 + (2n� 2)f3)
�(X)�(Y )

which implies that

S(X;Y ) = �1g(X;Y )� �2�(X)�(Y )
which show that M2n+1 is an ��Einstien manifold. �
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