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Abstract  

         In this paper, the author constructs new 

Laguerre wavelet function with its program by using 

MATLAB program. Also the author derivative and 

integration with its  powers in terms matrices are 

constructed.  The efficiency of the above functions 

through the use of these verbs in the solution of 

some examples that will show us the validity of what 

we have said. Moreover, some of the hypothesis was  

proved as the theorems of orthogonality and 

Convergent.                
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I. INTRODUCTION  

First, we show that the waveforms that cut data into 

different frequency components are mathematical 

functions      [1, 2]. It is shown through many 

sources that each component will be studied with a 

resolution proportional to its range where they have 

traditional Fourier methods in case analysis in 

different Science, for example, physics 

 [9, 10].  Over the past 10 years, there have been 

exchanges between scientific fields that include the 

development of waveforms independently in the 

fields of engineering, science and geology [3-5].  

Interchanges between these fields during the past ten 

years have led to many new wavelet applications 

such as image compression, turbulence, human 

vision, radar and earthquake prediction [6, 11, 12, 

13]. 

Wavelet analysis is a powerful mathematical tool, 

that has been used widely in image digital 

processing, quantum field theory [15-17], numerical 

analysis and many other fields in recent years. 

Today, there are many works on wavelets methods 

for approximating the solution of the problems [18, 

19], such as Haar wavelets method [8], SAC 

wavelets method, Harmonic wavelets method, first 

and second Chebyshev wavelets [14] and Legendre 

wavelets method [7].  In the present paper, gave 

some important characteristics to Laguerre 

polynomials with its wave will                                       

be given including new properties. Processing image 

is    also discussed in this paper. 

 

 

II. LAGUERRE POLYNOMIALS AND ITS                        

PROPERTIES  

      2.1.  Laguerre’s differential equation:  

      The differential equation of Laguerre’s 

polynpmial  

      given by  

                 " 'xy 1 x y ny 0                        (1) 

        where n=0,1,2,3,…. 

        This equation has polynomial solutions called  

         Laguerre  polynomials is given by 

                         xn

n

n
x

n ex
dx

d
exL             (2) 

           Which is also referred to as Rodrigue’s 

formula  

           for the Laguerre polynomials.  

           The first few Laguerre polynomials are 

                0L x 1 ,   1L x 1 x  ,  

                  2

2L x x 4x 2   ,  

                   2 3

3L x 6 18x 9x x    , ….. (3) 

where  xLn  is a polynomial of degree n. 

            2.2. Programming Laguerre polynomial: 
By using Matlab, function  

L=Lag(n,t), if n==0  

            L=1; else 

            Sum = 0; 

            for k = 0 : n 

            sum = sum+(-

1)^k*factorial(n)*factorial(n)*t^k/ 

            (factorial(k)*factorial(k)*factorial(n-k)); 

             end 

             L=sum; 

             End. 

             2.3. Some important properties of 

Laguerre  

              polynomials: 

   In the following we list some properties of the  

    Laguerre polynomials. 

1. Generating function: 

              

 










 0

1

!1 n

nn

t
xt

t
n

L

t

e
                  (4)                       

2. Recurrence formulae: 

            1

2

1 12   nnn LnxLxnxL     (5) 

           011 
 xnLxLnxL nnn             (6) 

        xLnxnLxLx nnn 1

2

                  (7) 
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3. Orthogonality 

   
 














0

2
!

0

nmifn

nmif
dxxLxLe nm

x
                                                               

(8)                        

4. Series expansions: 

            If    





0k

kk xLAxf     then  

 
   




0

2
!

1
dxxLxfe

n
A n

x

n                         (9) 

2.4. Miscellaneous orthogonal polynomials and 

their properties: 

    There are many other examples of orthogonal 

polynomials. Some of the more important ones, 

together with their properties, are given in the 

following list. 

 Associated Laguerre Polynomials  xLm

n   

   
mdmL x L x

n nmdx
                                     (10)     

and satisfying the equation 

    01  ymnyxmyx                (11)                                                                                  

          If   then   0xLm

n  

we have     


 
0

0 npdxxLxLe m

p

m

n

x
          

(12) 

    
 



 



0

2
2

!

!
np

mn

n
dxxLex m

n

xm
       (13) 

 

II. LAGUERRE WAVELETS 

  

     In this section we constructed Laguerre wavelet 

from   the family function  

          
1

2
s,r

t r
t s ,

s

  
   

 
 for s, r R, s 0          

(14) where          TMttt 110 ,...,,    

The elements      ttt M 110 ,...,, 
 
are the basis   

 functions, orthogonal on the [0,1]. 

 3.1. Constructed Laguerre Wavelets: 

 Laguerre wavelet is denoted by (Lag)wav is the type 

of wavelets used for solving differential equations, 

integral  equations , variation problems, different 

sciences and  engineering problems as well as 

fractional differential  equations.  Laguerre   wavelet 

  kmntmn t ,,,,    have  four 

arguments
12,...,2,1,...,2,1  knk ,   m is        

 order for Laguerre   polynomials and      is 

normalized 

 time.  If we dilation by parameter 
 12  ks and  

 translation by parameter 
   k 1

r 2 2n 1
 

   and  

 use transform x in (14), 
  tx kk 22 1

.  
Then 

we 

 will get the following equation

                              
 

 
k 1

k2
m k 1 k 1

n,m

n 1 n
2 L 2 t 2n 1 t

t 2 2

0 otherwise



 


   

  




    

(15) 

 where   mm L
m

L
!

1~


, 

for k=2.              

       3.2 Programming of Laguerre wavelets:  

 

       By MATLAB program we can get above 

functions or   

       wavelets function of order n by the following  

       algorithms.  

       Case 1: functions on the interval [0, 0.5) 

       function L1 = Lag1(m,t) 

       if m = 0, L1 = 2*sqrt(2) 

       else s = 0; for k = 0:m 

       s = s + (-1) ^ k*factorial(m)*factorial(m)* 

( ddd*1,t) 

        ^k/  (factorial(k)*factorial(k)*factorial(m-k)); 

       end 

       L1=(2*sqrt(2)/factorial(m))*s 

       End.   

       Case 2: functions on the interval [0. 5,1) 

       function L1 = Lag1(m,t) 

       if m==0, L1=2*sqrt(2) 

       else s = 0; f or k = 0:m 

        s = s +(-

1)^k*factorial(m)*factorial(m)*(ddd(2,t)) ^k/  

 

        (factorial(k)*factorial(k)*factorial(m-k)); 

        end.  

         L1=(2*sqrt(2)/factorial(m))*s 

         End. 

   

         IV. ORTHOGONALITY OF LAGUERRE  

                WAVELETS  

        From section (2.3) and equation (8) we know 

 xLm has orthogonality with respect to the weight 

function   tetw   on the interval  ,0  .  The set 

of laguerre wavelets are the orthogonal with respect 

to weight function  

                122  nt

n

k

etw  .   

It is a step function taking values wavelets on 

 5.0,0 and  1,5.0
 
respectively   where t is known 

that any continuous function approximated 

uniformly by Laguerre function. We will defined by 

using the Laguerre wavelets. Dilations and 
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translations of the function  tmn,  define an 

orthogonal basis in  RL2
, the space of all square 

integrable functions. This means that any element in 

 RL2
 may be represented as a linear combination 

(possibly in finite) of these basis functions.   

          Theorem 1: The orthogonal of  tmn,  is 

easy 

          to check. It is apparent that  

              n,m n mt t dt                                      (16)                    

          Whenever nn  and mm  is not satisfied 

          simultaneously. If mm  (say n  n ), the 

non zero values of  the wavelet mn , are contained 

in the set where the wavelet mn,  contains 

Laguerre  function then that makes integral equal to 

zero.  

          If  mm   but nn  , then at least one 

factor in the    product   mnmn ,, ,  is zero. Thus 

the function mn,   

 is orthogonal          

          
 

   
k2 t 2n 1

n ,m n,m

0

e t t dt


   
 

       

                  

 
   

k 1
k

k 1

n

2
2 t 2n 1

n ,m n,m

n 1

2

e t t dt





   
 

 



          

                  = 
 

2

0 ,if m m

8 m! ,if m m






                             

(17) 

V. FUNCTION APPROXIMATION 

 A function approximation    1,02Ltf    may be   

 expanded as 

         

   









1 0

,,

n m

mnmn tAtf    

 where ,    n,m n,mA f t , t .                                    

(18) 

In equation (18), .,. denote the inner product with 

weight function  twn  
on the Hilbert Space  0,1 .  

If the infinite series in above equation is truncated, 

then equation (17) can be written as, 

               










12

1

1

0

,,,

k

n

M

m

mn

T

mnmn tAtAtf        

(19) 

  Where, A  and  t are 12 1  Mk
 matrices 

given by 

                      

  k 1 k 1

T

1,0 1,1 2,0 2, M 1 2 ,0 2 ,M 1
A A ,A ,...,A ,...,A ,...,A ,...,A  

 
 

                                                                                    

(20) 
                     
       1,0 1,1 1,M 1 2,0t , t ,..., t , t ,...,

        

     k 1 k 1 k 1

T

2 ,M 1 2 ,0 2 ,M 1
t ,..., t ,..., t   

  


      

(21) 

       VI. SHIFTED LAGUERRE WAVELETS 
    Shifting the Laguerre wavelets by using 

polynomials,   

     the equation (15) will become 

          

   
k 1

k2
* m k 1 k 1
n,m

n n 1
2 L 2 t 2n 1 , if t

t 2 2

0 , otherwise

 
 
 

 

 
    

  





    

  (22)               

   Where   m m

1
L L , for m 0,1,...,M,

m!
 

 
M 2 , 

k 1n 0,1,2,...,2 ,
 
should note in dealing with 

Laguerre  

  wavelets the weight function  twn  have to dilated  

  and translated.  

      122  nttw k

n , a function  tf defined 

over 

 1,02L  can be expanded as, 

                  

                  n,m n,m

n 0 m 0

f t A t ,
 

 

 
 

    

where    n,m n,mA f t , t                                    

(23) 

        If infinite series in (23) is truncated n, then it 

can be  

        written as, 

                  

      


 




12

0

,,,

1k

on

M

m

mn

T

mnmn tAtAtf         

                                                                                      

(24)      

        where A  and  t  are 12 1  Mk
 matrices 

given by 

0,0 0,1 0,M 2,0 2,MA A ,A ,...,A ,A ,...,A ,...,                                                                                  

                                   k 1 k 1

T

2 1,0 2 1,M
A ,...,A  




            

(25) 

 

         0,0 0,1 0,M 2,0t t , t ,..., t , t ,...,       
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               k 1 k 1 k 1

T

2 1,M 2 1,0 2 1,M
t ,..., t ,...,    

  


          

(26) 

        Theorem 2: 

        A function     1,02LNtf   with limited 

second  

       derivative say be limited second, 

say   Ntf  , can  

        be  widened as an unlimited aggregate of 

Laguerre  

       wavelets, and the series converges uniformly to 

 tf
 

       
 that is                     

   n,m n,m n,m
Nn 1 m 0

N
f t A t , A .

k 1
2 3

2

 

 

  
 

 
 



                                                                               (27)                 

        Proof of the theorem:  

         we have      
1

A f t t w t dtn,m n,m n
0

   and 

     
k 1

k 1

n

k 12
k k2

n,m m n

n 1

2

A 2 L 2 t 2n 1 f t w 2 t 2n 1 dt





 
 
 



     

       

if m 0, by substituting xntk  122 , it 

yields    

                     

 
1 x 2n 1 xA L x f e dtmn,m kk 1 20

2 k2 2

      
   

 
 



    
(28) 

 
1 x 2n 1 xA L x f e dxmn,m k3k 1 20
2

2

      
   

 
 



 

         

0xe  whenever x by complete 

integration  

         (n) times, 
n,m

N

N
A .

k 1
2 3

2


 

 
 

    

        This completes the proof of the theorem. 

 

VII. EMPLOYMENT MATRICES FOR 

LAGUERRE WAVELET 

 7.1.   The Employment Matrix of Derivative for  

          Laguerre wavelet: 

In this section we use shifted Laguerre wavelets in  

employment matrix of derivative for Laguerre  

wavelets.  First we construct 66  matrix and it 

denoted by )(wavLagD  (derivative for Laguerre 

wavelets) for k=2 and M=2 by differentiation  

equation (22). 

                        

1

2 1

3 1 2

0

1
4 0 t ,

2
4 4







  

     
        

         

 And     

4

5 4

6 4 5

0

1
4 0 1

2
4 4







  

     
      

 

     The Employment Matrix of Derivative for 

Laguerre  

      Wavelet  

Lag(wav)

0 0 0 0 0 0

4 0 0 0 0 0

4 4 0 0 0 0

D ,

0 0 0 0 0 0

0 0 0 4 0 0

0 0 0 4 4 0

 
 

 
  
 

  
 
 

 
   



  



Lag(wav)

L O

D 4

O L

 
 


 
  



  



0 0 0

L 1 0 0

1 1 0

 
 


 
    

and          

0 0 0

O 0 0 0

0 0 0

 
 


 
    

       

     

 
Fig.1 (The Employment Matrix of Derivative for  

Laguerre Wavelet) 

        Theorem 3: 

        Let  te  be the Laguerre wavelets vector 

defined in equation (26).  Then derivative of this 

vector  

         te can be expressed as 

 
d

D
Lagdt wav


  ,where  
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         wavLagD  is the  k 12 M 1 ,   

 Lag
wav

D

L 0 0

0 L 0
L 4

0 0 L

 
 
  
 
 
 





   



  

      

        in which is 
 wavLagDL is    11  MM  

matrix and  

         it’s  fe,
, 

the element is defined as follows 

k

e,f

e 2,..., (M 1), f 1,...,e 12
L , .

otherwise0

   
 


   
     

Proof: By using shifted Laguerre 

polynomials in  

         1,0
, 

the e
th

 element of vector 


e  
can be 

written as, 

                     

   

k 1

2
2 n n 1kt L 2 t n tme k 1 k 1m! 2 2

0 otherwise

  
 
  

    
 




    

                                                                              (29) 

 k 1e 1,2,...,2 M 1 ,  m 0,1,...,M and 

 k 1n 0,1,..., 2 1 .   

         Differentiation equation (29)

                     
   

k 1

2
k k 1

e
m k 1 k 1

2 n n 1d 2 L 2 t n tt
m! 2 2dt

0 otherwise

 
 
 

 

 


      




 (30) 

         That  is         

        e t , e n M 1 n M 1 2,..., n 1 M 1 .       

 

        So its Laguerre wavelets expansion has the 

following  

        from  

                      
 









1

0

e

i

ii
e a

dt

td



                          

(31)               

        This implies that, the employment 

matrix )(wavLagD is 

          a block matrix as defined in (7.1) moreover  

         
 




00

dt

xdL  
0



dt

td e , for  

              1112,...,111 1   MMe k
,  

         Consequently the first row of matrix 

 wavLagDL is zero. 

         Now by using the following equation get 

where  

0m 0,1,... , L 0     



















0

2

1

mi

ilmm LCLmL

 
                                                                                      

(32)    

         

    





3

0

122
m

l

l llC  

          Substituting equation (31) and (32) in 

equation (30)  

                    

 

k 1

2k 12 0
e

m 1 l i

i m 2

d 2 2
t m L C L

dt m!

 
   



 

   
    

  


    

 

(33)                                             

                      













 


1

1

1

2

15

2
e

f

fMn

k

t                     

(34)                                                

 
Choose feL , equation  wavLag

e D
dt

d





holds. 

7.2. Employment Matrix of Integration for 

Laguerre Wavelets: 

      In this section Integration for Laguerre wavelets 

are discussed.  For this, employment matrix of 

integration for Laguerre wavelets P
. 

 Now find 

66  matrix P . 

      In equation (15), for M=3, the six basis 

functions are given by: 

           

 

   

   
 

1,0

1,1

2

1,2

t 2 2

t 2 2 2 4t t 0,0.5

t 2 16t 24t 7

 


   


      

      

and     

 

   

   
 

2,0

2,1

2

2,2

t 2 2

t 2 2 4 4t t 0.5,1

t 2 16t 40t 23

 


   


    

  

                                                                                 

(35) 

By integration the above six functions from 0 to t 

and using equation (18) we obtain 

       

         

       

 

t 1 1 1
t dt t t t1,0 1,0 1,1 2,02 4 2

0

t 3 1 1 1
t dt t t t t t 0,0.51,1 1,0 1,1 1,2 2,08 4 4 2

0

t 13 1 7
t dt t t t1,2 1,0 1,2 2,024 4 12

0

     
             

      

       

                 
        


      

                   
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     

       

     

 

t

2,0 2,0 2,1

0

t

2,1 2,0 2,1 2,2

0

t

21,2 2,0 2,2

0

1 1
t dt t t

2 4

3 1 1
t dt t t t t 0.5,1

8 4 4

13 1
t dt t t

24 4

   
        

    

     

            
      


           

    







           

Thus,    
t

6 6 6 6

0

t dt P t ,    where 

             
T

6 1,0 1,1 1,2 2,0 2,1 2,2t t , t , t , t , t , t         

 

         By   using above equations the operational 

matrix of integration P  is Employment Matrix of 

Integration for Laguerre Wavelets 

 
wav

Lag

1 1 1
0 0 0

2 4 2

3 1 1 1
0 0

8 4 4 2

713 1
0 00

1224 4

P ,

1 1
0

2 40 0 0
3 1 1

0 0 0
8 4 4

0 0 0
13 1

0
24 4

 
 

 
 
 
 
 
 
 
 
 

 
 
 


 
 
 
  



  



   
 

wav

3 3 3 3

Lag

3 3 3 3

A O

P

O A

 

 

 
 


 
  



  


 

 
Fig.2 (The Employment Matrix of Integration for 

Laguerre Wavelet) 

       

 

7.3.   Powers in terms of Laguerre Wavelets: 

         In this section, we will derive powers in terms 

of  

         Laguerre Wavelets, for k 2,  

n 1,2, M 1,2,3,.  

         And t is the normalized time, will derive the 

powers  

  In     terms of Laguerre Wavelets, which help to 

solve Problems. Let ,...3,2,1,0,3  mM   

basis  

          Functions are given by: In In matrix form, the  

          powers of   can be rewritten as follows 

           

 

1 0 0

1 1 1
Z L W , L 0 , t 0,0.5

2 42 2

5 3 1

16 8 8

 

 
 
 
    
 
 
 
   

          and      

                  

1 0 0

1 1
L 1 0 , t 0.5,1

42 2

17 5 1

16 8 8



 
 
 
   
 
 
 
 

                                   

Where   

0

1

2

t

Z t ,

t

  
  

  
  

  

  
1,0

1,1

1,2

W , t 0,0.5 ,

  
  

    
    

     

0

1

2

t

Z t

t

  
  

  
  

  

 and    
2,0

2,1

2,2

W , t 0.5,1 .

  
  

    
    

 

Powers in terms Laguerre Wavelets: 

    









































8

1

8

5

16

17

0
8

1
1

001

000

000

000

000

000

000

8

1

8

3

16

5

0
4

1

2

1
001

66
L  

 

Constructing the operation matrix of integration and 

differentiation that can be used in solving many 

problems, which are illustrated in the following 

examples. 

 

VIII. APPLICATION OF MATRICES 

 wavLagD AND  wavLagP FOR SOLVING 

CALCULUS OF  

          VARIATIONAL PROBLEMS    

    In order to solve linear or nonlinear differential 

equations by using the employment matrices 

 wavLagD and  wavLagP , some numerical examples 

illustrate the 

       Procedure [18]. In order to solve linear or 

nonlinear  
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       differential equation by using the above 

operational  

        matrices some numerical examples illustrate 

the  

        procedure which will begin with   

                      

   i T

n,my t A t , 

         
t

i 1 T i 2 T i 1

n,m n,m

0

y t A t dt y 0 A P t y 0       

  

,. .,   ………..

         T i i 1 i 2 i 2 i 3

n,my t A P t y 0 t y 0 t ... y 0 .        

   

      Example (1). 

 

       Consider the following variation problem [18] 

     












1

0

2 82min dtyyy      

  With the boundary conditions   y 0 1,
  y 1 2 .      

       The corresponding Euler Lagrange equation is  

       12  tyy
. 

Then the exact solution for 

this 

      Problem is   12  tty   with the above 

boundary   

       conditions to solve this problem, assuming  

       that      
wav

T

Lag
y t A P t .    

       Find yy  ,  to go     
wav

T

Lag
y t A D , 

 

      
   

wav

T 2

Lag
y t A D  will complete this example 

see [18]  

       just replace old matrices by (L)s' matrices of  

       integration and derivative reached the exact 

solution.          

       Example (2):  
       Consider the following Volterra integro 

differential equation (VIDE) [4], [5]  

 

   
  

x

txx dtUeexU
0

22
 with   

   U 0 0 ,U 0 0. 
 

 

        The exact solution   1 xx exexU  , 

table.1          

         Shows the numerical results for this example 

with  

         
k 2, M 3 , with  4error 10 , k 2,  

M 4,   

         
5error 10 are compared with exact solution  

          graphically in fig.3. 

 

          Table 1 shows some numerical results for 

example (2) 

 

 

 

 
Fig.3 (3D of results of example (2)) 

 

 
 

 

 

X Exact 

solution 

Approximat 

solution 

Approximat  

solution 

 k=2,M=3  k=2,M=4 

0 0 0.00000001 0 

0.2 0.02287779 0.0228 0.02287 

0.4 0.10940518 0.10945544 0.10940544 

0.6 0.27115248 0.25826756 0.27826756 

0.8 0.55489181 0.54330957 0.55330957 

1 1 0.99999999 1 
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Fig.5 (compare the results with exact solution of 

example (2))   

 

 

          Example (3): 

Consider the following variation problem,[18] 

                 dtyyyMin  

1

0

22     

            with the boundary conditions  y 0 0,
 

 y 1 1 ,  

            the corresponding Euler Lagrange equation 

is  

            yy  , the exact solution for this problem 

is  

                        
11 








ee

ee
ty

tt

 ,  

 

             with boundary conditions to solve this 

problem by  

   

             using  wavLagP  , will solve this problem 

and reached the exact solution. 
 

IX . CONCLUSION 

            The Laguerre wavelets operational matrices 

of integrations with the aid of spectral and 

collocation methods are applied to solve many 

problems. The wavelets method authorizes the mood 

of very fast algorithms when compared to the 

algorithms app roach used (Laguerre Polynomials). 

Numerical results with comparisons are given to 

confirm the reliability of the proposed method for 

solving many problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t exact solution 
First Chebyshev 

wavelets 

Second Chebyshev 

wavelets 

Laguerre  

wavelets 

0 0 0.00057584 0.00114883 0 

0.1 0.0852337 0.08469184 0.08505153 0.0852337 

0.2 0.17132045 0.17097404 0.17111507 0.17132045 

0.3 0.25912184 0.29422446 0.25933944 0.25912184 

0.4 34951660 0.35003704 0.34972464 34951660 

0.5 0.44340944 0.44281784 0.44276674 0.44340944 

0.6 0.54174007 0.54103704 0.54035565 0.54174007 

0.7 0.64549262 0.64500906 0.64402083 0.64549262 

0.8 0.75570548 0.75603258 0.75470746 0.75570548 

0.9 0.87348169 0.87410757 0.87241554 0.87348169 

1 1 0.99923405 0.99714506 1 
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