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Abstract
In this paper, the author constructs new

Laguerre wavelet function with its program by using
MATLAB program. Also the author derivative and
integration with its powers in terms matrices are
constructed. The efficiency of the above functions
through the use of these verbs in the solution of
some examples that will show us the validity of what
we have said. Moreover, some of the hypothesis was
proved as the theorems of orthogonality and
Convergent.

Keywords- Laguerre wavelets, MATLAB program,
operational matrix of integration, operational
matrix of derivative and powers in terms.

l. INTRODUCTION

First, we show that the waveforms that cut data into
different frequency components are mathematical
functions [1, 2]. It is shown through many
sources that each component will be studied with a
resolution proportional to its range where they have
traditional Fourier methods in case analysis in
different Science, for example, physics

[9, 10]. Over the past 10 years, there have been
exchanges between scientific fields that include the
development of waveforms independently in the
fields of engineering, science and geology [3-5].
Interchanges between these fields during the past ten
years have led to many new wavelet applications
such as image compression, turbulence, human
vision, radar and earthquake prediction [6, 11, 12,
13].

Wavelet analysis is a powerful mathematical tool,
that has been used widely in image digital
processing, quantum field theory [15-17], numerical
analysis and many other fields in recent years.
Today, there are many works on wavelets methods
for approximating the solution of the problems [18,
19], such as Haar wavelets method [8], SAC
wavelets method, Harmonic wavelets method, first
and second Chebyshev wavelets [14] and Legendre
wavelets method [7]. In the present paper, gave
some important characteristics to Laguerre
polynomials with its wave will
be given including new properties. Processing image
is also discussed in this paper.

Il. LAGUERRE POLYNOMIALS AND ITS
PROPERTIES
2.1. Laguerre’s differential equation:
The differential equation of Laguerre’s
polynpmial
given by
Xy +(1-x)y +ny=0 (1)
where n=0,1,2,3,....
This equation has polynomial solutions called
Laguerre polynomials is given by

L, (x)=¢* (?—);(x"e‘x) 2

Which is also referred to as Rodrigue’s
formula

for the Laguerre polynomials.

The first few Laguerre polynomials are

Lo(x)=1, L(x)=1-x,
L, (x)=x*—4x+2,
L;(x)=6-18x+9x* —x*, ..... (3)
where L, (X) is a polynomial of degree n.

2.2. Programming Laguerre polynomial:
By using Matlab, function
L=Lag(n,t), if n==0

L=1; else

Sum = 0;

fork=0:n

sum =
1)~k*factorial(n)*factorial(n)*t"k/

(factorial(k)*factorial(k)*factorial(n-k));

sum-+(-

end

L=sum;

End.

2.3. Some important properties of
Laguerre

polynomials:

In the following we list some properties of the
Laguerre polynomials.
1. Generating function:
e M0 =
=t @
1_t n=0 n!
2. Recurrence formulae:

Ln+l(X): (2n +1- X)Ln (X)_ r]ZLn—l ()
Ly (x)=nL () +nL,,4(x)=0 ()
XL (x)=nL, (x)-n?L,_,(x) 7
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3. Orthogonality

TeXLm(x)Ln(x)dx:{(

(8)

Series expansions:

If f (X) = kaO: AL, (X) then

0 if m#n
nl if m=n

A = ﬁze‘x f(x)L, (x)dx ©)

2.4. Miscellaneous orthogonal polynomials and
their properties:

There are many other examples of orthogonal
polynomials. Some of the more important ones,
together with their properties, are given in the
following list.

Associated Laguerre Polynomials Ly (x)

dm

L 00= mtn() (10)

and satisfying the equation
xy"+(m+1-x)y +(n-m)y =0 (11)
If m = nthen L (X)= 0

we have je‘x Lr(x)Lo(x)dx=0  p=n

(12) 0

0 2

Ix'“e‘X (Ln(x)fFdx = (o) p=n (13
0

(n—m)

Il. LAGUERRE WAVELETS

In this section we constructed Laguerre wavelet
from the family function

2 (t=r
o (=817 o[ 1) forsreRis 0

(14) where  p(t)=[p,(t). A1(t).s o 1|

The elements po(t), pl(t),...,pM_l(t) are the basis

functions, orthogonal on the [0,1].

3.1. Constructed Laguerre Wavelets:

Laguerre wavelet is denoted by (Lag)way is the type
of wavelets used for solving differential equations,
integral equations , variation problems, different
sciences and engineering problems as well as
fractional differential equations. Laguerre wavelet

pn,m(t):pt,n,m,k have four
argumentsk =1,2,..., n =12,....2  mis

order for Laguerre polynomialsand t is
normalized

time. If we dilation by parameter S = 2~ gng
translation by parameter r =2 (2n-1) and
use transform x in (14), X = 2’(k+l)(2kt) Then

we
will get the following equation

Al kKt n_1< <L
o ()= 2 720, (2t-2n+1) e
0 otherwise

(15)
~ 1
where L, =—L, fork=2.
m!
3.2 Programming of Laguerre wavelets:

By MATLAB program we can get above
functions or

wavelets function of order n by the following

algorithms.

Case 1: functions on the interval [0, 0.5)

function L1 = Lagl(m,t)

ifm=0, L1 =2*sqrt(2)

else s=0; fork=0:m

s = s+ (-1) ~ k*factorial(m)*factorial(m)*
(ddd*1,t)

"kl (factorial(k)*factorial(k)*factorial(m-Kk));

end

L1=(2*sqrt(2)/factorial(m))*s

End.

Case 2: functions on the interval [0. 5,1)

function L1 = Lagl(m,t)

if m==0, L1=2*sqrt(2)

elses=0;fork=0:m

S = S +(-
1)~k*factorial(m)*factorial(m)*(ddd(2,t)) ~k/

(factorial(k)*factorial(k)*factorial(m-k));
end.

L1=(2*sqrt(2)/factorial(m))*s

End.

IV. ORTHOGONALITY OF LAGUERRE
WAVELETS
From section (2.3) and equation (8) we know
L, (X) has orthogonality with respect to the weight

function W(t)ze_I on the interval [0,00) . The set

of laguerre wavelets are the orthogonal with respect
to weight function

W, ('[) _ e[—(Z"t—ZnH)] .

It is a step function taking values wavelets on
[0,0.S)and [0.5,1) respectively where t is known

that any continuous function approximated
uniformly by Laguerre function. We will defined by
using the Laguerre wavelets. Dilations and
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translations of the function pn]m(t) define an

orthogonal basis in LZ(R), the space of all square
integrable functions. This means that any element in
L? (R) may be represented as a linear combination
(possibly in finite) of these basis functions.

Theorem 1: The orthogonal of Pn,m(t) is

easy
to check. It is apparent that

_[pn,m (t)pn’m’ (t)dt (16)
Whenever N =n"and m=m’is not satisfied
simultaneously. If M= m’ (say N' < n), the

non zero values of the wavelet p,, . are contained

in the set where the wavelet p, -~ contains

Laguerre function then that makes integral equal to
zero.

If m=m'butn=n', then at least one
factor inthe product p. ., O, IS zero. Thus

the function o,
is orthogonal

J.eHZktfznﬁ)}Pn m (t)pn,m (t)dt

‘ =1

K-

_ 6[7(2k172n+1)]pn,ym, (t)pnm (t)dt

k-

0 Jfmzm’
8(m!)2,if m=m’

N
N

>
AN

N
N

(17)
V. FUNCTION APPROXIMATION

A function approximation f (t) el? [0,1] may be
expanded as

=33 A1)

n=1 m=0
where, A, =(F(t),p, (L)
(18)
In equation (18), {.,.) denote the inner product with
weight function W, (t) on the Hilbert Space [1,0).

If the infinite series in above equation is truncated,
then equation (17) can be written as,

2k1

ZZAmpnm

n=1 m=0

A p, (1)

(19)
Where, A and p(t) are 2"M x1 matrices
given by

i
A= [ALO,Al,l,...,Az,o,...,AZV(NH),...,AZHVO,...,AZH‘NH}

(20)
t) :[pl,(l P (1) Pras (1)1 P20 (1) oo

.
ka’I,M—l(t)""’ka’l,O(t)""’pzk’l,M—l(t)]
(21)
VI. SHIFTED LAGUERRE WAVELETS
Shifting the Laguerre wavelets by using
polynomials,
the equation (15) will become

k+1

[7)~ K e N n+1
o (1)= 2 2L, (2t-2n-1), if T StS T
0o otherwise
(22)
~ 1
Where Lm:—le, form=01...M, M=2,
m!
n=0,12,...,2“", should note in dealing with

Laguerre
wavelets the weight function W, (t) have to dilated
and translated.
w, (t)= (2kt —-2n —1), a function f (t)defined
over
12[0,1] can be expanded as,

zzAn mPn, m
f

0 m=0
where A, | =

t):Pam ()
(23)

If infinite series in (23) is truncated n, then it
can be
written as,

2t M

)= > > Anpunlt)

n=0 m=0

A" p, o (t)

(24)
where A and p(t) are 2*M x1 matrices
given by
A=[Ag0 Agie Ao Aggrn Ay oo
T
Az“-l,o 1 Azk’l—l,M :|
(25)

p(t) = |:po,o (t)lpo,l (t),..., Po,m (t)vpz,o (t)’---’
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T
Pyiam (t)""’ Pai g0 (t)""’ Pt am :|

wavelets) for k=2 and M=2 by differentiation
equation (22).

(26) S
Theorem 2: pll B 0 1
A function f(t)< N e L2([0,1]) with limited P2 = hp g Ostso,
second N p; = —4p,—4dp,
derivative  say  be limited second,
say| f"(t)< N| , can Py = 0
be widened as an unlimited aggregate of And p;’ = —4p, Oslgl
Laguerre v 2
wavelets, and the series converges uniformly to Po = —Aps—4ps
f(t) The Employment Matrix of Derivative for
that is Laguerre
© o N Wavelet
F(O) =22 Anlon (V) [Avn| s —— 5 [0 0 0 00 0]
n=1 m=0 oN| 3 +
o -4 0 0 0 00O
27) 4 -4 0 000
Proof of the theorem: Dagway) = ,
1 000 0 00
we have A =[f(t t)w . (t)dt and .
n,mé()pn,m()n() 000 i -4 0 0
o 000 ~4 -4 0|
o1 (E]~ - _
Arn= | 220, (2t-2n+1)f (t)w, (2“t-2n+1)dt L O 000
-1 Doy == 4|+ o ..[L=|1 0 0
- o i L 110
if m = 0, by substituting 2t —2n +1= X it -
. ! 0 0O
yields
and O=/0 0 O
00 0

3 1 P X+2n-1| _x
An.m_(kﬂj ij(x)f( K )e dt
- 0
2 oK

2
(28)

1 ©- X+2n-1] _x
An,m(skﬂj“‘m(x)f[ K Je dx
200 2

2 2

e ¥ —>0 whenever X —00 by complete
integration
_ N
o (3 k +1)
2

This completes the proof of the theorem.

(n) times, |A, | <

VIl. EMPLOYMENT MATRICES FOR

LAGUERRE WAVELET

7.1. The Employment Matrix of Derivative for
Laguerre wavelet:

In this section we use shifted Laguerre wavelets in

employment matrix of derivative for Laguerre

wavelets. First we construct 6x 6 matrix and it
denoted by D, 4y (derivative for Laguerre

The Employment Matrix of
Derrvative for Laguerre wavelet

Fig.1 (The Employment Matrix of Derivative for
Laguerre Wavelet)
Theorem 3:

Let o, (t) be the Laguerre wavelets vector

defined in equation (26). Then derivative of this
vector

Lo (t)can be expressed as
dp_

h
at (I—ag)wav ,wnere
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D is the 2% (M+1), Now by using the following equation get
(Lagkay where
L 0.0 m=01,..,L, =0
L 4 oL .. O , 0
Duagye |2 . : .
() Pl L ——m|:Lm_1+ G Li}
0 0 ... L i=m-2
o . (32)
in which is LD(Lag)W is(M +1)x (M +1) 3
matrix and C = Z(I + 2)(2(| "'1))
., e 1=0
it’s (e, f), the element is defined as follows Substituting equation (31) and (32) in
BEA e=2..,(M+1),f=1..e-1 equation (30)
1o’ otherwise '
* [E) 2k-1
Proof: By using shifted Laguerre dﬁ(t): 20227 {—m{Lmﬁ 20: cL, ﬂ
polynomials in dt m! iZme2
[01] the e element of vector p; can be (33)
written as, ) [%J o1
(;j =-2 zpn(M A f (t)
2 Kk n n+1 f=1
Pe ()= o Lm(2 t—n) = <t Szk—l (34)
i d
0 otherwise Choose L, ; equation (/jot = = D4, holds.
(29) 7.2. Employment Matrix of Integration for
e=12..,2*(M+1), m=0,1,..,Mand Laguerre Wavelets:
e In this section Integration for Laguerre wavelets
n=O,L...,(2 _l)' are discussed. For this, employment matrix of
Differentiation equation (29) integration for Laguerre wavelets P, Now find
5 -
dp; 2 2 e ok, oy N n+l  6x6 matrixP.
E(t): m! 2Ly (2 t n) k-1 sts k-1 In equation (15), for M=3, the six basis
0 otherwise functions are given by:
(30) Pro(t)= 242
That is pu(t)= 242 (2-4t) }te[0,05)
p.(t),e=n(M+1)+n(M+1)+2,....(n+1)(M+1). oy (1) = N (16t2 —24t+7)
So its Laguerre wavelets expansion has the and
following P,o(t)= 22
from pa(t)= 242 (4-4t) te[05,1)
* e-1 '
de; (t) -SNap P, ()= N2 (16t°—40t+23)
dt o 1771
Gy (35)
This  implies that, the  employment By integration the above six functions from 0 to t
matrix DLag(WaV) is and using equation (18) we obtain
a blo(ck)matrix as defirzes in (7.1) moreover iplyo(t)dt - @plo(t) —Gjpm(t) +(%)p2‘0(t)
dLy(x do, (t X
= 0= # =0, for Ipsy(0 - (Spro® {3 pua® {3l o(2pao}efoos)
k-1 t
e=1M +1)+1..., (2" ~1[M +1)+1, Ippal0 = (2 o0 {32 {5 ot

Consequently the first row of matrix

LDLagw) is zero.
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j‘Pz‘o (t)dt

(%jpm(t) —(%)pu(t)
(e (30 (Fpt0 retosy
(g]pw(t) +[%jpu(t)

t
Thus, Ipe(t)dtZPsxepe(t)a where
0

Ps (t) = l:p1,o (t) P11 (t) P12 (t) 1P2,0 (t) P21 (t)vpz,z (t)]T

By using above equations the operational
matrix of integration Pp is Employment Matrix of

jpz‘l (t)dt

J‘Puz (t)dt
[

Integration for Laguerre Wavelets

O
2 4 2
s 1 1 1 950
8 4 4 2
! 740
24 4 12
Pao),, =
1 1,
0 0 0 2 14 .
0 0 O g - —=
00 0 8 4 4
1B,
L 24 4 |
A3><3 O3x3
P(Lag)w = ... .. .
Ops 1 Ags

Employment Matrix of Integration for Laguerre Wavelets

Fig.2 (The Employment Matrix of Integration for
Laguerre Wavelet)

7.3. Powers in terms of Laguerre Wavelets:

In this section, we will derive powers in terms
of

Laguerre Wavelets, for k=2,
n=12, M=123,.

And t is the normalized time, will derive the
powers

In terms of Laguerre Wavelets, which help to
solve Problems. Let M =3, m=01273,...
basis

Functions are given by: In In matrix form, the
powers of ¢ can be rewritten as follows

1 0 0
111 1
Z—LpW,Lp—ﬁ E —Z 0 ,te[0,0S)
> 31
116 8 8]
and i .
1 0 0
1 1
L=——1 —-= 0],te|051
P 2\/5 4 e[ )
7 51
116 8 8]
t° P10
Where |Z=|t"||, | W=|p, |[,t€][0,0.5),
t? P12
t° P20
Z=|t' || and |W=|p,, ||, te[0.51).
t? P22
Powers in terms Laguerre Wavelets:
1 0 0 00 0 |
1 1 0 0 0O
2 4
5 3 1 0 0O
_|16 8 8
Poxs 0 0O 1 0 0
0 0O 1 —% 0
000 17 -51
L 16 8 8]

Constructing the operation matrix of integration and
differentiation that can be used in solving many
problems, which are illustrated in the following
examples.

VIII. APPLICATION OF MATRICES
D\((a),, AND Py, FOR SOLVING
CALCULUS OF

VARIATIONAL PROBLEMS

In order to solve linear or nonlinear differential
equations by using the employment matrices

D(,_ag) and F’(Lag)wav,some numerical examples

wav

Lag)yay

illustrate the
Procedure [18]. In order to solve linear or
nonlinear
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X Exact Approximat | Approximat
solution solution solution

k=2,M=3 k=2,M=4

0 0 0.00000001 | O

0.2 ] 0.02287779 | 0.0228 0.02287

0.4 | 0.10940518 | 0.10945544 | 0.10940544

0.6 | 0.27115248 | 0.25826756 | 0.27826756

0.8 | 0.55489181 | 0.54330957 | 0.55330957

1 1 0.99999999 |1

differential equation by using the above
operational

matrices some numerical examples illustrate
the

procedure which will begin with

Y (1)=Ap, . (1),

VO =AT [P (57 (0)= AP, (1) 9" (0)

y(t)=ATP'p, . (t)+y(0)t 2 +y 2 (0)t° +...+y(0).

Example (1).

Consider the following variation problem [18]
1 '
min v[y]= I(Zyz +8y)dt
0

With the boundary conditions y(0)=1, y(1)=2
The corresponding Euler Lagrange equation is
y'+y' = 2('[ +1) Then the exact solution for

this l
Problem is y(t) =t®+1 with the above

boundary
conditions to solve this problem, assuming

that  y(t)=A"Pp ., (t).

Find y', y" togo y'(t)=AD,

y'(t)=A'Dly),,
see [18]

just replace old matrices by (L)s' matrices of

integration and derivative reached the exact
solution.

Example (2):

Consider the following Volterra integro
differential equation (VIDE) [4], [5]

(Lag),, *

will complete this example

J'ez VU’ dt with
0
0

Uu(0)=

U'(0)=0.

The exact solution U(X):Xex—ex +1

table.1

Shows the numerical results for this example

with

k=2 M=3,with error=10", k=2,

M =4,

error =10 are compared with exact solution
graphically in fig.3.

Table 1 shows some numerical results for

example (2)

raph of results

Fig.3 (3D of results of example (2))

B Exact solution

Approximat
solution
k=2,M=3

1.2

0.8

0.6

I 0.4
0.2
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1 T T T T T T T T T

—&]— exact .

oa2r /
U /

0er

05

0.4t /

03t &
a2k W -~

LRl T w

S S

bEr #+ Lag waw /'

L
0 i 0z 03 04 0.5 0.8 o7 o8 og

Fig.5 (compare the results with exact solution of
example (2))

Example (3):
Consider the following variation problem,[18]
1

Mino[y]= J.(y'2 +y?)dt
0

with the boundary conditions y(0) =0,
y(1)=1,

the corresponding Euler Lagrange equation
is

y" =y, the exact solution for this problem
is

with boundary conditions to solve this
problem by

using Pp( , will solve this problem

Lag)ay
and reached the exact solution.

IX. CONCLUSION

The Laguerre wavelets operational matrices
of integrations with the aid of spectral and
collocation methods are applied to solve many
problems. The wavelets method authorizes the mood
of very fast algorithms when compared to the
algorithms app roach used (Laguerre Polynomials).
Numerical results with comparisons are given to
confirm the reliability of the proposed method for
solving many problems.

t —t
Y(t): Zl _2—1 '

. exact solution First Chebyshev | Second  Chebyshev | Laguerre
wavelets wavelets wavelets

0 0 0.00057584 0.00114883 0

0.1 0.0852337 0.08469184 0.08505153 0.0852337

0.2 0.17132045 0.17097404 0.17111507 0.17132045

0.3 0.25912184 0.29422446 0.25933944 0.25912184

0.4 34951660 0.35003704 0.34972464 34951660

0.5 0.44340944 0.44281784 0.44276674 0.44340944

0.6 0.54174007 0.54103704 0.54035565 0.54174007

0.7 0.64549262 0.64500906 0.64402083 0.64549262

0.8 0.75570548 0.75603258 0.75470746 0.75570548

0.9 0.87348169 0.87410757 0.87241554 0.87348169

1 1 0.99923405 0.99714506 1
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