Cartesian product and Neighbourhood Polynomial of a Graph

G. Suresh Singh ${ }^{1}$, Sreedevi S.L. ${ }^{2}$
Department of Mathematics, University of Kerala
Thiruvananthapuram, India.

Abstract

The Cartesian product $G=G_{1} \times G_{2}$ of any two graphs G_{1} and G_{2} has been studied widely in graph theory ever since the operation has been introduced. $G=G_{1} \times G_{2}$ gives insight to the structural property of G, if G_{1} and G_{2} are known. The neighbourhood polynomial plays a vital role in describing the neighbourhood characteristics of the vertices of a graph. In this study neighbourhood polynomial of the Cartesian product of certain classes of graphs are calculated and tried to characterize the nature of neighbourhood polynomial.

Keywords -Cartesian product, Neighbourhood polynomial.

I. INTRODUCTION

1.1 Cartesian product- Cartesian product of any two graphs G_{1} and G_{2} of order m and n, respectively is defined as $G=G_{1} \times G_{2}$. The vertex set V of G is $V_{1} \times V_{2}$, where $V_{1}=$ $\left\{u_{1}, u_{2}, \ldots u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ are the vertex sets of G_{1} and G_{2} respectively. Any two vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{l}\right)$ are adjacent in G if either $u_{i}=u_{k}$ and v_{j} adjacent to v_{l} in G_{2} or $v_{j}=v_{l}$ and u_{i} adjacent to u_{k} in G_{1} [2].

1.2 Neighbourhood complex and polynomial- A

 complex on a finite set \mathcal{X} is a collection \mathcal{C} of subsets of \mathcal{X}, closed under certain predefined restriction. Each set in \mathcal{C} is called the face of the complex. In the neighbourhood complex $\mathcal{N}(G)$ of a graph $G, X=V(G)$, and faces are subsets of vertices that have a common neighbour. In [1) the neighbourhood polynomial of a graph G, is defined as$$
\operatorname{neigh}_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|} .
$$

For example consider C_{4} with vertices $\{a, b, c, d\}$. The neighbourhood complex $\mathcal{N}\left(C_{4}\right)$ of C_{4} is $\{\phi,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{b, d\}\}$. Since the empty set trivially has a common neighbour, each of the
single vertices has a neighbour, the sets $\{a, c\},\{b, d\}$ has two common neighbours (one is sufficient), but no three vertices have a common neighbour. The associated neighbourhood polynomial of C_{4} is $n e i g h_{C_{4}}(x)=1+4 x+2 x^{2}$. Similarly, the neighbourhood polynomials of certain standard graphs are as follows:

- $K_{n}-\operatorname{neigh}_{K_{n}}(x)=(1+x)^{n}-x^{n}$.
- $P_{n}-n e i g h_{P_{n}}(x)=1+n x+(n-2) x^{2}$.
- $\quad C_{n}-\operatorname{neigh}_{C_{4}}(x)=\left\{\begin{array}{l}1+n x+n x^{2}, n \neq 4 \\ 1+n x+2 x^{2}, n=4\end{array}\right.$

Here the neighbourhood polynomial for the graphs planar grids, ladder graphs, torus grids, prisms, which are formed by the Cartesian product of two graphs are calculated. Also tried to give one characteristic property of the neighbourhood polynomial of the graph G, where $G=G_{1} \times G_{2}$.

II. MAIN RESULTS

Theorem 2.1 The neighbourhood polynomial of planar grid is

$$
\begin{aligned}
& 1+m n x+[4 m n-4(m+n)+2] x^{2}+ \\
& {[4 m n-6(m+n)+8] x^{3}+(m-2)(n-2) x^{4}}
\end{aligned}
$$

Proof: The planar grid is obtained by the Cartesian product of P_{m} and P_{n}. Consider

$$
G=P_{4} \times P_{3} .
$$

Fig. 1

The empty set trivially has a common neighbour. Each of the $12[=(4 \times 3)=(m \times n)]$ vertices has a neighbour.

The following $12[=(m-1) 2(n-1)=3 \times 2 \times$ 2 two element subsets $b, e, a, f, c, f, b, g, d, g, c, h$, $\{f, i\},\{e, j\},\{g, j\},\{f, k\},\{h, k\},\{g, l\}$ have two common neighbours and the $10[=((m-2) n+$ $n-2 m=2 \times 3+1 \times 4$ two element subsets a, c, b, d, $\{a, i\},\{b, j\},\{e, g\},\{c, k\},\{f, h\},\{d, l\},\{i, k\}$, $\{j, l\}$ have one common neighbour.

Also the $14[=2[(m-2)(n-1)+(m-1)(n-$ $2=2[(2 \times 2)+(3 \times 1)]$ three element subsets a, f, c, $\{b . g, d\},\{e, b, g\},\{f, c, h\},\{e, j, g\},\{f, k, h\}$, $\{i, f, k\},\{j, g, l\},\{a, f, i\},\{b, g, j\},\{c, h, k\}$, $\{b, e, j\},\{c, f, k\},\{d, g, l\}$, have got a single common neighbour and there are $2[=$ $m-2 n-2=2 \times 1$ four element subsets b, e, g, j and $\{c, f, h, k\}$ having a single common neighbour.

Thus the neighbourhood polynomial of $G=P_{4} \times$ P_{3} is $1+12 x+22 x^{2}+14 x^{3}+2 x^{4}$. In general for any m and n, if $G=P_{m} \times P_{n}$,
$\operatorname{neigh}_{G}(x)=1+m n x+[4 m n-4(m+n)+$ $2 x 2+4 m n-6 m+n+8 x 3+m-2(n-2) x 4$.

Theorem 2.2 The neighbourhood polynomial of ladder graph L_{n} is $\operatorname{neigh}_{L_{n}}(x)=1+2 m x+2(2 m-3) x^{2}+2(n-$ 2) x^{3}.

Proof: We have,

$$
\begin{aligned}
& \operatorname{neigh}_{P_{m} \times P_{n}}(x)=1+m n x+[4 m n- \\
& 4 m+n+2 x 2+4 m n-6 m+n+8 x 3+ \\
& (m-2)(n-2) x^{4}
\end{aligned}
$$

Ladder graph $L_{n}=P_{m} \times K_{2}$. When n is replaced by 2 in the above equality (since $P_{2} \simeq K_{2}$), we get

$$
\begin{aligned}
& \quad \begin{aligned}
& \operatorname{neigh}_{P_{m} \times K_{2}}(x)= 1+2 m x \\
&+ {[8 m-4(m+2)+2] x^{2} } \\
&+ {[8 m-6(m+2)+8] x^{3}+} \\
&(m-2)(2-2) x^{4} \\
&=1+2 m x+2(2 m-3) x^{2}+ \\
& 2(m-2) x^{3} .
\end{aligned}
\end{aligned}
$$

Thus we have, $\quad \operatorname{neigh}_{L_{n}}(x)=1+2 m x+$ $2(2 m-3) x^{2}+2(n-2) x^{3}$.

Theorem 2.3 The neighbourhood polynomial of torus grid is

$$
1+m n\left(x+4 x^{2}+4 x^{3}+x^{4}\right), m, n \neq 4
$$

Proof: The torus grid $C_{m} \times C_{n}$, consists of $m n$ vertices and each of these $m n$ vertices are of degree 4. Also the neighbourhood complex $\mathcal{N}(G)$ of a graph G, consists of empty set, each of the $m n$ single vertices has a neighbour, $4 m n[=$ $2 m-1 n-1+(m-2 n+n-2 m+2 m+2 n+2 m-1+2$ $(n-1)+2$], two element subsets having at least one common neighbour, $4 m n[=2(m-2)(n-$ $1+m-1 n-2+2 n-2+m-2+22 m-2+2+22 n-2$ $+2+87$, three element subsets having one common neighbour, and finally, $m n$ subsets of four elements have one common neighbour. Also no vertices of five or more elements have any common neighbour.

Hence the neighbourhood polynomial of $C_{m} \times C_{n}$ is
$\operatorname{neigh}_{C_{m} \times C_{n}}(x)=1+m n\left(x+4 x^{2}+4 x^{3}+\right.$ x^{4}), $m, n \neq 4$.

Example 1

Consider $G=C_{5} \times C_{3}$.

$\mathbf{G}=\mathbf{P}_{5} \mathbf{X C}_{\mathbf{3}}$
Fig. 2

The neighbourhood complex $\mathcal{N}(G)$ of graph G with vertex labelings as given in the figure (figure 2) is,

$$
\begin{aligned}
& \mathcal{N}(G)=\{\phi,\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{g\}, \\
& \{h\},\{i\},\{j\},\{k\},\{l\},\{m\},\{n\},\{o\},\{a, i\}, \\
& \text { \{b, } h\},\{c, g\},\{d, f\},\{e, g\},\{d, h\},\{c, i\},\{b, j\}, \\
& \text { \{j, l\}, }\{i, m\},\{h, n\},\{g, o\},\{f, n\},\{g, m\},\{h, l\}, \\
& \{i, k\},\{a, c\},\{b, d\},\{c, e\},\{h, j\},\{g, i\},\{f, h\}, \\
& \{k, m\},\{l, n\},\{m, o\},\{a, k\},\{b, l\},\{c, m\},\{d, n\}, \\
& \{e, o\},\{a, j\},\{b, i\},\{c, h\},\{d, g\},\{e, f\},\{j, k\}, \\
& \{i, l\},\{h, m\},\{g, n\},\{f, o\},\{a, d\},\{j, g\},\{k, n\}, \\
& \{b, e\},\{f, i\},\{l, o\},\{a, l\},\{b, m\},\{c, n\},\{d, o\}, \\
& \{e, n\},\{d, m\},\{c, l\},\{b, k\},\{a, o\},\{e, k\},\{a, f\}, \\
& \{k, f\},\{e, j\},\{j, o\},\{a, c, i\},\{b, d, h\},\{c, e, g\}, \\
& \{b, h, j\},\{c, g, i\},\{d, f, h\},\{h, j, l\},\{g, i, m\}, \\
& \{f, h, n\},\{i, k, m\},\{h, l, n\},\{g, m, o\},\{a, i, k\}, \\
& \{b, h, l\},\{c . g, m\},\{d, f, n\},\{e, g, o\},\{d, h, n\}, \\
& \{c, i, m\},\{b, j, l\},\{a, f, i\},\{f, i, k\},\{e, j, k\}, \\
& \{a, j, o\},\{e, g, j\},\{g, j, o\},\{a, f, o\},\{e, f, k\}, \\
& \{a, i, l\},\{c, i, l\},\{b, h, m\},\{d, h, m\},\{c, g, n\}, \\
& \{e, g, n\},\{b, j, k\},\{d, f, o\},\{b, i, k\},\{b, i, m\}, \\
& \{c, h, l\},\{c, h, n\},\{d, g, m\},\{d, g, o\},\{a, j, l\}, \\
& \{e, f, n\},\{a, f, k\},\{e, j, o\},\{a, c, l\},\{b, d, m\}, \\
& \{c, e, n\},\{b, k, m\},\{c, l, n\},\{d, m, o\},\{b, e, j\}, \\
& \{b, e, k\},\{a, d, f\},\{a, d, o\},\{f, k, n\},\{e, k, n\}, \\
& \{j, l, o\},\{a, l, o\},\{b, e, j, k\},\{a, c i, l\},\{b, d, h, m\}, \\
& \{c, e, g, n\},\{a, d, f, o\},\{e, g, j, o\},\{d, f, h, n\}, \\
& \{c, g, i, m\},\{b, h, j, l\},\{a, f, i, k\},\{a, j, l, o\}, \\
& \{b, i, k, m\},\{c, h, l, n\},\{d, g, m, o\},\{e, f, k, n\}\}
\end{aligned}
$$

No five or more vertices have a common neighbour.

Hence the neighbourhood polynomial of $G=C_{5} \times$ C_{3} is,

$$
\operatorname{neigh}_{G}(x)=1+15 x+60 x^{2}+60 x^{3}+15 x^{4} .
$$

Corollary 2.4 The neighbourhood polynomial of torus
grid
is
$\operatorname{neigh}_{C_{m} \times C_{n}}=$
$\left\{1+4 m x+14 m x^{2}+16 m x^{3}+4 m x^{2}, n=4\right.$
$\left\{1+16 x+48 x^{2}+64 x^{3}+16 x^{4}, m=n=4\right.$.

Proof: Consider two cases separately.
Case1: If $n=4$, in the neighbourhood complex $\mathcal{N}(G)$ of graph G, where $G=C_{m} \times C_{4}$, of the $4 m n$, subsets of two elements having at least one common neighbour of $C_{m} \times C_{n}$, the $2 m$ two element subsets are same as those of $m(n-2)$,two element subsets. Thus discarding these repeated
$2 m$ entries, the number of faces with two elements is $\quad(4 m n-2 m)=16 m-2 m($ since $n=4)=$ $14 m$.

The number of three element and four element subsets having at least one common neighbour remains the same with $C_{m} \times C_{n}$, for any m and n.

Hence the neighbourhood polynomial of $C_{m} \times C_{4}$ is
$\operatorname{neigh}_{C_{m} \times C_{4}}(x)=1+4 m x+14 m x^{2}+16 m x^{3}+$ $4 m x^{2}$.

Case 2: When $m=n=4$ in $C_{m} \times C_{n}$, on considering the number of faces with two elements, $m(n-2)$ entries coincide with $2 m$ entries and $n(m-2)$ entries with $2 n$ entries. Therefore the cardinality of faces with two elements are ($4 m n-$

```
2m-2n=4m2-2m-2m
    = 48 (since m=n=4)
```

Cardinality of all other faces do remains same as that of general $C_{m} \times C_{n}$.

Thus the neighbourhood polynomial of $C_{4} \times C_{4}$ is
$\operatorname{neigh}_{C_{4} \times C_{4}}(x)=1+16 x+48 x^{2}+64 x^{3}+$ $16 x^{4}$.

Theorem 2.5 The neighbourhood polynomial of prism $G=P_{n} \times C_{m}$ is,

$$
\begin{gathered}
\operatorname{neigh}_{G}(x)=1+m n x+4 m(n-1) x^{2}+ \\
2 m(2 n-3) x^{3}+m(n-2) x^{4}, m \neq 4
\end{gathered}
$$

Proof: Consider $G=P_{n} \times C_{m}$. From the definition of Cartesian product and the neighbourhood complex of a graph, we have the empty set trivially has a common neighbour and each of the $m n$ vertices has at least one neighbour. The number of two element subsets having at least one common neighbour is
$4 m(n-1)[=2(n-1)(m-1)+m(n-2)+$
$n(m-2)+2 n+2(n-2)+2]$, for $m \neq 4$ Also the three element and four element subsets having common neighbour are $(4 m n-6)$ and $m(n-2)$ respectively, on both cases of $m \neq 4$ and $m=4$.

Hence,

$$
\begin{aligned}
\operatorname{neigh}_{G}(x)=1+ & m n x+4 m(n-1) x^{2} \\
& +2 m(2 n-3) x^{3} \\
& +m(n-2) x^{4}, m \neq 4
\end{aligned}
$$

Example 2

Consider $G=P_{5} \times C_{3}$, (Fig. 3)
The neighbourhood complex $\mathcal{N}(G)$ of graph G is,

$$
\begin{aligned}
& \mathcal{N}(G)=\phi,\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{6}\right\}, \\
& \left\{v_{7}\right\},\left\{v_{8}\right\},\left\{v_{9}\right\},\left\{v_{10}\right\},\left\{v_{11}\right\},\left\{v_{12}\right\},\left\{v_{13}\right\}, \\
& \left\{v_{14}\right\},\left\{v_{15}\right\},\left\{v_{1}, v_{9}\right\},\left\{v_{2}, v_{8}\right\},\left\{v_{3}, v_{7}\right\},\left\{v_{4}, v_{6}\right\}, \\
& \left\{v_{5}, v_{7}\right\},\left\{v_{4}, v_{8}\right\},\left\{v_{3}, v_{9}\right\},\left\{v_{2}, v_{10}\right\},\left\{v_{10}, v_{12}\right\}, \\
& \left\{v_{9}, v_{13}\right\},\left\{v_{8}, v_{14}\right\},\left\{v_{7}, v_{15}\right\},\left\{v_{6}, v_{14}\right\}, \\
& \left\{v_{7}, v_{13}\right\},\left\{v_{8}, v_{12}\right\},\left\{v_{9}, v_{11}\right\},\left\{v_{1}, v_{10}\right\}, \\
& \left\{v_{2}, v_{9}\right\},\left\{v_{3}, v_{8}\right\},\left\{v_{4}, v_{7}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{10}, v_{11}\right\} \text {, } \\
& \left\{v_{9}, v_{12}\right\}, \\
& \left\{v_{8}, v_{13}\right\},\left\{v_{7}, v_{14}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{10}, v_{8}\right\}, \\
& \left\{v_{9}, v_{7}\right\},\left\{v_{8}, v_{6}\right\},\left\{v_{11}, v_{13}\right\},\left\{v_{12}, v_{14}\right\}, \\
& \left\{v_{13}, v_{15}\right\},\left\{v_{1}, v_{12}\right\},\left\{v_{2}, v_{13}\right\},\left\{v_{3}, v_{14}\right\}, \\
& \left\{v_{4}, v_{15}\right\},\left\{v_{5}, v_{14}\right\},\left\{v_{4}, v_{13}\right\},\left\{v_{3}, v_{12}\right\},\left\{v_{2}, v_{11}\right\}, \\
& \left\{v_{1}, v_{11}\right\},\left\{v_{2}, v_{12}\right\},\left\{v_{3}, v_{13}\right\},\left\{v_{4}, v_{14}\right\},\left\{v_{5}, v_{15}\right\}, \\
& \left\{v_{1}, v_{3}, v_{9}\right\},\left\{v_{2}, v_{4}, v_{8}\right\},\left\{v_{3}, v_{5}, v_{7}\right\},\left\{v_{2}, v_{8}, v_{10}\right\}, \\
& \left\{v_{3}, v_{7}, v_{9}\right\},\left\{v_{4}, v_{6}, v_{8}\right\},\left\{v_{8}, v_{10}, v_{12}\right\} \text {, } \\
& \left\{v_{7}, v_{9}, v_{13}\right\},\left\{v_{6}, v_{8}, v_{14}\right\},\left\{v_{9}, v_{11}, v_{13}\right\}, \\
& \left\{v_{8}, v_{12}, v_{14}\right\},\left\{v_{7}, v_{13}, v_{15}\right\},\left\{v_{1}, v_{9}, v_{11}\right\}, \\
& \left\{v_{2}, v_{8}, v_{12}\right\},\left\{v_{3}, v_{7}, v_{13}\right\},\left\{v_{4}, v_{6}, v_{14}\right\}, \\
& \left\{v_{5}, v_{7}, v_{15}\right\},\left\{v_{4}, v_{8}, v_{14}\right\},\left\{v_{3}, v_{9}, v_{13}\right\}, \\
& \left\{v_{2}, v_{10}, v_{12}\right\},\left\{v_{1}, v_{10}, v_{12}\right\},\left\{v_{2}, v_{9}, v_{11}\right\}, \\
& \left\{v_{2}, v_{9}, v_{13}\right\},\left\{v_{3}, v_{8}, v_{12}\right\},\left\{v_{3}, v_{8}, v_{14}\right\}, \\
& \left\{v_{4}, v_{7}, v_{13}\right\},\left\{v_{4}, v_{7}, v_{15}\right\},\left\{v_{5}, v_{6}, v_{14}\right\}, \\
& \left\{v_{2}, v_{10}, v_{11}\right\},\left\{v_{1}, v_{9}, v_{12}\right\},\left\{v_{3}, v_{9}, v_{12}\right\}, \\
& \left\{v_{2}, v_{8}, v_{13}\right\},\left\{v_{4}, v_{8}, v_{13}\right\},\left\{v_{3}, v_{7}, v_{14}\right\}, \\
& \left\{v_{5}, v_{7}, v_{14}\right\},\left\{v_{4}, v_{6}, v_{15}\right\}, \\
& \left\{v_{2}, v_{11}, v_{13}\right\},\left\{v_{3}, v_{12}, v_{14}\right\},\left\{v_{4}, v_{13}, v_{15}\right\}, \\
& \left\{v_{1}, v_{3}, v_{12}\right\},\left\{v_{2}, v_{4}, v_{13}\right\},\left\{v_{3}, v_{5}, v_{14}\right\}, \\
& \left\{v_{1}, v_{3}, v_{9}, v_{12}\right\},\left\{v_{2}, v_{4}, v_{8}, v_{13}\right\},\left\{v_{3}, v_{5}, v_{7}, v_{14}\right\}, \\
& \left\{v_{4}, v_{6}, v_{8}, v_{14}\right\},\left\{v_{3}, v_{9}, v_{7}, v_{13}\right\},\left\{v_{2}, v_{8}, v_{10}, v_{12}\right\}, \\
& \left\{v_{2}, v_{9}, v_{11}, v_{13}\right\},\left\{v_{3}, v_{8}, v_{12}, v_{14}\right\}, \\
& \left.\left\{v_{4}, v_{7}, v_{13}, v_{15}\right\}\right\} .
\end{aligned}
$$

Fig. 3

In this $G=P_{n} \times C_{m}$, where $n=5, m=3$, each of the $15[=n \times m(5 \times 3)]$ single vertices has a neighbour.
$48[=\{2(m-1)(n-1)+m(n-2)+$
$n m-2+2 n+2 n-2+2=4 m n-1]$, subsets of vertices with two elements has got at least one common neighbour. Also
$42[=\{2(m-2)(n-1)+2(m-1)(n-2)+$
$22 n-2+2+2 n-2=4 m n-6 m]$ and
$9[=m(n-2)]$, subsets of vertices with three and four elements respectively.

Thus the neighbourhood polynomial of $G=P_{5} \times$ C_{3} is,
$n e i g h_{G}(x)=1+15 x+48 x^{2}+42 x^{3}+9 x^{4}$.
Corollary 2.6 The neighbourhood polynomial of $P_{n} \times C_{m}$ is
$1+m n x+[4 m(n-1)-2 n] x^{2}+2 m(2 n-$
$3 \times 3+m n-2 x 4, m=4$.
Proof: It has been calculated that there are
$2(n-1)(m-1)+m(n-2)+n(m-2)+$
$2 n+2(n-2)+2=4 m(n-1)$ two element subsets of vertices in the neighbourhood complex of $\quad P_{n} \times C_{m}$. When $m=4$, of the above two element subsets of vertices $n(m-2)$ vertices coincide with $2 n$ vertices. Hence in effect, the number of two element subsets of vertices is $4 m(n-1)-2 n$. The number of three and four element subsets of vertices remains the same on both $P_{n} \times C_{n}$ and $P_{n} \times C_{4}$.

Hence the result follows.
Theorem 2.7 Let $G=G_{1} \times G_{2}$, where G_{1} and G_{2} are any two graphs of order m and n respectively. Then $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.

Proof:Let $\quad\left(u_{1}, u_{2}, \ldots u_{m}\right) \in V\left(G_{1}\right), \quad$ and $\left(v_{1}, v_{2}, \ldots v_{n}\right) \in V\left(G_{2}\right)$
If $G=G_{1} \times G_{2}, G$ has $m n$ vertices and from the definition of Cartesian product it follows that the degree of each vertex $w_{k}=\left(u_{i}, v_{j}\right) \in V(G)$ is $d\left(w_{k}\right)=d\left(u_{i}\right)+d\left(v_{j}\right)$. Hence there exists at least one vertex $w_{g}=\left(u_{k}, v_{l}\right) \in V(G)$, with maximum degree in G.

Since, $d\left(w_{g}\right)=d\left(u_{k}\right)+d\left(v_{l}\right)$, the sum is maximum only if

$$
d\left(u_{k}\right)=\Delta\left(G_{1}\right) \text { and } d\left(v_{l}\right)=\Delta\left(G_{2}\right) .
$$

That is, $d\left(w_{g}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.
In the neighbourhood complex $\mathcal{N}(G)$ of graph G, the vertices are vertices of graph and the faces are subsets of vertices having a common neighbour. Consider a vertex w_{k} of G with degree $d\left(w_{k}\right)$. The $d\left(w_{k}\right)$ vertices adjacent to w_{k}, forms complexes with one element, two elements, three elements,... $d\left(w_{k}\right)$ elements (since they have at least w_{k} as a common neighbour) and no ($d\left(w_{k}\right)+1$, vertices can have w_{k} as a common neighbour. Thus there exists a face with maximum cardinality with respect to a vertex having the maximum degree, and that cardinality is equal to the degree of that vertex.

Also the neighbourhood polynomial of G is defined as $\operatorname{neigh}_{G}(x)=\sum_{u \in \mathcal{N}(G)} x^{|u|}$. Hence the degree of neigh $_{G}$ is the maximum cardinality of the face in neighbourhood complex. Thus, if w_{g} is a vertex with maximum degree in G with $d\left(w_{g}\right)=$ $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$, then,
$\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.

Example 3

Consider the figure 4.

Fig. 4

The neighbourhood complex $\mathcal{N}(G)$ of graph G is, $\mathcal{N}(G)=\left\{\phi,\left\{w_{1}\right\},\left\{w_{2}\right\},\left\{w_{3}\right\},\left\{w_{4}\right\},\left\{w_{5}\right\},\left\{w_{6}\right\}\right.$, $\left\{w_{7}\right\},\left\{w_{8}\right\},\left\{w_{9}\right\},\left\{w_{10}\right\},\left\{w_{11}\right\},\left\{w_{12}\right\},\left\{w_{2}, w_{4}\right\}$, $\left\{w_{2}, w_{7}\right\},\left\{w_{4}, w_{7}\right\},\left\{w_{1}, w_{3}\right\},\left\{w_{1}, w_{5}\right\},\left\{w_{1}, w_{8}\right\}$, $\left\{w_{3}, w_{5}\right\},\left\{w_{3}, w_{8}\right\},\left\{w_{5}, w_{8}\right\},\left\{w_{2}, w_{6}\right\},\left\{w_{2}, w_{9}\right\}$, $\left\{w_{6}, w_{9}\right\},\left\{w_{1}, w_{7}\right\},\left\{w_{1}, w_{10}\right\},\left\{w_{5}, w_{7}\right\}$, $\left\{w_{5}, w_{10}\right\},\left\{w_{7}, w_{10}\right\},\left\{w_{2}, w_{8}\right\},\left\{w_{2}, w_{11}\right\}$, $\left\{w_{4}, w_{6}\right\},\left\{w_{4}, w_{8}\right\},\left\{w_{4}, w_{11}\right\},\left\{w_{6}, w_{8}\right\}$, $\left\{w_{6}, w_{11}\right\},\left\{w_{8}, w_{11}\right\},\left\{w_{3}, w_{9}\right\},\left\{w_{3}, w_{12}\right\}$, $\left\{w_{5}, w_{9}\right\},\left\{w_{5}, w_{12}\right\},\left\{w_{9}, w_{12}\right\},\left\{w_{1}, w_{4}\right\}$, $\left\{w_{2}, w 22_{5}\right\},\left\{w_{7}, w_{9}\right\},\left\{w_{3}, w_{6}\right\},\left\{w_{10}, w_{12}\right\}$, $\left\{w_{2}, w_{4}, w_{7}\right\},\left\{w_{1}, w_{3}, w_{5}\right\},\left\{w_{1}, w_{3}, w_{8}\right\}$,
$\left\{w_{1}, w_{5}, w_{8}\right\},\left\{w_{3}, w_{5}, w_{8}\right\},\left\{w_{2}, w_{6}, w_{9}\right\}$,
$\left\{w_{1}, w_{5}, w_{7}\right\},\left\{w_{1}, w_{5}, w_{10}\right\},\left\{w_{1}, w_{7}, w_{10}\right\}$,
$\left\{w_{5}, w_{7}, w_{10}\right\},\left\{w_{2}, w_{6}, w_{4}\right\},\left\{w_{2}, w_{4}, w_{8}\right\}$,
$\left\{w_{2}, w_{4}, w_{11}\right\},\left\{w_{2}, w_{6}, w_{8}\right\},\left\{w_{2}, w_{6}, w_{11}\right\}$,
$\left\{w_{2}, w_{8}, w_{11}\right\},\left\{w_{4}, w_{6}, w_{8}\right\},\left\{w_{4}, w_{6}, w_{11}\right\}$,
$\left\{w_{4}, w_{8}, w_{11}\right\},\left\{w_{6}, w_{8}, w_{11}\right\},\left\{w_{3}, w_{5}, w_{9}\right\}$,
$\left\{w_{3}, w_{5}, w_{12}\right\},\left\{w_{3}, w_{9}, w_{12}\right\},\left\{w_{5}, w_{9}, w_{12}\right\}$,
$\left\{w_{1}, w_{4}, w_{8}\right\},\left\{w_{2}, w_{5}, w_{7}\right\},\left\{w_{2}, w_{5}, w_{9}\right\}$,
$\left\{w_{5}, w_{7}, w_{9}\right\},\left\{w_{2}, w_{7}, w_{9}\right\},\left\{w_{3}, w_{6}, w_{8}\right\}$,
$\left\{w_{5}, w_{10}, w_{12}\right\},\left\{w_{1}, w_{3}, w_{5}, w_{8}\right\},\left\{w_{1}, w_{5}, w_{7}, w_{10}\right\}$,
$\left\{w_{2}, w_{4}, w_{6}, w_{8}\right\},\left\{w_{2}, w_{4}, w_{6}, w_{11}\right\}$,
$\left\{w_{2}, w_{6}, w_{8}, w_{11}\right\},\left\{w_{4}, w_{6}, w_{8}, w_{11}\right\}$,
$\left\{w_{2}, w_{4}, w_{8}, w_{11}\right\},\left\{w_{3}, w_{5}, w_{9}, w_{12}\right\}$,
$\left.\left\{w_{2}, w_{5}, w_{7}, w_{9}\right\},\left\{w_{2}, w_{4}, w_{6}, w_{8}, w_{11}\right\}\right\}$.
The only five element complex $\left\{w_{2}, w_{4}, w_{6}, w_{8}, w_{11}\right\}$, has the common neighbour w_{5}, and from the figure we have $d\left(w_{5}\right)=5$.

Also the neighbourhood polynomial of G is, $\operatorname{neigh}_{G}(x)=1+12 x+35 x^{2}+31 x^{3}+9 x^{4}+$ x^{5}, and $\operatorname{deg}\left(\operatorname{neigh}_{G}(x)\right)=5$.

Reference

[1] Jason I. Brown, Richard J. Nowakowski, "The neighbourhood polynomial of a graph", Australian journal of Combinatorics, Volume 42(2008), Pages 55-68.
[2] G.Suresh Singh, "Graph Theory", PHI Learning Private Limited, New Delhi, 2010.

